
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 597872, 13 pages
doi:10.1155/2008/597872

Research Article
Smart Camera Based on Embedded HW/SW Coprocessor

RomualdMosqueron,1 Julien Dubois,2 MarcoMattavelli,1 and DavidMauvilet1
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This paper describes an image acquisition and a processing system based on a new coprocessor architecture designed for CMOS
sensor imaging. The system exploits the full potential CMOS selective access imaging technology because the coprocessor unit
is integrated into the image acquisition loop. The acquisition and coprocessing architecture are compatible with the majority
of CMOS sensors. It enables the dynamic selection of a wide variety of acquisition modes as well as the reconfiguration and
implementation of high-performance image preprocessing algorithms (calibration, filtering, denoising, binarization, pattern
recognition). Furthermore, the processing and data transfer, from the CMOS sensor to the processor, can be operated
simultaneously to increase achievable performances. The coprocessor architecture has been designed so as to obtain a unit that can
be configured on the fly, in terms of type and number of chained processing stages (up to 8 successive predefined preprocessing
stages), during the image acquisition process that can be defined by the user according to each specific application requirement.
Examples of acquisition and processing performances are reported and compared to classical image acquisition systems based on
standard modular PC platforms. The experimental results show a considerable increase of the achievable performances.
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1. INTRODUCTION

Nowadays, smart cameras are more and more applied for
their specific performances and their processing capabilities
in different application fields. We can distinguish three
typical classes of smart cameras.

(i) Artificial retinas: in which dedicated processing is
directly integrated aside the pixel. The processing
capabilities are usually fixed or limited to a few simple
and local functions [1–3].

(ii) Standard cameras directly connected to a computer via
a standard interfaces: all the processing is performed
into the computer CPU [4, 5].

(iii) Cameras including embedded processing units: the
processing is performed into the camera and only
the processing results or some image features are
transferred outside the camera [6, 7].

For the class of the artificial retinas cameras, the image
processing capabilities, or better the pixel imaging capabili-
ties, are usually fixed locally to a small pixel neighborhood

and remain very limited in scope. No application specific
processing can be added at the image acquisition stage.
However, such kind of sensors can achieve very high
frequency acquisition rates that are necessary for some class
of applications. In the case of a standard camera interfaced
with a computer, the data transfer between the camera
and the computer is limited by the connection interface.
When dealing with applications requiring high frame-rate
or very high resolution cameras, usually the problem is the
amount of data that needs to be transferred to the CPU.
This may largely exceed the available standard interface
bandwidth. For such class of applications, different camera
architectures that include embedded processing units have
been developed.

This paper proposes a novel smart camera architecture
based on a specific coprocessor designed for on-line indus-
trial process control. This paper describes a coprocessor unit
design providing an interface for the full control of the sensor
acquisition process driven from the main application CPU.
This key feature enables the acquisition to be controlled
on the fly in function of the algorithm’s scheduling. The
main processor and the coprocessor are, respectively, in
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charge of the high-level tasks, the acquisition and processing
decision imposed by the application, and the lower-level
tasks, characterized by high level of processing regularity and
parallelism. The processing can be adapted easily, thanks to
the structure, to the application’s requirements.

The paper is organized as follows. Section 2 presents the
context and the objectives of the new embedded system.
Section 3 presents the coprocessor platform. The coprocessor
architecture is presented in Section 4 and its features are
discussed in detail. The performance of the coprocessor
architecture are reported in Section 5 and compared to a
classical image acquisition and processing scheme. Results
of a complete postal sorting application are presented in
Section 6 showing the potential parallelism of this platform.
Finally, Section 7 concludes the paper presenting the per-
spectives of further work.

2. CONTEXT AND COPROCESSOR INTO
PROCESSING/ACQUISTION LOOP

For image-processing applications requiring very high-
performances, an adaptive image acquisition stage is very
often the key feature to satisfy the real-time constraints.
Although we can nowadays observe the wide availability of
low-cost high-speed high-resolution sensors, the high pixel
rate to be transferred to the central processing unit from the
image sensor is often the main system bottleneck in terms
of performance. This fact indeed pushes the theoretically
achievable system performance to higher and higher levels so
as to be able to cover new demanding applications. However,
higher pixel rates require new architectural approaches so as
to reduce the costs of the interfacing and processing stages
that are now the real bottleneck of such systems. Whenever
such high pixel rate can be reduced according to the analysis
of its intrinsic semantic content (i.e., image portions can
be discarded not being relevant for the application), the
response time of common system architectures is too slow
to timely adapt the acquisition stage to the relevant image
sequence content. Indeed, the transfer time from the sensor
to the CPU unit is often too large to enable the system to
react, and finally results in being too expensive in terms of
equipment and interfaces.

The coprocessing approach has been investigated in the
last few years by several authors. Some works presented
in literature are based on hardware coprocessing designs
specifically dedicated to a single application [8–10]. The
performance improvements reported in literature are quite
relevant, when comparing architectures with or without
coprocessor, those results present speed-up factors up to
few hundreds. Other authors have proposed generic systems
whose property is the possibility to implement different
algorithms on a coprocessing-based architecture [11]. In the
class of “generic” coprocessor units, only a few authors have
mentioned the possibility to control the image acquisition
stage simultaneously with the processing stage. Gorgon
proposed a coprocessor unit to control the acquisition stage
of charge coupled devices (CCDs) sensor [12]. Jung et al.
presented a preprocessing unit to control CMOS sensor [13],
but the achieved functionality operates only on the specific

image corrections used to compensate physical limitation
of the CMOS sensor. The key point is to control the
acquisition on the fly in function of the different algorithm
tasks.

The integration of a coprocessing element into the image
acquisition loop of a CMOS sensor has very interesting fea-
tures. Standard CCD-based image systems are synchronous
and require that the full image is downloaded before pro-
ceeding to a new acquisition. CMOS sensors are much more
flexible because not only they are intrinsically asynchronous,
but they are also capable of performing image acquisitions
on limited section of the sensor up to the acquisition of
single pixels. For several applications such flexibility can be
successfully exploited so as to reduce the data transfer to
the central CPU thus considerably reducing the necessary
data bandwidth. As a consequence, the overall processing
requirement of the application has just to process a limited
portion of the original image. The key to achieve such results
is to be able to provide to the main application the necessary
information to adapt the acquisition stage without the need
to transfer the full image to the central CPU. In other words,
CMOS imaging can achieve the following:

(i) a selective image acquisition stage depending on the
image content itself and on the requirements of the
application,

(ii) a relevant reduction of the data volume to be
transmitted to the processing unit once the selective
acquisition stage has been activated.

The condition for which such features can be achieved
is that a “coprocessing” element is inserted in the image
acquisition loop driven by the “high-level” application.
Different approaches can be considered; the implementation
of an embedded ASIC or a configurable processor is one of
them. The processing capabilities of these components, as the
STV0676 (ST Microelectronics: STV0676 datasheet; avail-
able at http://www.datasheetcatalog.org/datasheet/stmicroe-
lectronics/9068.pdf) or the CMOS coprocessor introduced
by [14–16], are examples. However, the level of flexibility of
such architecture is quite limited since only a few processing
parameters can be configured according to the application
constraints. All the components are fixed with their own
processing. A recently designed chip with a coprocessor is
the named OMAP DM-510 (Texas Instrument: OMAP DM-
510 page; available at http://focus.ti.com/general/docs/wtbu/
wtbuproductcontent.tsp ? templateId=6123 & navigationId=
12802&contentId=41258). Such component is very inter-
esting, but only addresses low-power applications, typically
mobile phones. Moreover, all the chip components have
dedicated interfaces, thus the control of specific CMOS is
very complex or even impossible, for the number of control
signals to handle. For instance, the high-speed CMOS
sensor MT9M413 (Micron-Aptina: MT9M413 datasheet;
available at http://www.aptina.com/products/images ensors/
mt9m413c36stc/#overview) required almost 150 pins to
be implemented (included data). The “artificial retina”
approach has similar features in terms of processing possi-
bilities [17]. These architectures are frequently developed
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to process a neighborhood of the pixels [1–3], however
the process is usually reduced to small size neighborhoods
(usually smaller than 16 × 16). The acquisition can be
controlled, but is dependent on the architecture and the
targeted applications. So as to obtain the features presented
above, a heterogenous architecture is proposed: a processor
associated to an FPGA. The acquisition is a task of the
FPGA, therefore any CMOS sensor can be controlled.
Consequently, any CMOS sensor with specific acquisition
modes (as, e.g., scan line) can be interfaced. The flexibility of
the heterogeneous structure offers a large panel of solutions
for the implementation of image processing for on-line
industrial control.

In such architecture the “coprocessing” unit besides
the control of the acquisition stage becomes naturally in
charge of the standard low-level repetitive tasks such as
filtering, denoising, and binarization. In fact, the full control
of the acquisition stage enables the right control of the
preprocessing tasks usually performed at the level of the
central CPU or high-level application.

For instance, the “instructions” for a selective image
acquisition stage, that is, an acquisition stage for which
only a (small) portion of the image that presents certain
features needs to be “acquired” and transmitted to the
central CPU for further high-level processing, are handled
by the “coprocessor” accessing directly the CMOS sensor
itself in an asynchronous manner. At this point also the
processing associated to the specific feature “found” in the
image can be efficiently implemented at the “coprocessor”
level. Then, only the “selected” image portion already
preprocessed and/or prefiltered is transferred to the central
CPU unit. The coprocessing task schedule can be selected
on the fly depending on the acquisition commands and is
adapted to the acquisition form that is region/pixel-based.
By this approach, the necessary data bandwidth can be
drastically reduced eliminating in most of the cases the major
system limitation. An example of achievable performance for
some classical preprocessing stage is provided in Section 5.
The main processor, freed from image acquisition and
preprocessing tasks, can then be used for further process-
ing and/or high-level algorithms defined by the specific
application.

The challenging aspects of the coprocessor design are
mainly related to the variable acquisition mode (i.e., input
image format and layout). Obviously, the bandwidth asso-
ciated to a window processing can be optimized; moreover,
the nature, the complexity, and the number of possible
processing stages can be adapted at each acquisition mode.
Many different acquisition modes are then available. In all
modes, a window can be selected in the full-range image,
the size and the integration time are defined, and a sub-
sampling (on Y and X) can also be specified. In the simple
multiexposition mode, the same window is acquired several
times or periodically and the delay between two acquisitions
can be defined. Also in the tracking multiexposition mode,
the window can be translated. Such modes allow to create
a “subimage” image by row or column accumulation when
the sensor is used as line sensor even with lines varying their
position during the acquisition itself.

Main
processor

/DSP

Processing Acquisition CMOS
sensor

COP

Data
Controls

Figure 1: Block diagram of the coprocessor-based architecture.

The first interesting result achieved by implementing this
architecture is that relevant speed-up factors are obtain-
able for reconfigurable processing modules, thus providing
enough flexibility in terms of choices of processing and
in terms of acquisition modes defined on the fly by the
application itself (selection and preprocessing of any kind of
area of interest). The second interesting result is that such on-
the-fly adaptation of the acquisition mode yields a further
bandwidth reduction for the transfer of the image data to
the central CPU. This feature represents for some application
a further speed-up in the overall system performance in
terms of reduction of processing or increase of the achievable
acquisition/processing frame rate.

3. ARCHITECTURE OF THE COPROCESSOR CAMERA

The overall system can be described as an autonomous
intelligent camera with powerful embedded processing when
compared with modular systems associated with a computer.

The system has been thought for monitoring applications
such as road monitoring [18] or intrusion detection or any
other similar application. Quality control and control of
industrial processes, where very high frame-rate on specific
image sections are required, is another application field of
the system. For such kind of processes, only the “relevant”
portions of the images are necessary to be transmitted to
the host CPU for further processing. In some cases, only
the result of the preprocessing, or of the processing (i.e., the
detected feature), is needed to be transmitted outside the
system to a local host PC or via Internet.

The system is composed of an embedded frame-grabber
equipped, at different levels, of processing capabilities for the
image acquired by the sensor and it is illustrated in Figure 1.
This figure illustrates the main architectural components
of the camera with embedded coprocessing stage. In this
architecture, the coprocessor part (COP) is divided in two
parts: a part dedicated to the acquisition and a second part
dedicated to a preprocessing stage.

The association of the processing and acquisition stages
aims at reducing the pixel rate for applications where
“irrelevant” image portions are detected by the coprocessor.
The processing is then complemented by the processor for
higher-level tasks at a possibly lower pixel-rate. The partition
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of the tasks is made by exploiting the specificity of each
element, to use it as efficiently as possible, thus reducing the
pixel-rate when possible and the processing time so as to
increase the overall throughput. This architectural approach
to the processing of sequences is particularly adapted to
and performing, but not limited to, tracking applications,
pattern recognition applications, and compression applica-
tions. Video compression is generally used in camera systems
so as to reduce the bandwidth of the data transfer and to
be able to use a standard communication channel without
addition of acquisition boards such as the camera-link for
instance. However, with high performance sensors, there is
immediately the problem of the connection that becomes
now the system “bottleneck”, and prevents from transfer-
ring the images rate provided by the sensor. The system
described in this paper also supports the implementation
of a compression stage (thanks to multimedia processor’s
functionalities) that makes it possible to approach to the
sensor limit capabilities.

The system is composed of a compact stack of 4 boards,
enabling to easily interface various types of sensor/cameras
and thus answering to various resolution and acquisition
speed requirements in the most modular and economic way.
The four boards described hereafter are the following:

(i) the motherboard containing the main processor,

(ii) the communication board,

(iii) the board including the coprocessor,

(iv) the camera interface board.

3.1. Motherboard

The motherboard contains a Nexperia PNX1500 (Philips:
PNX 1500 datasheet; available at http://www.nxp.com/
acrobat download/literature/9397/75010486.pdf) processor
at 300 MHz and includes functions for the sound and image
processing. This processor has been selected for the powerful
VLIW core and for the variety of supported integrated
interfaces such as Ethernet controller, DDRam controller,
and PCI. Moreover, it includes a 32-bit TriMedia 3260 CPU
core with 5-issue slot engine and 31 pipelined functional
units. It operates up to 10000 Mops and 1300 Mips and can
execute up to 5 operations per clock cycle. In addition,
Nexperia integrates a graphic 2D engine able to display up
to a resolution of 1024 × 768 to 60 Hz. A large library can
be used to program several standards (MPEG, H263, etc.)
and several interfaces. The Nexperia power consumption
depends on the processing charge, typically it is around
1.5 W. Around this processor, we can find communication
interfaces such as Ethernet and ISDN, as well as acquisition
and rendering of video images and analogical sound. The
motherboard contains a 64 Mbytes DDR Ram (333 MHz) to
store data. In addition, there are 32 Mbytes of flash memory
used to store the programs or different information. Several
interface components can communicate via a PCI bus, like
Ethernet and VGA. Thus, motherboard contains an internal
bus which is a PCI and all the platforms communicate via
this bus.

3.2. Communication board

The second board is based on an FPGA Spartan XL
(Spartan XL (Xilinx: Spartan XL datasheet; available at
http://direct.xilinx.com/bvdocs/publications/ds060.pdf)) to
manage the PCI arbiter, the communication interfaces such
as USB2.0 and Firewire that can be driven to connect
the camera with digital standard interfaces. This board
provides four functionalities. It extends the communication
of the motherboard with standards USB 2.0, IEEE1394,
and Ethernet 10/100. The ethernet connection is important,
because systems and a computer can communicate by this
interface with a simple IP number. It also provides a
centralized power supply for the system. On this board, a
converter N/A is used to display on a standard VGA monitor.
All the components cited before have a PCI input to avoid
different link with the processor.

3.3. Acquisition and processing board

This board is the COP part in charge of the acquisition and
the preprocessing stages of the video signal coming from
the CMOS sensors or cameras. The preprocessing part is
independent from the acquisition part. Its architecture is
illustrated in Figure 2. The main functions are partitioned
into two FPGAs. The first FPGA is a Virtex2Pro VP4-fg456-5
(Xilinx: Virtex 2 Pro datasheet; available at http://direct
.xilinx.com/bvdocs/publications/ds083.pdf), their functions
are to acquire images and communicate the configuration
and orders to the camera. This FPGA drives the camera
and can be adapted to several sensors or cameras; it is
just an implementation with the right driver. Therefore, it
implements a wide variety of acquisition modes (random
region acquisition, variable image size, variable acquisi-
tion modes line/region based, multiexposition image). The
second FPGA is a Virtex2Pro vp20-fg676-53, and high-
performance image preprocessing (calibration, filtering,
denoising, binarization, pattern recognition) is its principal
function. These FPGAs include, respectively, 1 IBM Power
PC, 28 18 kb BRAMs, 3008 slices and 2, 88, 9280 for the
large one. Both FPGAs communicate through two high-
speed serial channels, specific to Xilinx, called RocketIO
(Xilinx: RocketIO User Guide; available at http://www
.xilinx.com/bvdocs/publications/ug024.pdf). Moreover, each
FPGA communicate with the processor via the PCI bus.
Xilinx FPGAs have been chosen, because of their high-speed
serial communication, PowerPC are available, and they are
flexible and reprogrammable. Interface drivers are already
developed and optimized by Xilinx.

This board contains, in addition of FPGAs:

(i) 2 SDRAM until 128 Mbytes associated with the
acquisition FPGA used to store several images,

(ii) 2 ZBT until 8 Mbytes associated with the coprocess-
ing FPGA used for processing tasks,

(iii) 4 optocoupled inputs,

(iv) 4 optocoupled output,

(v) 2 encoders.



Romuald Mosqueron et al. 5

4 inputs
4 outputs
2 encoders

Sensor interface
connector

SD
R

A
M

m
em

or
y

Image acquisition
FPGA

Image coprocessor
FPGA Z

B
T

m
em

or
y

PCI/local bus connector
from communication board

Rocket
IO

Figure 2: Block diagram of acquisition and processing board
architecture.

Power consumption of this board also depends on the
processing performed. The power dissipation ranges from 3
up to 12 W depending on FPGA and memories utilization.
For example, in the implemented application, explained
Section 6, power dissipation is below 7 W.

3.4. Camera interface board

The fourth board is a simple interface board between
the FPGA board and the camera. This board depends on
the camera interface. It can be adapted and changed.
Thus, the system can be used with several CMOS
image sensors, for the results described in this paper,
a sensor IBIS4-1300 (Cypress: IBIS4-1300 datasheet;
available at http://www.datasheetcatalog.org/datasheet2/2/
044ipph9289eg3l6qa3eadzds1fy.pdf), with a resolution of
1280 × 1024 pixels and a 40 MHz pixel frequency has been
used for the experimental results. Its interface is a Camera
Link.

The main boards communicate through bus PCI v2.2
allowing to transfer a large number of data (up to
133 Mbytes/s) to the host processor (in accordance with
Nexperia bus interface). The entire architecture is illustrated
in Figure 3, with processing components and available
interfaces.

However, the main idea of the system architecture is
indeed to reduce as much as possible the data rate after the
coprocessor unit by transmitting only the processed image
sections or by controlling the acquisition.

This architectural solution provides exceptional process-
ing potential and offers wide communication possibilities.
The processing part is built with pipelined or parallel HW
processing modules to obtain high performance. Further-
more, a processing and data transfer, from CMOS sensor
to processor, can be operated in parallel so as to increase
performances.

The main additional advantages of this system, besides
the capability of controlling the acquisition loop and the
achievable processing performances compared to a tradi-
tional modular PC system, can be summarized as follows:

(i) a low dissipated power,

(ii) compact dimensions,

Interfaces

RS-232
RS-485
USB
Dig I/O

SDRAM CMOS
sensor

System
control

Trimedia COP

PCI

Ethernet
control

VGA
control

PCI
extension

Figure 3: Block diagram of the system architecture.

(iii) a greater robustness (mean time between failures)
because it does not integrate mobile components
(ventilators, hard disks),

(iv) a greater commercial lifespan because components
in the computers world are very volatile and can-
not be replaced with components having the same
characteristics. Sometimes, after only a few years,
partial redesign of the system is required to critical
applications.

Power supply of the system is operated at 12 V and can
reach up to 36 W. In the test case applications, it works
at about 20 W, including the power supply of the CMOS
camera. Dimensions of this system are 150×150×60 mm. In
future versions, dimensions will be reduced and the internal
communication bus could be directly replaced by the PC104
or another similar performing bus.

4. COPROCESSOR DESIGN

The essential problem of the coprocessor architecture is
the tradeoff between processing efficiency and flexibility
required to exploit the CMOS potential features. Two
different parts essentially constitute the COP architecture
(Figure 4): the processing and the acquisition parts. The
functional blocks constituting the processing part are a
processor interface (PCI interface), a command controller,
a processing controller, a processing unit, and an SRAM.
Thus, the COP architecture is essentially constituted by the
following functional blocks (Figure 4):

(1) a processor interface (bus interface),

(2) a bus bridge, a command controller,

(3) a processing controller,

(4) a processing structure,

(5) a CMOS sensor interface.

The command controller receives the acquisition commands,
the processing commands from the main application. The
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Figure 4: Block diagram of the COP architecture.

task scheduling is controlled by the processing controller
and is executed by the processing structure unit configured
according to the received commands. The data and image
portions, provided by the main CPU and used by the
coprocessor for the actual processing tasks, are transferred
to the processing structure via the bus bridge and via the
processing controller. This feature enables to implement a
true coprocessing stage and not a simple preprocessing.

The link between sensor and acquisition part is specific
for each image sensor, consequently it should be modified
after any sensor change. The connection between acquisition
and processing is standard, therefore independent of the
sensor. Acquisition commands are constituted of parameters
defined to cover a large number of acquisition modes
to enable to interface a large sensor sort (linear CCD,
CMOS matrix). Eventually, the connection with coprocessor
and processor are linked with standard PCI. Hence, the
coprocessor is independent of the processor and could be
used as embedded IP with any PCI system. The coprocessor
architecture enables a full data rate to be obtained on PCI
bus.

The possibility to adapt the number and nature of the
processing and to operate on variable size/shape images is
provided by the flexibility of the processing structure unit.

In essence, it is constituted by five different components
(Figure 5): CONTROL MEM is in charge of the main
memory, CONTROL PRO is in charge of the processing
control, the processing modules, the system control, and the
FIFO is in charge of the temporary storage. Such architec-
ture implements several options for the data flow control
(Figure 5). The input data, provided by CMOS sensor and
by the processor, are referred to in Figure 5, respectively,

with the numbers 1 and 3. There is no FIFO in 1 since
there is a memory in the CMOS interface. The broadcasting
nets referred to as 2, 4, and 5 allow to copy the data and
transfer them on each output branch. The copy is specified
for each net by the command word. The nets referred to
as 2 permit to transfer the input image without processing.
The nets 4/5 permit to transfer the result image between
two processings, simultaneously with data loading/result
reading. The processing structure unit can be configured to
adapt its processing in function of the acquisition mode and
in function of the high-level application via software. The
current acquisition data has to be stored into an internal
memory to allow the preprocessing stage. Several types of
preprocessing require a pixel neighborhood for each pixel
process. A common way to operate is to use a video line
to store few image rows. Unfortunately, such solution is
not possible because the subimage size is not fixed. In
the architectural solution presented here, an internal cache
memory is associated at each processing. Consequently, the
processing flow might not be synchronized with the output
data flow of the memory MEM. Such solution enables to
decrease the number of accesses to MEM. The size and
features of the cache are defined to match the selected
processing.

The processing modules are sharing the same input and
output busses that are connected to the bidirectional main
memory bus. So in order to store the results in the same
memory, the input data enables to cascade the processing
or to apply the same processing several times [19]. The
tasks implemented in HW can be scheduled by the user by
simple ordering of the tasks execution without any ordering
constraint. To illustrate the intrinsic processing potential of
the coprocessing, the performance of different implemented
processings are reported in Section 6. A full application using
SW/HW processing is presented in Section 5, to illustrate the
capacity of the full system in terms of processing and data
flow parallelism.

5. EXAMPLE OF ACHIEVABLE PERFORMANCE

The image processing presented in this section are commonly
used by on-line industrial control systems. All these process-
ing algorithms are quite regular and require a neighborhood
of pixels and common operators (accumulation, multiplica-
tion, square, sorting, and logical). Therefore, they present a
high potential parallelism that can be exploited during exe-
cution. Thus a hardware implementation is directly inserted
in the coprocessor architecture. The image acquisition FPGA
contains the camera driver, a PCI core and a rocket IO core.
These FPGA resources are used for about 90%. No processing
is implemented on this component. All the processings of
the coprocessor are implemented in the other FPGA. Three
different processing types have been implemented in the
coprocessor:

(i) a median filter on different basic kernels (1×3, 1×5,
3× 3),

(ii) a local adaptive binarization (Niblack algorithm)
with a neighborhood of 8× 8 or 16× 16 pixels [20],



Romuald Mosqueron et al. 7

Processing
modules

CONTROL PRO

CONTROL MEM

MEM

Processor data

FIFO

FIFO

CMOS sensor
data

Multiplexer

Broad-casting net

3

1
24

6

5

Figure 5: Diagram of the COP functional.

Table 1: Time processing of median filter 3× 3.

3× 3 1× 3, 1× 5

Number of slices 313 265

Number of block RAM 9

Number of mult 16× 16 0

Frequency (MHz) 100

Image size Time processing (ms)

512× 512 5.22 2.61

256× 256 1.30 0.65

128× 128 0.32 0.16

(iii) a binary pattern recognition based on block matching
with 32× 32 and 64× 64 pattern size.

All the implementation of the three processing includes
a cache memory to provide data without latency to the
designed architecture. The performances and the required
hardware-resources obtained by the coprocessor architecture
are reported in Table 1 for the median filter, Table 2 for the
local adaptive binarization, and Tables 3 and 4 for the pattern
recognition.

The median filter is a simple sliding-window spatial filter
that replaces the center value in the window with the median
of all the pixel values in the window. The median filter is
normally used to reduce noise in an image. In the median
filter implementation, two kinds of filter are implemented:
a one dimensional (1 × 3, 1 × 5) and a two dimensional
(3 × 3). The required resources for each kind are 265 and
313 slices for processing, the reunification use 893 slices
which include all the processing tasks and the handling of
all transfers and local buffers. Used in the preprocessing
stage, the local adaptive binarization not only provides a very
performing algorithm in presence of illumination or object
variations, but also allows to reduce the bandwidth to the
central CPU like an artificial retina sensor can perform. For
example, a 1024 × 1024 full-range image requires 1 Mbytes

to be stored but the binarized image only 1 Mbits. If an
area can be selected in the full-range image, for example a
256×256, the result image size would reduce to 64 Kbits. This
process allows gaining a factor 64 on the original bandwidth.
A threshold is processed for each pixel considering a fixed
size neighborhood (8 × 8 or 16 × 16 can be selected). The
following algorithm defines the local adaptive binarization:

Threshold = Mean(NE)− [0.1875× Std(NE)]

If Std2(NE) < STDREF then B = 0

Else if P < Threshold then B = 1 else B = 0,

(1)

where NE is the considered neighborhood, STDREF is the
standard deviation of reference (determined experimen-
tally), P is the pixel grey level and B is the binary value.
Figure 6 describes the pipelined implementation of this
algorithm (as mean, standard deviation, and variance). A
cache memory (not represented in Figure 6) provides 4 pixels
to the accelerator at each cycle. The signal Sel8o16 enables the
size of neighborhood to be selected.

For the third processing, the binary shapes search,
different tests have been made to compare with different
image size and search sizes. The goal of this processing is to
recognize one or more shapes in a binary image. The search
window and the binary shape are both binary. The different
shapes are searched in the defined window. The detection is
based on the comparisons using the logical operator XNOR,
which replaces the traditional matching criterion based on
the sum of absolute difference (SAD). The binary correlation
algorithm is defined as follows:

f (i, j) =
M−1∑

x=0

M−1∑

y=0

[s1(x, y)XNORs2(x − i, y − j)] (2)

i and j between 0 andN−M. with S1 the binary shape (M×M
size), S2 the binary search window (N ×Nsize).
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Figure 6: Block diagram of the coprocessor component implementing local adaptive binarization process.

Table 2: Local adaptative binarization.

Number of points 2 4 8

Number of slices 477 965 1605

Number of mult 16× 16 5 9 17

Frequency (MHz) 25 25 25

Size Time processing (ms)

Image Block

512× 512 M16× 16 158.09 79.04 39.52

M8× 8 40.80 20.40 10.20

256× 512 M16× 16 76.66 38.33 19.16

M8× 8 20.12 10.06 5.03

256× 256 M16× 16 37.75 18.59 9.87

M8× 8 9.92 4.96 2.48

128× 128 M16× 16 8.17 4.09 2.04

M8× 8 2.34 1.17 0.59

64× 64 M16× 16 1.54 0.77 0.38

M8× 8 0.52 0.26 0.13

Cycle time 40 20 10

This binary approach is commonly used in the optical
character recognition field [21]. The binary shapes usually
represent characters with different orientations. The entire
processing is implemented and require 3021 slices and 9
blocks RAM of 18 kb each. In the table, only the required
slices for a single processing are reported.

A comparison has been done between the performance
obtained by the coprocessor architecture (COP) and a PC,

Bi-Xeon 1.7 GHz, 256 Mo Ram, Rambus 800 MHz (2 ×
400 MHz). The performance results reported in Table 5 do
not consider camera frame-grabber transfer time for the
PC-based platform. The comparison shows that, besides the
achieved speed-up factor up to a factor of 5 that would
certainly result in higher considering the frame-grabber
transfer time, the central CPU in the coprocessor approach
is fully available for further processing. Moreover, when
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Table 3: Binary shapes research with a 50 MHz frequency.

Shape size 64× 64 32× 32 16× 16

Block size 64× 128 32× 64 16× 32

Mem. blocks 6 3 2

Slices/ 2328 1300 1250 700 750 400

detect. block 127 70 40

detection block used 16 8 16 8 16 8

Image Size Processing time (ms)

512× 512 16.05 9.2 4.93 32.1 18.4 9.86

256× 256 2.96 2.015 1.155 5.92 4.03 2.31

256× 512 6.9 4.32 2.39 13.8 8.64 4.78

128× 128 0.335 0.375 NC 0.67 0.75 NC

Table 4: Time to search a shape in an image (ms).

Number of shapes 5 4 3 2 1

256× 512 68.52 59.88 51.24 42.6 33.96

256× 256 32.67 28.64 24.61 20.58 16.55

128× 128 6.73 5.99 5.24 4.49 3.74

Table 5: Processing comparisons.

Processing PC (Mpixel/s) COP (Mpixel/s)

Median 1× 3 41 100

Median 1× 5 28 100

Median 3× 3 27 50

Niblack 8× 8 5 25

Niblack 16× 16 4 14

a bandwidth reduction is possible by means of adaptive
acquisition, the coprocessor approach provides much higher
speed-up gains.

6. APPLICATION EXAMPLE: READING A BAR CODE
FOR POSTAL SORTING

6.1. Application description

The postal sorting is a real-world example showing the
processing possibilities and the achieved level of parallelism
of the system [22]. The goal of this application is to read
bar codes on the letters, to enable the automatic sorting
at the different stages of the logistic postal letter handling.
If the bar codes cannot be read, the letter is rejected and
need to be processed manually. This application has been
developed with the objective of replacing an exiting platform
which integrates a camera associated with a PC. The new
embedded solution has been developed to increase as much
as possible the processing performances and to obtain a
portable and more flexible system. Indeed due to the fact
that bar codes printed on letters may be of bad quality or
superposed to other visual information the possibility of
implementing more complex processing increase the rate of
correct detections/decodings achievable. Ideally, to correctly
read the largest percentage of bar codes, each processing stage

Figure 7: Example of an image which contains a bar code.

should require as much as possible processing power so as
to guarantee that the bar code area is correctly localized
(framed in Figure 7). In reality the processing resources are
limited and, results are easier to extract and process a small
part of the image that with a high probability includes the
bar code, instead of dealing with the entire image of the
letter which includes extra information that can potentially
create errors for the code bar detection and decoding. In the
postal sorting test application example, a letter is grabbed
with the CMOS camera, and the speed of the transporter is
around 4 meters per second. In the coprocessor platform, the
processing stages used are

(i) transposition,

(ii) high pass filtering,

(iii) dilatation plus subsampling,

(iv) blobbing.

The final blobbing task is performed in the main processor.
Details of these processing stages are provided in the
following section. The final task is to read the bar code and
send it to the postal sorting machine.

6.2. Details of the processing

So as to grab a letter, the CMOS camera is configured in
the line scan mode since the high speed of the transporter
(4 meters per second) would result into an image deformed
as reported in Figure 8(a). The camera grabs the same line
during a predefined number of lines or continuously and
the acquisition FPGA rebuilds an image; this mode is shown
in Figure 8(b). In this picture, the difference between the
two modes is shown, and particularly the effect on the bar
code. In area scan mode, the bar code would be completely
unreadable. The first processing applied is a transposition.
The transposition is used to rotate the rebuilt image to
90 degrees. A transposition is necessary because the other
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(a) Area scan mode

(b) Line scan mode

Figure 8: Visualization of the bar code with the two different
acquisition modes of the camera.

Processing direction

Acquisition
direction

Figure 9: Transposition of an image to change in the appropriate
processing sense.

processing stages are only compatible with a horizontal
scanning (Figure 9). Four 32 bits words of four lines are
stored in the memory, transposed, and stored again at a
correct place in the SRAM memory. Transposition operation
uses 4 registers to store temporally the result. The resources
used by the FPGA are 186 slices (only about 2%). The
first real image processing is a high pass filter. The high
pass filter is used to delete the background and to raise
the white bar code as shown in Figure 10(b) compared to
the original image in Figure 10(a). As shown previously,
the data bus is a 32 bits bus, and transfers 4 pixels at the
same time. This task processes 4 pixels at the same time
(i.e., 4 filters are active simultaneously). The high pass
filter is a convolution between the image and the window
which includes the coefficients. Results are directly stored
in the SRAM. Obviously the coefficients of the filters are
reprogrammable to be adapted to any other application.
Resources used for this processing are 1125 slices (12%) and
44 (4× 11) multipliers (50%).

The second processing stage is a dilation. The dilation
is used to complete the region which integrates the bar
codes, thus it will be easier to detect this region as shown in
Figure 10(c). This latter processing is performed to replace

the central pixel by the maximum value of the 32 neighbor
pixels.

The subsampling is the third processing. In fact, only
one of 4 pixels is transferred, moreover one line over four
(Figure 10(d)). The goal is to divide the size of the image
by 16 and consequently the original pixel bandwidth. The
dilation and the subsampling are executed in the same tasks
to reduce memory access. As described in the two last
processing, results are stored into the SRAM.

These three last processing stages are performed in one
dimension (line dimension) to obtain the best result and
to reduce the processing time with the access of the second
dimension. The implemented processings (including the
SRAM address controller) request all together 2623 slices
(26%) and 44 multipliers (46%). Each processing is spilt
in several dependent tasks in the pipelined architecture.
Full application with all driver interface use 3880 slices
(41%), 4 BRAMs (4%), and 44 multipliers (50%). 3 BRAMs
are used like FIFOs to save the transfer of data in the
interface, due to different clock domains. (processing ⇒ PCI,
RocketIO ⇒ processing and PCI ⇒ processing). The fourth
BRAM is used to store all the configuration sent via the
PCI bus (configuration of each processing and of the
application). Between each processing (transposition, high
pass filter, and dilation + subsampling), a storage of results
is made. Results after the high pass filter need to be stored
and kept. In this image, only the areas will be sent after the
coordinates calculation. As seen in the previous section, only
the blobbing is made by the SW processor and all the other
processing stages are performed by the FPGA (coprocessor).
The blobbing is the last processing stage of the code bar
detection. After the dilation, several white (or grey) areas
are labeled. In Figure 10(d), two large areas are detected
(the number of areas depends on the number of sections in
which the bar code is partitioned), that correspond to the
area including the bar codes, but other areas may be detected
which are probably not part of the code. The goal is to
determine the coordinates of the two zones that contain the
code. The processor receives the result image of the dilation
from the SRAM of the coprocessor and stores it into the
DDR RAM associated with the processor. So as to detect a
region (blob), the image is described row by row and when
a pixel value exceeding the threshold is founded, the object
is squared and associated with a label. Once the image is
fully analyzed and labeled, the two largest areas, that are
chosen probably including the bar code and the coordinates
of these two objects, are extracted. Figure 11 shows a part of
the blobbing image where white areas are detected (squared
in grey). The transfer of these coordinates is made to the
coprocessor and the coprocessor transfers only the selected
regions to the processor. The regions are taken on the filtered
image which is stored temporally in the SRAM (Figure 12).
When bar codes are transferred to the processor, the
decoding can be activated. To decode the bar code, an FFT
is made following several tests to read correctly percentage
rates approaching 100% of bar code detected. As shown in
Figure 12, the decoded bar code value in the picture example
is “1111010111101011111001001111010111001111” and
after all the processing the system correctly read the code.
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(a) Original image

(b) Image after high pass filtering

(c) Image after dilatation

(d) Image after subsampling

(e) Image after blobbing

Figure 10: Resulting images after each processing.

(a) Zoom of the subsampling image on one bar code area

(b) Zoom on the same bar code area after the blobbing

Figure 11: Principle of the blobbing processing.

In Figure 13, the efficacy of the system is illustrated also
with a bad bar code image which is not even readable at
sight and without an appropriate processing. However, the
system can correctly read it. Here, the bar code cannot be
read exactly, but the system reads the correct bar code which
is “111001101101010111111001011101010111001111”. It
proves the efficiency of the system.

So as to speed up processing tasks and decoding, the
different stages can be performed in parallel and not
sequentially. The application is divided in three main stages:
acquisition (task 1), processing (task 2), and reading (task 3).
Task 2 is the association of all the processing tasks executed
by the COP and the blobbing including all the data transfer.
These 3 tasks are executed in parallel to gain time and
increase the number of letters processed. In Figure 14, a
sequential sequence (task 1 following 2 and 3) is shown and
during the acquisition the processor and the coprocessor do
not work. The same remarks are valid when the coprocessor
or the processor works simultaneously.

The specificity of the platform is that the 3 principal
actions can work in parallel (i.e., tasks 1, 2, and 3 simul-
taneously). When an image is grabbed at time T, then

Figure 12: Zone transferred after processing to read the bar code.

(a) Original image not readable at sight

(b) Image readable after processing

Figure 13: Preprocessing for improvement of “unreadable” bar
code.

COP processes the image T-1 and the processor reads the
bar code of the image T-2. Only the transfer between the
FPGAs prevents an acquisition or a processing into the
coprocessor. Moreover, the processor is implemented using
a full DMA mode and can work continuously. It receives
data and at the same time it decodes the bar code. By using
this configuration, the processing time is the same from
acquisition to the output, but the number of processed letters
is increased. Results are shown in the following section, and a
comparison between a sequential mode, a parallel mode, and
the PC performances is provided.

6.3. Results and comparisons

In this section, the results of the processing are provided. A
comparison between the classical PC-based system and the
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Task with
SDRAM

Acquisition of image M + 2

Task 1

Preprocessing on image M + 1
(transposition, low-pass filtering, dilatation + sampling)

Tasks on
COP

Task 2 Task 2 Task 2

Tasks on
Nexperia
processor

Code bar reading with image M

Task 3

Preprocessing
on image M + 1

(blobing)

Task 2

Figure 14: Scheduling of the 3 different tasks in parallel.

Table 6: Processing time.

Processing Time (ms)

Acquisition 15.4

Transfer between the 2 FPGAs 4.6

Transposition 1.54

High pass filtering 1.54

Dilatation plus subsampling 1.54

Transfer in the processor of the subsampling image 0.15

Blobbing 4

Transfer in the processor of the bar code image 0.11

Reading the bar code image 12

Total 40.88

Table 7: Platform versus PC (approximative time).

Sequential Parallel PC (ROI)

Time processing (ms) 40 40 40

Number of letter 15 30 15

Theoretical speed (m/s) 4 8 4

coprocessor platform is made. The PC platform is equipped
with the camera (BCi4; Vector international/CCAM Tech-
nologies, available at http://www.vector-international.be/)
associated with the compatible frame grabber. The coproces-
sor platform is obviously equipped with the same camera.
The PC has a processor 3.2 GHz and 1 Go of RAM.

In Table 6, the necessary time for each processing needed
to decode a bar code is shown. The tests were made with an
image of 180 pixels width and 1712 rows captured. It is about
a standard acquisition for a letter. Transfer is considered
as a processing in the table. The transfer time from the
coprocessor to the processor by the PCI is considerably
reduced. The transfer of an entire image by the PCI takes
2.3 microseconds, but to transfer a subsampled image, it
is 16 times lower (0.15 microsecond) and for the bar code
it is 20 times lower (0.11 microsecond). This saving is a
very important factor to speed up the overall processing
performance.

(a) Coprocessor platform plus camera

(b) PC and coprocessor platform

Figure 15: Portability: coprocessor platform versus PC.

Table 7 presents the comparison between

(i) the coprocessor platform and a sequential reading,

(ii) the coprocessor platform and a parallel reading,

(iii) the current PC platform.

In the sequential and parallel mode, the processing time is
approximately the same as a PC platform, but employing
the parallelism, the number of the processed letters can be
increased (i.e., number of images). In the case of the PC, the
size of the processed image is reduced to a small ROI (around
512× 70), against 1712× 180 with the coprocessor platform.
If the size is reduced to include correctly the bar code and
not the image of the letter, the number of letters read can
be increased up to 50. Moreover, the coprocessor platform
is more efficient in hostile environment, small in size, and
equivalent in terms of the percentage of bar codes correctly
read. The portability of the two systems is illustrated in
Figure 15. The size is reduced and results in being more
appropriate for the integration in an industrial process.

7. CONCLUSION

Despite the increasing speed of PC processors and bus
frequencies, the implementation of embedded coprocessor
architectures expressly conceived for image sensors and
inserted in the acquisition loop presents several advan-
tages. Very high processing speed and reduced image data
bandwidth are achievable. The architecture also provides
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high degree of flexibility in the preprocessing stage for
the different acquisition modes specific of CMOS imaging.
Moreover, new processing tasks can be easily added in
function of the application and the platform supports a wide
panel of data interfaces. A complete test case application
has been successfully implemented on this platform, with
significant performance improvements when compared to a
classical PC-based platform.
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