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1 Introduction

If the hierarchy problem is solved by strong dynamics we expect resonances to appear

around the TeV scale which will be hopefully within the reach of the LHC. Producing these

states would allow to determine precious informations about the symmetries and dynamics

of the strong sector. For example in technicolor theories the electro-weak symmetry is spon-

taneously broken by strong dynamics according to the pattern SU(2)L×SU(2)R/SU(2)L+R

and the dynamics of the techni-resonances plays an important role.
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Due to the notorious difficulties of theories without a Higgs, a logical possibility is that

the Higgs doublet itself is a composite state, as in this case the scale of strong dynamics

could be larger, alleviating phenomenological problems. This can be most naturally real-

ized if the Higgs is a Goldstone Boson (GB) associated to the spontaneous breaking of a

symmetry G to H, an idea which goes back to the ’80s [1–4]. One important ingredient of

modern realizations is the mechanism of partial compositeness where the SM fermions and

gauge fields mix to the composite states analogously to the photon-ρ mixing in QCD. The

simplest example based on the symmetry pattern SO(5)/SO(4) was considered in [5] in the

context of Randall-Sundrum scenarios. These models are also dual to strongly coupled 4D

theories through the AdS/CFT correspondence [6, 7].

In this paper we provide a general 4D effective description of Composite Higgs Mod-

els (CHM) with partial compositeness (see [8] for a review and refs.). Our starting point

will be the σ−model G/H describing the low energy interactions of GBs. Spin-1 reso-

nances non-linearly realizing the symmetry can be very simply included by introducing

an additional σ−model GL × GR/GL+R and gauging the diagonal subgroup of GR and

G. Proceeding in the same way a tower of resonances can be included at will. Fermionic

resonances can be treated in a similar way. Differently from other constructions we find it

natural and economic to include complete G multiplets. Couplings to the elementary fields

are simply accounted by adding kinetic terms for the sources associated to the operators

of the composite sector.

The motivation of our work is two-fold. Given that the 5D theories under considera-

tion are effective theories with a cut-off, it is natural to write an effective 4D lagrangian

containing only the degrees of freedom below the cut-off: up to cut-off dependent effects

the two theories will coincide. This is particularly useful because in phenomenologically

relevant models only very few resonances lie below the cut-off. The same idea was con-

sidered in [9] in the context of 5D models for QCD. Moreover only the lowest resonances

have a chance to be produced at the LHC, so for collider applications it is useful to write

a truncation of the theory to the first multiplet of resonances. One practical advantage is

that in this limit very simple, explicit formulas can be derived which are well suited for

simulating the model at the LHC. Our philosophy is here similar to the one of [10]. In this

ref. an effective lagrangian capturing the essential features of partial compositeness was

considered but the full GB structure of the theory was not incorporated. This was also

done recently in [11] with a different construction from ours.

Since our framework is based on general symmetry principles it is also interesting

to consider a fully 4D point of view and treat our effective theory with one set of G

multiplets on its own. This can be interesting because terms not obtained from the 5D

theory can be added to the action compatibly with the symmetries which could be relevant

phenomenologically. We will show in particular that they contribute to the S−parameter

allowing to reduce it for appropriate choice of the parameters.

The paper is organized as follows. In section 2 we develop the general formalism

to include an arbitrary tower of spin-1 and spin-1/2 resonances in a theory with global

symmetry G spontaneously broken to H. Various limits are considered which reproduce in

particular higher dimensional theories and the CCWZ construction [12, 13]. In section 3 we
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apply our tools to the Minimal Composite Higgs SO(5)/SO(4) focusing on the case where

a single SO(5) multiplet of resonances is included. All the results can be conveniently

expressed in terms of 2-point functions of the composite sector which are collected in

appendix A. The Higgs potential is discussed in section 4 and appendix B. In section 5 we

study the effect of non-minimal terms in the effective action. Conclusions are in section 6.

Couplings and decay widths of spin-1 resonances can be found in appendix C.

2 Resonances in G/H

We wish to describe scenarios where Higgs is GB of some strongly coupled sector with

global symmetry G spontaneously broken to a subgroup H. In the simplest realization [5],

on which we will focus later on, the coset structure is SO(5)/SO(4) which delivers a single

Higgs doublet. Our discussion however is general, relying solely on the symmetries of the

theory, and could be applied for example to extended Higgs sectors studied in [14, 15].

To lowest order in derivatives the dynamics of the GBs is determined by the symme-

tries. In general, starting from the GB matrix,1

U(Π) = e
iΠâT â

f , (2.1)

which transforms under the action of the group G as

U(Π′) = gU(Π)h†(Π, g) g ∈ G, h(Π, g) ∈ H, (2.2)

one constructs the Maurer-Cartan form U †∂µU = iEaµT
a + iDâ

µT
â, where hatted and

unhatted indexes correspond to broken and unbroken generators respectively. To leading

order the low energy GB lagrangian reads,

f2

2
Dâ
µD

µâ, (2.3)

while the connection Eaµ allows to write general G invariant couplings to matter fields. In

the scenarios of interest, upon gauging the SM gauge interaction and introducing couplings

to the elementary SM fermions, eq. (2.3) describes the low energy dynamics of CHM with

partial compositeness. The GB structure has important consequences on the couplings of

the Higgs which was discussed in a model independent fashion in [16]. In particular this

encodes the relevant low energy consequences of 5D models such as [5].

To add resonances to this picture we extend the construction of [17], which was for-

mulated in the context of QCD. See also [18, 19] for a related construction.

2.1 Spin 1

Starting from the GB lagrangian (2.3), a simple way to add vector resonances compatibly

with the symmetries is to introduce a second σ−model field Ω of GL × GR/GL+R. This

can be parametrized by G valued matrices transforming as

Ω→ gLΩg†R. (2.4)

1To fix our normalizations the generators are defined with Tr[TATB ] = 2δAB .
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U

Figure 1. Moose diagram of the theory. The white site on the left corresponds to the global G

symmetry, while the grey ones are gauged.

A lagrangian manifestly invariant under a global G′ symmetry spontaneously broken to H

containing spin 1 resonances (ρµ) is obtained by gauging the diagonal subgroup of GR and

G in eq. (2.3),

L2−site =
f2

1

4
Tr |DµΩ|2 +

f2
2

2
DâµDµâ −

1

4g2
ρ

ρAµνρ
Aµν , (2.5)

where

DµΩ = ∂µΩ− iAµΩ + iΩρµ, (2.6)

Dâ is obtained by gauging the global symmetry of the σ−model (2.3), and ρAµν is the field

strength of ρAµ . We have also included in the covariant derivative (2.6) the gauging of

GL. From the point of view of the composite sector this is a global symmetry so that

Aµ is not a dynamical field and should be treated as an external classical source which

is zero in the vacuum. These sources are useful to compute correlation functions of the

global currents the theory: the path integral as a function of A is the generating functional

of the conserved currents. Moreover, as we will see in the next section, the coupling

to external fields (corresponding to SM fermions and gauge fields) is simply accounted

by adding kinetic terms for the sources of the various fields. One can then determine

the effects of the composite sector on the SM fields in terms of the correlation functions

of the composite sector.

This procedure can be generalized in an obvious way to add a tower of resonances by

adding σ−model fields Ωn and gauging nearest neighbor diagonal groups. One finds the

moose lagrangian depicted in figure 1,

LN−sites =

N−1∑
n=1

f2
n

4
Tr |DµΩn|2 +

f2
N

2
DâµDµâ −

N−1∑
n=1

1

4 g2
ρn

ρAn,µνρ
Aµν
n

DµΩn = ∂µΩn − iρµn−1Ωn + iΩnρ
µ
n, n = 1, . . . , N − 1 (2.7)

where ρµn ∈ Adj[Gn] and ρµ0 = Aµ. The spectrum now contains N − 1 G multiplets of

massive spin-1 resonances. The breaking G/H is triggered by the last σ−model. The GBs

associated to the breaking G/H can be identified with the combination,

U ′ ≡
(

ΠN−1
n=1 Ωn

)
U. (2.8)
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To make manifest the particle content of the theory it is useful to choose a gauge where

the GBs do not mix with the heavy gauge bosons. This is given by

Ωn = exp i
f

f2
n

Π, n = 1, . . . , N (2.9)

with U = ΩN . The scale f can be conveniently chosen to be the decay constant of the GBs

in the theory. From the nomalization of the kinetic terms one quickly derives,

N∑
n=1

1

f2
n

=
1

f2
. (2.10)

2.2 Spin 1
2

Fermions can be treated in a similar way with one subtlety. The simplest option is to assume

that the composite sector contains Dirac fermions arising from the strong dynamics. Each

SM chiral fermion will be associated to one (or more) G multiplets of the strong sector.

We will then add Dirac fermions Ψn in a representation Gn (same at each site), in general

reducible.

As for the gauge field we can write a lagrangian with nearest neighbor interactions.

For the states associated to the left-handed SM chiralities we will consider,

Lfermions =

N−1∑
n=1

Ψ̄(r)
n

[
i /D

ρn −m(r)
n

]
Ψ(r)
n +

N−1∑
n=1

∆(r)
n

(
Ψ̄n−1
r,L ΩnΨn

r,R + h.c.
)
,

DµΨ(r)
n = ∂µΨ(r)

n − iρµnΨ(r)
n , (2.11)

while for right-handed fermions L ↔ R. The index r refers to the irreducible representa-

tions of G and summation is understood. The hopping terms written above are not the

most general ones, connecting only the left chirality of the massive fermion at site n to the

right chirality of the fermion at site n+ 1, as shown in figure 2. This choice can be moti-

vated as follows. As in the gauge sector the field on the first site Ψ
(r)
0 is a classical source.

Differently however, we would like the associated operator to be chiral so that only one

chirality of Ψ
(r)
0 is identified as the source. This suggests to interpret at each site the left

(right) fields as sources for the fields on the next site, while the right-handed (left-handed)

fermions as independent dynamical fields. This leads to the lagrangian above.

Following the same logic, on the last site we write the most general zero derivatives

lagrangian compatible with the spontaneously broken symmetry and with the LR struc-

ture. As explained in [15] this is achieved by writing all the possible H invariant terms

constructed with GBs,

LG
H

= mΨ

∑
r,s

Ψ̄
(r),N−1
L U(Π)P rsA U(Π)†Ψ

(s),N−1
R + h.c. (2.12)

where P rsA is a projector over the irreducible representations, r refers to the fields associated

to the left sources and s to the ones associated to the right-sources. This formalism also

allows to introduce composite massless fermions in a representation H of the symmetry

which will interact with the fields on the last site by means of the GBs.
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1
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Figure 2. Nearest neighbor interactions in the fermion sector. For fields associated to left-handed

sources, the left chirality at site n couples to the right chirality at site n+ 1.

2.3 Other terms

The effective lagrangians (2.7), (2.11) and (2.12) are not the most general compatible with

the symmetries of the theory and this provides powerful restrictions on the spectrum and

the dynamics of the theory. Consider the case with only one multiplet of resonances. To

the gauge lagrangian in eq. (2.5) we can add the term,

f2
0

2
D̃â
µD̃

µâ, (2.13)

where D̃µâ is now obtained from the Maurer-Cartan form for ΩU . The addition of this

term changes the GBs decay constant to

f2 = f2
0 +

f2
1 f

2
2

f2
1 + f2

2

, (2.14)

while leaving the masses of composite gauge bosons unchanged. One important conse-

quence is that the coupling of spin-1 resonances to GBs is also modified.

While this term violates the logic of nearest neighbor interactions, there are several

reasons to include it. In a phenomenological approach to QCD it is needed to better

reproduce the data [20]. In that case one finds that the best agreement is for f2
0 ≈ −f2

π .

Moreover if we imagine starting from a theory with many sites, we could integrate out the

heavier states and write an effective lagrangian for the lighter ones. This term would then

be induced at tree level. Finally we expect these terms, appropriately suppressed, to be

generated by quantum loops.

From a 5D point of view (see below) the term above corresponds to a non-local interac-

tion. This should be suppressed if the 5D theory is weakly coupled. Indeed one can see that

such term, if large, tends to ruin the partial unitarization of the scattering of GBs that one

achieves in a theory with nearest neighbor interactions (see below). However phenomeno-

logically interesting theories require strong coupling, so that just few resonances have a

weakly coupled description. In this situation it is interesting to consider phenomenological

consequences of (2.13). As we will see in section 5 this term could be relevant for the

decay of the resonances and contributes to the S parameter. Analogous terms could also

be introduced for the fermions but we will not consider their effects in this paper.
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2.4 Relation to other works

2.4.1 5D models

The reader will likely not have missed that the lagrangians (2.7) and (2.11) resemble

the discretization of a 5D theory. Our approach indeed is reminiscent of dimensional

deconstruction [21, 22]. We wish to make the connection manifest. The discussion will

follow the one in [9] in the context of extra-dimensional models for QCD. Let us first

consider the gauge sector. The continuum limit is obtained by taking the number of sites

N →∞ with

f2
n =

a[(zn−1 + zn)/2]

g2
5

2N

L
,

g2
n =

g2
5

a(zn)

N

L
,

(2.15)

where g5 and L are identified respectively the extra-dimensional gauge coupling and in-

terval length. a(z) is a smooth function and zn = z0 + nL/N . One can check that the

lagrangian (2.7) reproduces a gauge theory in a space with metric gMN = a(z)2ηMN .

Choosing couplings and decay constants an arbitrary metric can be obtained.

This picture however is only true at the classical level. Quantum mechanically the 5D

gauge theory is a non-renormalizable effective theory meaningful only at energies below

the 5D cut-off,

Λ5 ∼
16π2

g2
5

. (2.16)

As a consequence only the resonances below this energy scale are weakly coupled and

can be trusted within the effective description while the heavier states parametrize cut-off

dependent effects. The 4D theory is also an effective theory where the cut-off originates

from the non-linearities of the σ−models. In a theory with just GBs the maximum cut-off

would be 4πf (corresponding to the scale where the scattering of GB becomes strongly

coupled) which is in general smaller than Λ5. In our lagrangian with nearest neighbor

interactions the local cut-off is given by 4πfn. From (2.10) fn grows with the number of

links. The cut-off is than larger that the naive cut-off and indeed one can show that the

5D one can be reproduced. The reason for this is that the resonances partially unitarize

the scattering of GBs allowing the theory to be reliable up to energies parametrically

higher than 4πf . In practice phenomenologically interesting theories demand the effective

coupling of the higher dimensional theory to be rather strong so that just a few resonances

will be captured in an effective description. In this sense the notion of an extra-dimension

becomes rather ethereal as there is no regime where five-dimensional physics is recovered.

In this situation it is natural to think of this theory as a 4D theory with just a few states.

Let us turn to the spontaneous breaking of the symmetry. In the language of the 5D

theory the last site corresponds to the IR brane where the symmetry G is spontaneously

broken to H. This is often achieved imposing Neumann or Dirichlet boundary conditions

for the gauge fields associated to the broken or unbroken generators respectively. In the

language of the deconstructed theory this corresponds to setting fN →∞. Such an infinite

– 7 –
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VEV however is unlikely to be realized physically. A more physical picture is that some

dynamics is responsible for the breaking of the symmetry in the IR producing a finite fN .

We will leave fN as a free parameter in what follows.

In the fermion sector the discretization of the 5D theory is less trivial. Usually

theories obtained by naive discretization suffer from fermion doubling and need to be

regulated by adding term of higher order in derivatives relevant for the deconstructed

theory and irrelevant for continuum theory (see for example [23]). One can show that

our fermionic action (2.11) has the correct continuum limit and this is in fact another

motivation for our choice.

2.4.2 SILH and discrete models

In the “Strongly Interacting Light Higgs” (SILH) [16], the effective lagrangian for the Higgs

as a GB was studied, focusing on the low energy consequences of the symmetry. It can be

seen that the leading order lagrangian in an expansion E/mρ corresponds to our setup with

one site (no composite resonances) and kinetic term for the sources corresponding to the

SM fields. In the model with two or more sites integrating out the heavy resonances will

generate higher order terms in E/mρ of phenomenological importance in the low energy ac-

tion, reproducing sub-leading terms with the appropriate power counting described in [16].

Our setup can then be considered as the extension of SILH with resonances integrated in.

This is of course mandatory to study the production of these states.

A standard way to introduce spin 1 resonances into this picture is through the CCWZ

formalism, see [24] for a recent study within SO(5)/SO(4). For spin 1 resonances in the

adjoint of H this can be realized by considering gauge fields of H with a lagrangian,

L =
f2

2
Dâ
µD

µâ − 1

4g2
ρ

ρaµνρ
µνa +

f ′2

2
(ρaµ − Eaµ)2. (2.17)

Note that spin 1 resonances in a different representation of H cannot be coupled in this

way, since gauge fields are necessarily in the adjoint of the group. As we will see, the

resonances in G/H can play an important role. For matter fields instead any H invariant

lagrangian can be lifted to a G invariant one with the aid of the GBs.

In our construction fields are complete G multiplets so that we treat resonances in H

and G/H on the same ground. This is quite natural in QCD where mesons fill complete

representations of the chiral symmetry. We can however recover the CCWZ lagrangian

with only H resonances starting from the model with one G multiplet and taking f2 →∞
in eq. (2.5). In this limit the spin-1 resonances in G/H become infinitely heavy and one can

easily check that one obtains the lagrangian (2.17). The non-nearest neighbor interaction,

introduced in section 2.3, is necessary to reproduce the most general lagrangian (2.17)

where f and f ′ are different.

For the case of two sites with symmetry structure SO(5)/SO(4), on which we will fo-

cus in the rest of the paper, our construction is philosophically similar to ref. [10], where

however the non-linear GB structure was not included. Roughly the lagrangian in [10] can

be understood as the truncation of the GB lagrangian to the lowest dimension operators.

One difference is however that the Higgs necessarily couples to the elementary fields in our

case. The extension of ref. [10] to the GB Higgs was also considered in ref. [11] where a

– 8 –
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SU(2)L ⊗ U(1)Y

Explicit breaking
of global symmetry

Composite sector
SO(5)/SO(4)

Figure 3. 2-site model SO(5)/SO(4): gauge sector. The first site is the elementary sector, the

second the composite sector with SO(5)×U(1)X heavy multiplets.

discrete model to describe composite resonances was proposed based on GL × GR/GL+R

σ−models.2 In that work the spontaneous breaking G/H was realized by gauging a sub-

group H of the GR symmetry of the last σ−model GL × GR/GL+R. While this breaks

explicitly the symmetry GR on the last site, it can be seen that the action describes the

spontaneous breaking G/H and contains incomplete G multiplets. A different choice was

also considered for the fermionic fields. In our construction we find it natural to start

from the σ−model G/H and add complete G multiplets of resonances to this picture as

explained above, effectively extending [16]. For the gauge sector the setup of [11] with N

sites can be recovered starting from our N−sites lagrangian in the limit fN →∞.

3 Minimal 4D composite Higgs

In the previous section we discussed the features of the composite sector relevant to build

CHM where the Higgs is a GB. We will now apply this framework to the Minimal Composite

Higgs of ref. [5]. As in that work, we find it very useful to express our results in terms of

the correlation functions of the composite sector which we collect in appendix A. We will

focus on the case with two sites depicted figure 3, even though the formulas in terms of

the correlation functions are general. There are two main reasons for this choice. Most

importantly the 2-site lagrangian contains only the states which might be accessible at the

LHC capturing the relevant features of all CHM with partial compositeness. Secondly this

truncation allows to obtain extremely simple formulas depending on few parameters which

are ready made to simulate the scenario at the LHC.

The symmetry structure of the theory is SO(5)/SO(4) which delivers 4 GBs in the

vector representation of SO(4), appropriate for the Higgs boson. The breaking can be

parametrized by the VEV of a vector of SO(5) so that the gauge lagrangian (2.5) can be

written explicitly as,3

Lgauge =
f2

1

4
Tr |DµΩ1|2 +

f2
2

2
(DµΦ2) (DµΦ2)T − 1

4g2
ρ

ρAµνρ
Aµν , (3.1)

2A two site description can be also found in [25]. Our gauge sector is similar to the one described in

section 6.2 of that work with the scale F kept finite. A “Little-Higgs” inspired 2-site model is described

also in [26].
3We follow the conventions of [5]. In particular we have redefined the generators so that in the vector

representation Tr[TATB ] = δAB . This is convenient as the SU(2)L subgroup has then standard structure

constants εijk.
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where |Φ2|2 = 1.

The GBs can be identified as explained in section 2.1. Introducing the GB matrix,

Π =
√

2hâT â = −i
(

04 h

−hT 0

)
(3.2)

and with the parametrization (2.9) we find

Ωn = 1 + i
sn
h

Π +
cn − 1

h2
Π2, sn ≡ sin

(
fh/f2

n

)
, cn ≡ cos

(
fh/f2

n

)
, h ≡

√
hâhâ (3.3)

with n = 1, 2. We define Φ2 = φ0ΩT
2 , where φi0 = δi5. Following eq. (2.8), the GBs are

parametrized by,

Φ = Φ2ΩT
1 = φ0e

−iΠ
f =

1

h
sin

h

f

(
h1, h2, h3, h4, h cot

h

f

)
. (3.4)

To reproduce hyper-charge assignments of the SM fermions we need to extend the

symmetry of the composite sector to SO(5)×U(1)X where the latter symmetry is unbroken

in the vacuum. The hyper-charge is identified with the combination

Y = T3R +X. (3.5)

In the framework of partial compositeness the composite sector should also possess an

SU(3) global symmetry, corresponding to color. However this does not play a role in what

follows so we will omit it (except for taking into account the color factors).

Having discussed the composite sector, the next step is to introduce SM fermions

and gauge fields. Practically this amounts to adding kinetic terms for the sources of the

operators of the composite sector to which the SM field couple and setting to zero non-

dynamical fields. To gauge the SM gauge symmetry we then introduce the kinetic terms,

Lelgauge = − 1

4g2
0

F aµνF
a
µν −

1

4g2
0Y

YµνY
µν (3.6)

for the sources associated to the SU(2)L and U(1)Y symmetries. Formally non-dynamical

fields correspond to infinite elementary kinetic terms.

For fermions it works in a similar way. We add kinetic terms for the elementary SM

fermions (we will focus here only on the third gerneration quarks),

Lelfermions =
1

y2
qL

q̄elL i /D
el
qelL +

1

y2
tR

t̄elRi /D
el
telR +

1

y2
bR

b̄elRi /D
el
belR, (3.7)

where /D
el

corresponds to the covariant derivative with respect to the elementary fields.

There exists also the possibility that one chirality, typically the right-handed top, is part

of the strong sector in which case no elementary component exists but we will not con-

sider it here. To determine the model we just need to specify to which sources the

elementary fields correspond. This in general depends on the fermionic representation

of the composite sector.
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The elementary lagrangian explicitly breaks the global symmetry of the theory so that

the GBs become approximate. In particular the VEV becomes physical and the vacuum

alignment determines the electro-weak VEV. The main consequences are the generation of

mass terms for W± and Z and Yukawa couplings for SM fermion. The explicit breaking

also generates a potential for Higgs at 1-loop which we investigate in section 4.

As an example we consider in detail the model where SM fermions couple to 5 reps

of SO(5) as in [27]. This is a realistic model which allows to satisfy precision electro-weak

measurements as well as generating successful electro-weak symmetry breaking (EWSB).

A similar analysis can be done for other models and it is essentially determined once the

representation of the composite sector are fixed.

We consider first the gauge sector which is model independent.

3.1 Gauge sector

Composite spin 1 resonances fill an adjoint representation of SO(5)× U(1)X . Before cou-

pling to the elementary gauge fields the spectrum has an unbroken SO(4)×U(1)X symmetry,

m2
ρ =

g2
ρf

2
1

2
,

m2
a1

=
g2
ρ(f

2
1 + f2

2 )

2
,

m2
ρX

=
g2
ρX
f2
X

2
,

(3.8)

where in analogy with QCD we denoted the masses of the resonances in H and G/H as

mρ and ma1 respectively (see [28] for a related discussion). The mass and coupling of

the resonance associated to U(1)X can be different from mρ so gρX and fX are in general

independent parameters. For simplicity we will take fX = f1 in what follows. These

formulas continue to hold also when f0 6= 0. While from eq. (2.14) for f0 = 0 the sign of f2
2

is strictly positive, it could in principle be negative for f0 6= 0 leading to coset resonances

lighter than H resonances.

The kinetic terms for the SM gauge fields breaks the SO(4) degeneracy. The fields

decompose into SU(2)L × U(1)Y multiplets with masses given by the zeros of eqs. (A.5).

The mass of composite states coupled to the elementary fields are in general heavier than

their SO(4) partners. For example for SU(2)L we have one massless triplet of gauge fields

(W aL) and one heavy triplet of fields with mass:

mρaL =
mρ

cos θL
, tan θL =

g0

gρ
. (3.9)

From the correlation functions in appendix A we can identify the low energy parameters

of the theory. The electro-weak gauge couplings are given by,

1

g2
= −Π′0(0) =

1

g2
0

+
1

g2
ρ

,

1

g′2
= −Π′Y (0) =

1

g2
0Y

+
1

g2
ρ

+
1

g2
ρX

,

(3.10)
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tR

bR

∆tR

∆bR

∆bL

∆tL

Composite sector
SO(5)/SO(4)

Explicit breaking
of global symmetry

YT

YB

5−1/3

5−1/3

52/3

52/3

Figure 4. 2-site model SO(5)/SO(4): fermionic sector. The spontaneous breaking of SO(5) is

achieved through Yukawa couplings (2.12) in the composite sector, here drawn as red squares.

while the electro-weak VEV is

v = f sin
〈h〉
f
. (3.11)

The interaction vertices and decay of the resonances are studied in appendix C.

3.2 Fermions

As an example we consider the first model of ref. [27] where SM fermions couple to fermionic

operators in the 5 of SO(5). This model, known as CHM5, is a realistic scenario compatible

with precision electro-weak measurements. Analogous results can be derived for any other

fermionic choice, see appendix A for the model with 10 of SO(5) (CHM10). For simplicity

we will consider only the third generation quarks, which will be relevant for the computation

of the potential in the next section.

Under SU(2)L×SU(2)R the vector representation of SO(5) decomposes as a (2,2) and

a (1,1). The SM left doublet can be embedded in a (2,2)2/3 ∈ ΨT as,

52/3 = (2,2)2/3 ⊕ (1,1)2/3, (2,2)2/3 =

(
T T 5

3

B T 2
3

)
(3.12)

while tR can be coupled to a singlet in a different 5 rep, Ψ
T̃

. For the bottom sector bR
is coupled to the singlet in a 5−1/3 (Ψ

B̃
) so to generate the bottom Yukawa it is also

necessary (by U(1)X symmetry) to couple the SM doublet to a second doublet in 5−1/3

(ΨB) which contains

5−1/3 = (2,2)−1/3 ⊕ (1,1)−1/3, (2,2)−1/3 =

(
B− 1

3
T ′

B− 4
3
B′

)
. (3.13)

To summarize, the spectrum contains 52/3 (ΨT ,ΨT̃
) and 5−1/3 (ΨB,ΨB̃

) reps, associated

respectively to the top and bottom sectors. This choice of representations, while minimal,

has special phenomenological virtues suppressing dangerous corrections to the couplings of

the Z which otherwise would be problematic phenomenologically [29].
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Following section 2, the effective lagrangian for the composite states and elementary

fields reads4

LCHM5 = Lelfermions

+ ∆ q̄elLΩ1ΨT + ∆ t̄elRΩ1Ψ
T̃

+ h.c.

+ Ψ̄T (i /D
ρ −mT )ΨT + Ψ̄

T̃
(i /D

ρ −m
T̃

)Ψ
T̃

− YT Ψ̄T,LΦT
2 Φ2Ψ

T̃ ,R
−mYT Ψ̄T,LΨ

T̃ ,R
+ h.c.

+ (T → B),

(3.14)

where ∆ is introduced for dimensional reasons. As explained in section 2.2 we do not

include all the possible terms in the composite sector allowed by the symmetries but only

the ones with the required LR structure. This is actually the minimal choice to generate

the SM Yukawas. The SO(5) invariant proportional to mYT is needed to describe the most

general embedding of the elementary fields.

To leading order the mass of the top is given by,

mt ∼
v√
2

∆tL

mT

∆tR

m
T̃

YT
f

(3.15)

where we defined,

∆tL = ytL∆, ∆tR = ytR∆. (3.16)

It is natural to interpret YT /f as the coupling of the composite sector and ∆tL/mT , ∆tR/mT̃

as the elementary-composite mixings. We should mention that the approximation above,

excellent for the light quarks, is not always sufficient for the top, the exact expression used

in our numerical computations is reported in eq. (A.13).

The mass spectrum is in general most easily extracted from the fermionic correlators

in appendix A. In the top sector breaking of SO(4) symmetry due to the mixings is sizable

so the spectrum is only (approximately) SU(2)L × U(1)Y symmetric. Before EWSB the

spectrum of heavy fermions is given by,

• two 21/6, zeros of Πq
0,

• two 27/6, poles of Π̂qL
0 ,

• two 12/3, zeros of Πu
0 ,

where form factors are defined in (A.11), (A.12). Rather than writing the explicit formulas,

computable as explained, in the next section we will present the fermionic spectrum as a

function of the Higgs mass. Here we only anticipate that top partners inside 27/6 can be

very light, in the region of large elementary-composite mixings (3.16),

m2
27/6

=
1

2

[
m2
T +m2

T̃
+m2

YT
±
√

(m2
T −m2

T̃
)2 +m2

YT
(m2

YT
+ 2(m2

T +m2
T̃

))
]
. (3.17)

4To introduce the Yukawas of the down sector we define the source of the quark doublet as ΨL =

cosϕΨ0
T + sinϕΨ0

B and the orthogonal combination Ψ⊥L = − sinϕΨ0
T + cosϕΨ0

B . We then identify ytL =

yqL cosϕ and ybL = yqL sinϕ. In order to reproduce mb � mt it is natural to take sinϕ � 1 so that the

mixing in the down sector is small and can be neglected for some purposes such as computation of the

potential. Moreover this choice guarantees that the shift of the coupling of bL to the Z is small.
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4 Higgs potential

The coupling to the SM elementary fields explicitly breaks the global symmetry of the

composite sector. As a consequence the Higgs is only approximately a GB and a potential is

generated starting at 1-loop. Since the breaking is proportional to the mixings the potential

is normally dominated by the contributions associated to the top quark. In the low energy

theory with just GBs the contributions to the potential are formally divergent. More

precisely since the lagrangian contains SM interactions one obtains the same quadratic

divergences as in the SM plus additional ones which originate from non-renormalizable

interactions, for example Higgs dependent kinetic terms. We expect that these divergences

will be regulated by the new states in the theory so that the physical cut-off entering the

loops will be the compositeness scale, roughly the mass of the lowest resonances running

in the loop. This is exactly what happens in QCD for the electro-magnetic splitting of the

pions, see [8]. The same intuition is also correct here.

In the 5D constructions the Higgs effective potential can be calculated at 1-loop and

is finite. This property can be traced to the locality of the theory: since the divergences

originate from short distance physics, they cannot be generated as there is no local gauge

invariant operator compatible with the symmetries which contributes to the Higgs mass.

The operator which contributes to the Higgs mass is non-local, being associated to the

Wilson line of a gauge field across the fifth dimension. From this argument it is natural to

suspect that the same property will survive in a discretized theory with nearest neighbor

interactions if a sufficient number of sites is included. Interestingly in the model under

consideration with a single multiplet of resonances the 1-loop potential is finite, both

for the gauge and the fermionic contributions. The same effect was also found in [11]

in a slightly different setup with an extra layer of resonances. In that paper a general

argument explaining the appearance of divergent terms was also given. Let us mention

that exact finiteness is spoiled in the fermionic sector if terms without LR structure (but

compatible with the symmetries) are added to the action (3.14). The divergence in this case

is logarithmic and can be estimated using as cut-off the compositeness scale. At any rate

exact finiteness of the potential will be always spoiled as we increase the number of loops

so it will always be necessary to treat these computation in an effective field theory sense.

We consider in detail the potential of the CHM5 model described in the previous

section. To leading order the functional form of the potential is fixed by the structure of

the symmetry breaking effects [27],

V (h) ≈ α s2
h − β s2

hc
2
h, (4.1)

where sh = sinh/f . The coefficients can be expressed as integrals of the correlations

functions of the strong sector, see appendix B for all the details. The presence of resonances

in our setup renders the integrals finite with the individual terms saturated by the scale

associated to the resonances.

In absence of tuning the natural location of the minimum of the potential is at 〈h〉 =

f or at 0. In order to achieve successful EWSB (v < f) a tuning of the fundamental

parameters of the lagrangian must be performed so that the coefficient of the quadratic
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term in the expansion of (4.1) is smaller than its natural size and is of course negative. In

this specific model this requires,
∆tL

mT
∼ ∆tR

m
T̃

, (4.2)

i.e. similar mixings for left and right chirality. Once the tuning is performed the Higgs

mass is given by,

sin
〈h〉
f

=

√
β − α

2β
, m2

H =
2

f2

β2 − α2

β
. (4.3)

To determine the Higgs mass as a function of the resonance masses we have performed

a scan over the parameters of the model demanding that the correct electro-weak VEV

and top mass are generated. In figure 5 we present the results for the unconstrained scan

over the six fermionic parameters ∆tL , ∆tR , mT , m
T̃

, mYT and YT for f = 500 GeV and

f = 800 GeV. In general we find a strong correlation between Higgs mass and the mass of

the lightest resonances, which are typically but not always the 27/6 states. In particular

if the Higgs is light and the tuning is not large the resonances must be light. This is in

agreement with 5D models [27, 30]. As we increase f a Higgs above 115 GeV requires heavy

top partners. In the low mass region we find that the contribution of gauge fields is not

necessarily negligible so it is included.
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Figure 5. Masses of the lightest fermionic partners as a function of the Higgs mass for mt ∈
[165, 175] GeV. On the left f = 500 GeV and on the right f = 800 GeV. The six fermionic

parameters are varied between .5 and 3 TeV. The gauge contribution corresponds to f1 = f2 =
√

2f

and mρ = 2.5 TeV.

Sharper predictions can be obtained making assumptions on the parameters. In figure 7

we present two scans for different choices of mixings and the IR parameters YT and mYT .

In the first figure with YT ∼ −mYT and large mixings the lightest fermionic partners are

the 27/6 states. In the second figure we consider the case mYT � YT and smaller mixings,

finding that the singlet 12/3 is the lightest state.

The Higgs potential can be understood from naturalness arguments, see [27] and [11]

for related discussions. The low energy lagrangian for the Higgs and SM quarks can be

easily extracted from the correlators of the composite sector in appendix A and is given
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Figure 6. Feynman diagrams contributing to the Higgs potential. The first two originate from

Higgs dependent kinetic terms, while the third is obtained from Yukawa interactions.

in eq. (A.8). Its non-linear structure is fixed by the global symmetries. To lowest order in

derivatives we have Yukawa interactions,

LYuk = ytf
shch
h

(q̄LH
ctR + h.c.) (4.4)

and field dependent kinetic terms for the fermions,

Lkin =
y2
tL

2y2
T

s2
h t̄L /DtL +

y2
tR

y2
T̃

c2
h t̄R /DtR, (4.5)

where y−2

T,T̃
= Π̂qL,uR

1 (0) in (A.11).

Performing a loop of fermions as in figure 6, we obtain a contribution to the Higgs po-

tential which is divergent within the low energy effective theory. We expect the divergence

to be cut-off by the compositeness scale which for the top loops will be the mass of the

lightest top partners. From the loop associated to the Yukawa interactions we find,

V (h)Yuk ∼ Nc
y2
t

4π2
m2
ff

2 s2
hc

2
h (4.6)

where Nc = 3 is the QCD color factor. From the kinetic terms we obtain to leading order

in ytL,tR ,

V (h)
(1)
kin ∼ Nc

2y2
tR
− y2

tL

32π2

m4
f

y2
T

s2
h. (4.7)

There are also sub-leading contributions from the second diagram in figure 6,

V (h)
(2)
kin ∼ Nc

y4
tL,R

16π2

m4
f

y4
T

s4
h. (4.8)

To obtain a Higgs VEV 〈h〉 < v we need to tune the different contributions. Let us

focus on the case ytL ∼ ytR . The leading contributions are the ones proportional to y2
tL,R

,

however they tend to cancel for (4.2). Due to the different functional dependence of V (h)Yuk

and V (h)
(2)
kin we can obtain a small Higgs VEV by tuning these terms versus V (h)

(1)
kin. The

quartic of the potential is then determined by the sub-leading contributions (4.6), (4.7).

We estimate,

mH ∼ 0.3 yt
mf

f
v (4.9)

in rough agreement with figure 5. In particular we see very clearly that, for a given value

of f , the mass of the Higgs depends linearly on the mass of the top partners. For a small

– 16 –
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Figure 7. Masses of lightest fermionic excitations as a function of the Higgs mass for mt ∈
[165, 175] GeV and f = 500 GeV. In the upper plot the mixings are 1.2 ≤ ∆tL/mT ≤ 1.8, 0.7 ≤
∆tR/mT̃ ≤ 1.3 and the IR parameters 0.5 ≤ YT (TeV) ≤ 3, −1.2YT ≤ mYT

≤ −0.8YT . In the

lower plot the mixings are 0.6 ≤ ∆tL/mT ≤ 0.9, 0.35 ≤ ∆tR/mT̃ ≤ 0.7 and the IR parameters

0.5 ≤ YT (TeV) ≤ 3, −0.5 ≤ mYT
(TeV) ≤ 0.5.

value of f , which is required if the tuning is small, the presence of a light Higgs would

then imply light top partners. Present bounds, with some model dependence, require

mf > 500 GeV [31, 32]. Within this model top partners could be soon within the reach of

the LHC if the Higgs is light.

One interesting fact is that the contribution of gauge fields, normally sub-leading, is

not always negligible in the region of light fermionic partners. Along the same lines as above

we can estimate the contribution of gauge loops as (see (B.3) for the exact expression),

V (h)gauge ∼
9

4

g2
0

16π2

m4
ρ

g2
ρ

sin2 h

f
, (4.10)

where mρ is the mass of the spin-1 resonances. Contrary to the fermionic resonances mρ

cannot be very low because of precision electro-weak tests, in particular contributions to

the S parameter. As a consequence the gauge contribution can become important if the

top partners are light, mf � mρ. Moreover the gauge contribution is strictly positive so

that it might off-set the instability of the potential at the origin. In general we find that the

contribution of gauge loops tends to reduce the number of points with successful EWSB.

– 17 –



J
H
E
P
0
4
(
2
0
1
2
)
0
4
2

5 Non-minimal interactions

In this section we wish to briefly discuss the effect of adding the non-nearest neighbor

interaction of section 2.3 to the 2-site lagrangian. The role of this term in Higgsless the-

ories [33, 34] based on the pattern SO(4)/SO(3) was recently considered in [35] and a

related discussion for SO(5)/SO(4) appears in [24]. The term in eq. (2.13) can be written

explicitly as
f2

0

2
(DµΦ)(DµΦ)T , (5.1)

where Φ = Φ2ΩT
1 as in eq. (3.4). This contributes to the kinetic term of the GBs but

not to the mass of the composite resonances in eq. (3.8). Importantly it changes the

relation between the gauge coupling of the resonances and their coupling to GBs. For

SO(4) resonances, in the limit f2 →∞, one finds,5

gρππ =
f2 − f2

0

2f2
gρ (5.2)

while for coset resonances there is no coupling to two GBs by SO(4) symmetry. From this

expression, using eq. (3.8), one obtains

m2
ρ = 2

f2

f2 − f2
0

g2
ρππ f

2 (5.3)

which is the analog of the KRSF relation in QCD. The modified coupling of the ρ to the

Higgs can have important phenomenological effects. First of all it modifies the decay of

the resonances into W+
LW

−
L and ZLh which together with third generation quarks are the

main decay channel. Since the decay goes like g2
ρππ this term can easily generate an order

one change in the decay, see appendix C for more details.

Importantly the term (5.1) also contributes to the S−parameter. This can be readily

computed in terms of the two-point functions of the currents of the strong sector [5],

S = 4πΠ′1(0)
v2

f2
. (5.4)

Including the term proportional to f2
0 amounts to adding a constant in Π1 so that the

dependence of S on f0 (for fixed resonance masses) appears through the redefinition of f

in eq. (2.14). The result can be written as,

S = 4πv2

(
1

m2
ρ

+
1

m2
a1

)
f2 − f2

0

f2
. (5.5)

We note however that the S parameter could be suppressed if f2
0 is sizable and positive.6

In particular S would be zero if f0 = f . In this limit, which can be realized taking f2 = 0

5We define gρππ from the interaction gρππf
âb̂c∂µπ

âπb̂ρcµ. Equivalent formulas to eqs. (5.2), (5.3) were

recently obtained in [24] in the CCWZ language. Note that there are corrections to these equations for

finite f2, see appendix C.
6We should mention that in QCD the sign of the analogous term is negative which would correspond

to an enhancement of the S−parameter. It would be interesting to know whether the sign can be robustly

fixed in a strongly coupled theory not QCD-like.
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keeping the spectrum finite, GBs and resonances are decoupled from each other, the latter

becoming degenerate SO(5) multiplets. A similar effect was noticed in ref. [36], in the

context of Higgsless theories. Indeed our setup with symmetry structure SO(4)/SO(3) can

be used as 2-site model for Higgsless and in this case the contribution to S would be given

by eq. (5.5) with f = v. From the point of view of the effective theory S could even be

negative. This can be achieved if f0 > f which corresponds to having the mass of the

coset resonances lighter than SO(4) resonances. While these extreme values of f0 might be

questionable, since the resonances not even partially unitarize the scattering of GBs, for

phenomenological purposes even a mild suppression can be important.

6 Conclusions

In this note we have presented a simplified 4D description of Composite Higgs Models with

partial compositeness. Our formalism allows to introduce an arbitrary tower of resonances,

bosonic and fermionic, in a theory where the Higgs is a GB. As a particular case one can

reproduce the physics of higher dimensional models.

For phenomenological applications we focused on the minimal model with only the

lowest lying resonances which provides a self-contained framework reproducing all the rel-

evant features of Composite Higgs Models at the LHC. For example our theoretical setup

already allows to compute the Higgs potential with a minimal number of degrees of free-

dom. We believe that this is the most natural and economic setup, being dictated by the

symmetries of theory. As an example we considered in detail the CHM5 scenario of [27]

with results comparable to the 5D scenario for similar choices of parameters.

While our construction was inspired by 5D models one can consider the truncation of

the theory to the lowest resonances on its own. Based on the symmetries of the theory

more terms can be added to the lagrangian which do not follow from the discretization of

the 5D theory. In particular we have shown that, as for the ρ in QCD, these terms modify

the coupling of the resonances to the GBs and could be of phenomenological relevance

changing their decays and possibly reducing the S−parameter.

Our work is the starting point for a study of the model at LHC. The simplified

lagrangian allows to capture all the effects of compositeness and is simple enough to be

implemented on an event generator. We hope to return to this in future work.
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A Self-energies

In this appendix we provide explicit expressions for the two-point functions of the strong

sector in the 2-site picture. We follow closely ref. [5] where this technique was introduced.

The great advantage of this approach is that the relevant informations can be extracted
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from the correlators of the composite sector computed for zero Higgs VEV (since the

composite sector does not depend on it). We analyze the gauge and fermionic sectors of

the theory presenting the formulas for CHM5 and CHM10 models of [27].

A.1 Spin-1

In the background of a constant GB Higgs the most general quadratic lagrangian for the

vector sources invariant under SO(5)×U(1)X takes the form,

Leff =
1

2
P Tµν

[
Π̂X

0 (p2)XµXν + Π̂0(p2) Tr
[
AµAν

]
+ Π̂1(p2) ΦAµAνΦT

]
, (A.1)

where P Tµν = ηµν − pµpν/p2, AA, X ∈ Adj[SO(5)×U(1)X ] and Φ is defined in eq. (3.4). To

determine the form factors we need to express the lagrangian (3.1) as a function of Aa,â

and X by integrating out the fields ρµ according to their equations of motion. The result,

computed for h = 0, is:

Leff =
1

2
P Tµν

[
Πa(p

2) AµaA
ν
a + Πâ(p

2)AµâA
ν
â + ΠX(p2)XµXν

]
(A.2)

where,7

Πa(p
2) =

m2
ρp

2

g2
ρ

(
p2 −m2

ρ

) ,
Πâ(p

2) =
m2
ρ

(
p2 − (m2

a1
−m2

ρ)
)

g2
ρ

(
p2 −m2

a1

) ,

ΠX(p2) =
m2
ρX
p2

g2
ρX

(
p2 −m2

ρX

) .
(A.3)

The form factors in (A.1) are identified as,

Π̂0(p2) = Πa(p
2), Π̂X

0 (p2) = ΠX(p2), Π̂1(p2) = 2
[
Πâ(p

2)−Πa(p
2)
]
. (A.4)

To this we have to add the kinetic terms for the elementary gauge fields.8 Therefore we

define,

Π0(p2) = −p
2

g2
0

+ Π̂0(p2) = −p
2

g2
0

+
m2
ρp

2

g2
ρ

(
p2 −m2

ρ

) ,
ΠY (p2) = − p2

g2
0Y

+ Π̂0(p2) + Π̂X
0 (p2) = − p2

g2
0Y

+
m2
ρp

2

g2
ρ

(
p2 −m2

ρ

) +
m2
ρX
p2

g2
ρX

(
p2 −m2

ρX

) ,
Π1(p2) = Π̂1(p2) = −

2m4
ρ

(
m2
ρ −m2

a1

)
g2
ρ

(
p2 −m2

a1

) (
p2 −m2

ρ

) . (A.5)

7The formulas here and below are well defined for euclidean momenta and the appropriate analytic

continuation to Lorentzian signature is understood.
8These terms are not necessary in the 5D realization of the model since a kinetic term for the zero modes

will be generated by the volume of the extra-dimension.
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Setting to zero the non dynamical fields we obtain the coupling of the Higgs to the SM

gauge fields,

Lgauge
eff =

1

2
P Tµν

[(
Π0(p2) +

sin2(h/f)

4
Π1(p2)

)
AµaLA

ν
aL

+

(
ΠY (p2) +

sin2(h/f)

4
Π1(p2)

)
Y µY ν + 2 sin2(h/f) Π1(p2) Ĥ†T aLY Ĥ AµaLY

ν

]
,

(A.6)

where AaLµ , Yµ are SU(2)L×U(1)Y gauge fields and Ĥ =
1

h

(
h2 − ih1

h4 − ih3

)
. Expanding in p2

we extract the W and Z masses:

m2
W = −1

4

Π1(0)

Π′0(0)
sin2 〈h〉

f
=
g2

4
f2 sin2 〈h〉

f
,

m2
Z = −1

4

[
Π1(0)

Π′0(0)
+

Π1(0)

Π′Y (0)

]
sin2 〈h〉

f
=
g2 + g′2

4
f2 sin2 〈h〉

f
.

(A.7)

from which the definition of v in (3.11) follows.

A.2 Spin-1/2

The effective action for SM fermions for CHM5 and CHM10 takes the form [27],

Leff = q̄L/p

[
Πq

0(p2) +
s2
h

2

(
Πq1

1 (p2) ĤcĤc† + Πq2
1 (p2) ĤĤ†

)]
qL

+ ūR/p

(
Πu

0(p2) +
s2
h

2
Πu

1(p2)

)
uR + d̄R/p

(
Πd

0(p2) +
s2
h

2
Πd

1(p2)

)
dR

+
shch√

2
Mu

1 (p2) q̄LĤ
cuR +

shch√
2
Md

1 (p2) q̄LĤdR + h.c. .

(A.8)

We find that the form factors can be expressed in both models in terms of the following

functions,

Π̂[m1,m2,m3] =

(
m2

2 +m2
3 − p2

)
∆2

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

,

M̂ [m1,m2,m3] = − m1m2m3 ∆2

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

.

(A.9)

A.2.1 CHM5

To determine the form factors in (A.8) we write the SO(5) × U(1)X invariant action for

the sources ΨqL and ΨuR (neglecting the bottom sector),

LCHM5
eff = Ψ̄i

qL/p
(
δijΠ̂qL

0 (p2) + ΦiΦjΠ̂qL
1 (p2)

)
Ψj
qL

+Ψ̄i
uR/p

(
δijΠ̂uR

0 (p2) + ΦiΦjΠ̂uR
1 (p2)

)
Ψj
uR

+Ψ̄i
qL

(
δijM̂u

0 (p2) + ΦiΦjM̂u
1 (p2)

)
Ψj
uR

+ h.c. (A.10)
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The form factors can be obtained integrating out the composite fermions in (2.11). In

terms of the building blocks (A.9) one derives,

Π̂qL
0 = Π̂[mT ,mT̃

,mYT ] , Π̂qL
1 = Π̂[mT ,mT̃

,mYT + YT ]− Π̂[mT ,mT̃
,mYT ],

Π̂uR
0 = Π̂[m

T̃
,mT ,mYT ] , Π̂uR

1 = Π̂[m
T̃
,mT ,mYT + YT ]− Π̂[m

T̃
,mT ,mYT ],

M̂u
0 = M̂ [mT ,mT̃

,mYT ] , M̂u
1 = Π̂[mT ,mT̃

,mYT + YT ]− Π̂[mT ,mT̃
,mYT ].

(A.11)

The matching with eq. (A.8) is obtained for:

Πq
0 =

1

y2
tL

+ Π̂qL
0 ,

Πu
0 =

1

y2
tR

+ Π̂uR
0 + Π̂uR

1 ,

Πq1
1 = Π̂qL

1 ,

Πu
1 = −2 Π̂uR

1

Mu
1 = M̂u

1 , (A.12)

where we have added the kinetic terms for the elementary fields. In our CHM5, Πq2
1 in (A.8)

is negligible due to the choice ∆bL � ∆tL .

From eq. (A.8) we extract the top mass,

mt ≈
shch√

2

Mu
1 (0)√

Πq
0(0)Πu

0(0)

≈ v√
2
· 1√√√√(1 +

(
m2
T̃

+m2
YT

)
∆2
tL

m2
Tm

2
T̃

)(
1 +

(m2
T+(mYT +YT )2)∆2

tR

m2
Tm

2
T̃

) · ∆tL

mT

∆tR

m
T̃

YT
f

(A.13)

used for the numerical computations in section 4.

A.2.2 CHM10

Here we briefly present the relevant formulas for the CHM10 model of [27]. We refer

to this paper for all the details. In this model the SM quark are embedded in three

distinct 10 reps with X = 2/3. Under SU(2)L × SU(2)R the representation decomposes as

10 = (2,2)⊕ (3,1)⊕ (1,3). Differently from the CHM5 case, SM singlet tR and bR couple

to a (1,3) with T 3
R = 0,−1 respectively.

The 2-site CHM10 lagrangian reads,

LCHM10 = Lelfermions

+ ∆Tr [q̄LΩ1ΨT ] + ∆Tr
[
t̄RΩ1Ψ

T̃

]
+ h.c.

+ Tr
[
Ψ̄T

(
i /D

ρ −mT

)
ΨT

]
+ Tr

[
Ψ̄
T̃

(
i /D

ρ −m
T̃

)
Ψ
T̃

]
− YTΦ2Ψ̄T,LΨ

T̃ ,R
ΦT

2 −mYTTr
[
Ψ̄T,LΨ

T̃ ,R

]
+ h.c.

(A.14)
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The effective lagrangian for the chiral sources ΨqL and ΨuR in the 10 rep, in the background

of a constant GB field, is

LCHM10
eff =

∑
r=qL,uR

[
Tr
(
Ψ̄r/p Π̂r

0(p2)Ψr

)
+ Φ Ψ̄r/p Π̂r

1(p2)ΨrΦ
T
]

+
[
Tr
(
Ψ̄qLM̂

u
0 (p2)ΨuR

)
+ Φ Ψ̄qLM̂

u
1 (p2)ΨuRΦT

]
+ h.c. .

(A.15)

Also in this case we can write the form factors in terms of (A.9),

Π̂qL
0 = Π̂[mT ,mT̃

,mYT ] , Π̂qL
1 = 2Π̂[mT ,mT̃

,mYT + YT /2]− 2Π̂[mT ,mT̃
,mYT ],

Π̂uR
0 = Π̂[m

T̃
,mT ,mYT ] , Π̂uR

1 = 2Π̂[m
T̃
,mT ,mYT + YT /2]− 2Π̂[m

T̃
,mT ,mYT ],

M̂u
0 = M̂ [mT ,mT̃

,mYT ] , M̂u
1 = 2Π̂[mT ,mT̃

,mYT + YT /2]− 2Π̂[mT ,mT̃
,mYT ].

(A.16)

To match with eq. (A.8) we define:

Πq
0 =

1

y2
tL

+ Π̂qL
0 +

1

2
Π̂qL

1 ,

Πu
0 =

1

y2
tR

+ Π̂uR
0 ,

Πq1
1 = −1

2
Π̂qL

1 ,

Πq2
1 = −Π̂qL

1 ,

Πu
1 =

1

2
Π̂uR

1 ,

Mu
1 =

1

2
√

2
M̂u

1 , (A.17)

which include kinetic terms of elementary fields. Differently from CHM5, now Πq2
1 is not

negligible.

B Effective potential

In this appendix we provide the details of the computation of the effective potential. This

can be expressed in terms of integrals of the two-point functions of the strong sector listed

in appendix A. In particular from the asymptotic behavior of the form factors one can

easily check the convergence of the potential.

B.1 Gauge contribution

We start considering the contribution to the Higgs potential induced by SU(2)L gauge

fields. Integrating over the gauge fields in (A.6) one has,

V (h)gauge =
9

2

∫
d4p

(2π)4
ln

[
1 +

1

4

Π1(p2)

Π0(p2)
sin2 h

f

]
, (B.1)

where Π0(p2) and Π1(p2) are defined in eq. (A.5). The integral is UV convergent because

Π1/Π0 scales as

Π1(p2)

Π0(p2)
= −

2g2
0m

4
ρ

(
m2
a1
−m2

ρ

)
g2
ρp

2
[
p2 −m2

ρ

(
1 + g2

0/g
2
ρ

)] (
p2 −m2

a1

) p2→∞−→ 1

p6
. (B.2)
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To leading order

V (h)gauge ≈
∫

d4p

(2π)4

9

8

Π1

Π0
sin2 h

f

=
9

4

1

16π2

g2
0

g2
ρ

m4
ρ

(
m2
a1
−m2

ρ

)
m2
a1
−m2

ρ(1 + g2
0/g

2
ρ)

ln

[
m2
a1

m2
ρ(1 + g2

0/g
2
ρ)

]
sin2 h

f
. (B.3)

The curvature of the potential at the origin is positive, a general feature of gauge interac-

tions which tend to preserve the symmetry.

For ma1 → ∞ (corresponding to f2 → ∞ in our setup) the potential becomes loga-

rithmically divergent, showing that the coset resonances are crucial for the finiteness of the

potential. The finiteness of the potential is spoiled once non-local terms are added. In the

language of the self-energies this corresponds to adding a constant to Π1. One easily sees

that in this case the potential is quadratically divergent.

B.2 Fermionic contribution

The fermionic contibution to the Higgs effective potential is [5]:

V (h)fermions = −2Nc

∫
d4p

(2π)4

[
ln ΠbL + ln

(
p2ΠtLΠtR −Π2

tLtR

)]
. (B.4)

From (A.8) we find,

ΠtL = Πq
0 +

sin2(h/f)

2
Πq1

1

ΠbL = Πq
0 +

sin2(h/f)

2
Πq2

1

ΠtR = Πu
0 +

sin2(h/f)

2
Πu

1

ΠtLtR =
sin(h/f) cos(h/f)√

2
Mu

1 .

(B.5)

Let us focus on the CHM5. Due to the choice of representations in this model, for ∆bL �
∆tL the contribution to the potential of ΠbL is negligible. Expanding (B.4), we can identify

the coefficients α and β of eq. (4.1),

α = −2Nc

∫
d4p

(2π)4

[
1

2

Πq1
1

Πq
0

+
1

2

Πu
1

Πu
0

]
, (B.6)

β = −Nc

∫
d4p

(2π)4

[
(Mu

1 )2

p2Πq
0Πu

0

]
. (B.7)

Using the expressions listed in (A.11), (A.12) it easy to check that the integrals are

finite as each term goes at most as 1/p6 at large momenta. For example,

Πq
1

Πq
0

= −YT (2mYT + YT )m2
T∆2

tL

p6
+O

(
1

p8

)
. (B.8)

For YT →∞ the integral becomes logarithmically divergent. This is similar to the potential

generated by gauge loops when f2 → ∞ since we do not have complete SO(5) multiplets
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in this limit. This shows that a complete G multiplet of resonances is the minimal number

of degrees of freedom which allows the leading contribution to the potential to be finite.

The finiteness of the potential is also spoiled if the most general lagrangian without LR

structure is written on the last site in eq. (3.14), again with a logarithmic divergence.

The most important feature of this scenario is that the potential is tunable be-

cause we have contributions with different functional dependence, on sin2(h/f) and

sin2(h/f) cos2(h/f). Successful EWSB can be obtained for ∆tL ∼ ∆tR as the two contri-

butions to α in (B.6) tend to cancel each other leading to α smaller than its natural size.

One can also see that the leading contributions to α vanish for YT → −2mYT .

CHM10 works in a similar way, in particular also in this case the potential is finite.

C Interaction vertices ρππ

Here we present the general formulas for trilinear vertices among composite spin-1 reso-

nances and GBs. We focus on the SO(4) resonances as the coset resonances have suppressed

trilinear couplings to GBs (in absence of mixing to the elementary fields they are zero by

SO(4) invariance, and only a small coupling is induced after EWSB). We will include non-

minimal interactions (5.1) which, if sizable, importantly modifies the decay widths. In the

general case the GBs are conveniently parametrized as,

Ω1 = e
i
f

f2
2

f2
1 +f2

2
Π
, Φ2 = φ0e

− i
f

f2
1

f2
1 +f2

2
Π
, (C.1)

where f is the low energy decay constant (2.14). Expanding the lagrangian (3.1) + (5.1)

around Π = 0 we obtain,

Lcubic = −f
2
0

f2
g0∂µπ

âπb̂Ac
′
µ f

âb̂c′ − (f2 − f2
0 )2

2f2f2
1

g0∂µπ
âπb̂Ac

′
µ f

âb̂c′

− f2 − f2
0

2f2
gρ∂µπ

âπb̂ρcµf
âb̂c − (f2 − f2

0 )2

2f2f2
2

gρ∂µπ
âπb̂ρcµf

âb̂c.

(C.2)

Here the elementary fields are Aµ = Ac
′
µT

c′ , where T c
′

= {T aL, Y } and composite ones

ρµ = ρcµT
c with T c = {T aL, T aR, X}. We have also traded hâ for πâ. We derive that, in

absence of couplings to the elementary fields, the ρππ coupling is ,

gρππ =
f2 − f2

0

2f2

(
1 +

f2 − f2
0

f2
2

)
gρ. (C.3)

Eq. (C.3) shows that in the limit f2 = 0 the heavy resonances and GBs are decoupled,

while for f2 →∞ we recover (5.2). From this we also obtain

m2
ρ =

f6
2

(f4
2 − (f2 − f2

0 )2)(f2
2 + f2 − f2

0 )
× 2f2

f2 − f2
0

g2
ρππ f

2 (C.4)

which generalizes (5.3) to finite f2.
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To evaluate effects due to the mixing with elementary states, let us consider the SU(2)L
fields. In the mass basis (before EWSB), we have:9{

g cot θL

[
f2 − f2

0

2f2

(
1 +

f2 − f2
0

f2
2

)]
− g tan θL

[
f2

0

f2
+

(f2 − f2
0 )2

2f2
1 f

2

]}
∂µπâπb̂ρcLµ f

âb̂cL ,

(C.5)

where g is defined in (3.10) and θL in (3.9). To compare with the results of [10] one should

consider the limit f2 → ∞ and f0 → 0 in (C.5). The trilinear coupling of SU(2)L heavy

vectors to GBs simplifies in this limit as

g

2
(cot θL − tan θL)ρµcL∂µπ

âπb̂f âb̂cL . (C.6)

Analogous fomulas hold for the other resonances. In our setup, contrary to [10], in the

elementary composite basis the Higgs couples to the elementary fields through nearest

neighbor interactions producing the additional (subleading) contribution proportional to

g tan θL.

The effects of EWSB can be easily taken into account. Eq. (C.2) still holds with the

replacement

f âb̂c
′

= −i Tr
[
[T â, T b̂]T

c′
]

T
c′

= e
−iΠ

f T c
′
e
iΠ
f ,

(C.7)

where the Π =
√

2〈h〉T 4̂ is the Higgs VEV. To see this we just have to notice that EWSB

is equivalent to a rotation of the elementary fields. As expected we find in that the EWSB

is negligible for practical purposes.

C.1 ρ → W+
L W

−
L , ZLh decay widths

Composite resonances decay mostly into longitudinal SM gauge bosons and third generation

quarks which are the SM states coupled more strongly to the composite sector. By using

the equivalence theorem the decay into longitudinal SM gauge bosons are equal to leading

order to the decay into the GBs. This allows to use (C.6) to compute the partial decay

widths of the heavy neutral resonances in W+
LW

−
L and ZLh. Two examples of neutral gauge

bosons decay (with masses around 2 TeV), are given in the tables below. In absence of

mixing with the elementary fields the resonance associated to U(1)X does not decay into

longitudinal SM gauge bosons. A very small decay width is induced by the mixing, the

coupling of ρX to W/Z is of the order of g0Y (g0Y /gρ). Before EWSB the decay of ρ3L

and ρ3R is as expected identical in the two channels. After EWSB the neutral states mix

and the exact mass eigenstates decay unequally in W+
LW

−
L and ZLh. However since the

mass difference is very small it is safe to neglect this effect for practical purposes. While

ρ3L and ρ3R are almost degenerate in our general setup we do not expect ρX to be closely

degenerate. As a consequence it will not have a large mixing with the others even after

EWSB and its decay remains very small as found in the numerical examples above. This

state can then only significantly decay into third generation quarks. For the same reason

9Some commutation rules are [T â, T b̂] = i
2
εabc(T cL + T cR) and [T â, T 4̂] = i

2
(T aL − T aR).
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ρ3L ρ3R ρX

m(TeV) 2.5 2.5 2.1

ΓW+
LW

−
L

= ΓZLh (GeV) 50 50 4 · 10−3

Table 1. Decay widths of neutral resonances into W+
LW

−
L and ZLh. gρ = 7, gρX = 6 and

f = 0.5 TeV.

ρ3L ρ3R ρX

m(TeV) 2.9 2.8 1.4

ΓW+
LW

−
L

= ΓZLh (GeV) 18 18 6 · 10−3

Table 2. Decay widths of neutral resonances into W+
LW

−
L and ZLh. gρ = 4, gρX = 2 and

f = 1 TeV.

the production through vector boson fusion is suppressed and proceeds through Drell-Yan

process. The latter may be important even for ρ3L and ρ3R whose coupling to W , Z is

not suppressed. This result is in general different from the one of 5D models where the

resonances are approximately degenerate, see [37].
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[33] C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval:

unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [INSPIRE].
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