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1 Introduction

The AdS/CFT correspondence relates, among other things, strongly coupled superconfor-

mal gauge theories to their dual string theories in weakly curved AdS backgrounds. Thus,

in principle, one requires some knowledge of the strongly interacting field theory to test

the duality. While this is often a challenging situation in general, in some cases it is possi-

ble to obtain exact results at strong coupling. These cases include the study of protected

operators and BPS states as well as anomalies.

On the CFT side of the duality, the theory may be characterized by two central charges

a and c in four dimensions. Moreover, data on these central charges can be obtained at

strong coupling based on ’t Hooft anomaly matching and supersymmetry arguments [1].

Assuming the CFT admits an AdS dual, it is then possible to reproduce the central charges

through the holographic Weyl anomaly [2]. At large N , where the dual string theory can

be well approximated by classical supergravity, the result c = a = O(N2) exactly matches

the CFT result at leading order.

Here we are interested in going beyond the leading order in comparing the central

charges on both sides of the duality. In particular, we focus on four-dimensional quiver

gauge theories dual to string theory on AdS5 × S5/Zn as well as on AdS5 × T 1,1/Zn. For
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the Zn orbifold of S5, a gauge theory computation gives
c = a = N2−1

4 , n = 1;

c = N2

2 −
1
3 , a = N2

2 −
5
12 , n = 2;

c = n
(
N2

4 −
1
8

)
, a = n

(
N2

4 −
3
16

)
, n ≥ 3,

(1.1)

which matches the leading order holographic Weyl anomaly computation

c = a =
N2

4

π3

vol(S5/Zn)
= n

N2

4
. (1.2)

The corresponding expressions for T 1,1/Zn are

c = n

(
27

64
N2 − 1

4

)
, a = n

(
27

64
N2 − 3

8

)
, (1.3)

which again matches the holographic computation at leading order.

In order to reproduce the O(1) terms (O(1/N2) relative to the leading O(N2) terms)

holographically, we must go beyond the tree level and consider loop corrections to the bulk

effective action. As argued in [3], these loop effects fall into two categories: i) massive

string states running in the loop, and ii) massless ten-dimensional supergravity states in

the loop. From a five-dimensional point of view, the latter includes not just the supergrav-

ity states, but also those from the Kaluza-Klein tower obtained from compactifying IIB

supergravity on either S5/Zn or T 1,1/Zn.

The case of N = 4 SYM has been investigated in [4–8], where it was shown that the

shift N2 → N2 − 1 can be accounted for by considering the one-loop contribution from

the Kaluza-Klein tower on S5. In the approach of [6–8], the subleading holographic Weyl

anomaly δA may be computed from the expression

δA = −
∑

(−1)F
(E0 − 2)a2

32π2
, (1.4)

where the sum is over all the bulk KK states that could run in the loop. Here a2 are

four dimensional heat-kernel coefficients for the transverse space in the bulk (which has

the same geometry as the regularized boundary), and E0 is the lowest energy eigenvalue

labeling the AdS representation of the field (corresponding to the conformal dimension ∆

in the CFT dual). Using the appropriate heat-kernel coefficients, both c and a can be

independently extracted from (1.4), provided the full KK spectrum of the five-dimensional

bulk theory is available. In particular, when applied to the spectrum of IIB supergravity

on AdS5 × S5 [9, 10], this expression successfully reproduces both c and a of N = 4 SYM

beyond the leading order [7].

There are, however, several practical issues in applying (1.4). Firstly, since the sum is

over an infinite number of states in the KK tower, it needs to be regulated in some manner.

Although physical quantities should not depend on choice of regulator, it is not entirely

clear how this would work out in general. We will have more to say about this below. Sec-

ondly, the full linearized KK spectrum may be difficult to obtain for compactifications with
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reduced supersymmetry. This is not an issue for orbifolds of S5 and T 1,1 considered here,

whose complete linearized KK spectrum can be found from the known spectrum on their

covers. However it becomes a difficulty when considering other interesting compactification

spaces, such as Y p,q or La,b,c manifolds [11, 12].

For the case of N = 2 supergravity in AdS5 (dual to N = 1 superconformal field

theory), the KK tower organizes itself into a combination of long and shortened multiplets.

In ref. [13], we demonstrated that while long multiplets will contribute to the individual

central charges c and a obtained from (1.4), their contribution vanishes for the difference

c − a. In particular, this allows us to compute the difference using only knowledge of the

protected data in the bulk. Note that, from the field theory point of view, the combination

c− a shows up in both the Weyl anomaly and the R-current anomaly via [1, 14]

〈Tµµ 〉 =
c− a
16π2

R2
µνρσ + · · · ,

〈∂µ
√
gRµ〉 =

c− a
48π2

εµνρσRµναβR
ρσαβ + · · · . (1.5)

This relation of c − a to the R-current anomaly seems to be connected to the vanishing

contribution from long multiplets. Note also that the combination c−a gives the full Weyl

anomaly if the field theory lives on a Ricci-flat manifold.

Since c = a at leading order, we can rewrite (1.4) in the useful form

c− a = −1

2

∑
(−1)F (E0 − 2)a2

∣∣∣
R2
µνρσ term

, (1.6)

where the sum is only over states in shortened representations in the KK tower. Here it

is worth noting that the coefficient of the Riemann-squared term in a2 has a particularly

simple form [15]. For a four-dimensional field transforming in the irreducible representation

(A,B) of the Lorentz group, the expression is

180a2

∣∣∣
R2
µνρσ term

= d(A,B) (1 + f(A) + f(B)) , (1.7)

where d(A,B) = d(A)d(B) = (2A+ 1)(2B + 1) is the dimension of the representation and

f(X) = X(X + 1)(6X(X + 1)− 7). The crucial observation is that the expression for c− a
then splits into a sum of factorized pieces

c−a=− 1

360

∑
(E0−2)(−1)2A+2B [d(A)d(B)+(d(A)f(A))d(B)+d(A)(d(B)f(B))] . (1.8)

The reason this vanishes for long multiplets is that such multiplets carry an equal number of

integer and half-integer helicity states labeled by A and B, so that both
∑

(−1)2Ad(A) = 0

and
∑

(−1)2Bd(B) = 0, along with
∑
E0(−1)2Ad(A) = 0 and

∑
E0(−1)2Bd(B) = 0. (See

e.g. [16] for a summary of unitary representations of SU(2, 2|1) and shortening conditions.)

Note that this cancellation is independent of the explicit form of f(X).

Shortened representations, however, do not have both A and B sums vanishing. Chiral

and semi-long II multiplets have
∑

(−1)2Ad(A) = 0 and
∑
E0(−1)2Ad(A) = 0, while anti-

chiral and semi-long I multiplets have the corresponding sums over B vanishing. Since this
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is insufficient to ensure the vanishing of all terms in (1.8), c− a will receive a contribution

from all short multiplets in the KK spectrum. (In this case, the explicit form of f(X) does

enter when computing the anomaly.) This suggests that c− a may be related to some sort

of indices on either side of the duality.1

Focusing on the difference c − a, we see from (1.1) that for S5/Zn orbifolds, the field

theory gives

c− a =


0, n = 1;
1
12 , n = 2;
n
16 , n ≥ 3.

(1.9)

The n = 1 case corresponds to the round five-sphere, or equivalently N = 4 SYM, and

the result c = a was reproduced on the gravity side in [7] by regulating the sum (1.6). We

studied the S5/Z3 case, corresponding to N = 1 SU(N)3 gauge theory, in [13] and similarly

found exact matching with c − a = 3/16 on both sides of the duality. In this paper, we

extend our previous result for S5/Z3 to arbitrary Zn orbifolds of S5 and again find exact

matching with c− a = n/16. For even orbifolds, a contribution from the twisted sector is

expected; this may be computed by starting with the low energy effective description of

the twisted sector in terms of a (2, 0) tensor theory in six dimensions, KK reducing it to

five dimensions and then applying eq. (1.6) to the resulting five-dimensional spectrum.

One issue that we have only alluded to so far is the contribution to the bulk effective

action from massive string states running in the loop. As argued in [3], such holographic

contributions would show up through higher-derivative corrections in the five-dimensional

effective action, and they should be added to (1.6) to obtain the complete subleading shift

to c − a. However, it turns out that these massive string loop contributions vanish for

compactifications on S5 and its Zn orbifolds. Therefore the exact matching c − a = n/16

(or c− a = 1/12 for n = 2) is unaffected by massive string loop considerations.

The issue of massive string loop corrections will arise for other Sasaki-Einstein com-

pactifications of IIB string theory. In particular, the computation in [3] predicts that such

string loops would contribute 1/24 to c− a for the conifold theory. In order to investigate

this possible contribution, in this paper we also examine orbifolds of T 1,1. Curiously, we find

that the sum of the KK tower in (1.6) completely reproduces the field theory result, so that

massive string loop contributions are in fact not necessary (and so would ruin the matching

if included). This presents a puzzle for the fate of the massive string loop corrections.

This paper is organized as follows. In the next section, we consider IIB supergravity

on AdS5×S5/Zn and find the result c−a = n/16 (or c−a = 1/12 for n = 2), in agreement

with the field theory side of the duality. We also elaborate on the twisted states appearing

in the cases with even n and demonstrate that they are necessary for the matching to work.

In section 3, we examine IIB supergravity on AdS5 × T 1,1/Zn and find c− a = n/8, which

matches the field theory result provided there are no further contributions from massive

1A similar suspicion was stated in [17] that the anomaly coefficients might be related to the super-

conformal index on S3 × R. Since the anomaly coefficients are sensitive to the detailed spectrum only at

subleading order, we consider it more likely that if such a relation exists, it would relate the superconformal

index to the subleading part of the anomaly coefficients and perhaps directly to c− a.
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string loops. Finally, we conclude in section 4 with some open questions. Some details on

the twisted sector of the S5/Z2 orbifold are presented in appendix A.

2 Orbifolds of S5

Perhaps the best studied framework for AdS/CFT involves the duality between IIB string

theory on AdS5×S5 and N = 4 super-Yang-Mills theory. This system preserves 32 real su-

percharges, and the appropriate supergroup is SU(2, 2|4). Application of (1.4) demonstrates

that the leading order Weyl anomaly c = a = N2/4 gets shifted to c = a = (N2 − 1)/4 [7].

However, the difference c− a continues to vanish because of maximal supersymmetry.

Starting with AdS5×S5, it is straightforward to consider the family of orbifold models

AdS5×S5/Zn that preserve a reduced amount of supersymmetry. Here the orbifold S5/Zn
is obtained by starting with C3 intersected with the unit sphere and modding out by the

Zn action generated by

Ω =


ω

ω

ω−2

 , (2.1)

where ωn = 1. Since this element is contained in SU(3), the orbifold generically preserves

N = 1 supersymmetry in four dimensions. Note, however, that for n = 2 this element is

in the center of SU(2), so the S5/Z2 orbifold actually preserves N = 2 supersymmetry in

four dimensions. (The n = 3 case is also somewhat special, as the element is then in the

center of SU(3), a fact that we found useful in the analysis of [13]).

2.1 The spectrum and shortenings

For orbifolds of S5, the natural starting point is simply the spectrum of IIB supergravity

on the round S5, originally obtained in [9, 10]. Since here we are interested in N = 2

supergravity in five dimensions, we rewrite the N = 8 spectrum in N = 2 language that

will be convenient for further applications. This is shown in table 1, where D(E0, s1, s2; r)

label the irreducible representations of the superalgebra SU(2,2|1).

For the holographic computation of c−a, however, only the shortened spectrum of the

theory is needed. There are three multiplet-shortening conditions, corresponding to con-

served, chiral (anti-chiral) and semi-long I (semi-long II) multiplets. Since these conditions

constrain the relation between E0 and r, for a given KK level p, only terms at the ends

of the sums over k in table 1 correspond to shortened states. The shortened spectrum is

shown in table 2. In this table, we also present the contribution of each short multiplet to

c − a as obtained in [13]. As a check, we have summed over all states shown in table 2,

and found a vanishing correction to c− a, in agreement with the result of [7] for the round

S5 (dual to N = 4 SYM).

We are, of course, interested in Zn orbifolds of S5 generated by the action of (2.1).

Since this element commutes with SU(2) acting on the first two complex coordinates, it is

natural to decompose the original SU(4) R-symmetry according to

SU(4) ⊃ SU(3)×U(1)r ⊃ SU(2)×U(1)q ×U(1)r. (2.2)

– 5 –
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Supermultiplet Representation KK level

Graviton
∑p−2

k=0D(p+ 1, 12 ,
1
2 ; 1

3(2p− 4k − 4))(k, p− k − 2) p ≥ 2

Gravitino I and III
∑p−1

k=0D(p+ 1
2 ,

1
2 , 0; 1

3(2p− 4k + 1))(k, p− k − 1) p ≥ 2

+
∑p−1

k=0D(p+ 1
2 , 0,

1
2 ; 1

3(2p− 4k − 5))(k, p− k − 1)

Gravitino II and IV
∑p−3

k=0D(p+ 3
2 ,

1
2 , 0; 1

3(2p− 4k − 9))(k, p− k − 3) p ≥ 3

+
∑p−3

k=0D(p+ 3
2 , 0,

1
2 ; 1

3(2p− 4k − 3))(k, p− k − 3)

Vector I
∑p

k=0D(p, 0, 0; 1
3(2p− 4k))(k, p− k) p ≥ 2

Vector II
∑p−4

k=0D(p+ 2, 0, 0; 1
3(2p− 4k − 8))(k, p− k − 4) p ≥ 4

Vector III and IV
∑p−2

k=0D(p+ 1, 0, 0; 1
3(2p− 4k − 10))(k, p− k − 2) p ≥ 2

+
∑p−2

k=0D(p+ 1, 0, 0; 1
3(2p− 4k + 2))(k, p− k − 2)

Table 1. The spectrum of IIB supergravity on S5 written in terms ofN = 2 multiplets, and with the

decomposition SU(4) ⊃ SU(3)×U(1)r. The supermultiplets are given in the conventional notation

D(E0, s1, s2; r) with the SU(3) representation given in terms of Dynkin labels (l1, l2) appended.

We define the U(1) normalizations by taking

4→ 31/3 + 1−1 → 21,1/3 + 1−2,1/3 + 10,−1. (2.3)

Here the R-charge is conventionally normalized, while the U(1)q charge is normalized so

that the states that survive the Zn orbifolding are those that satisfy

q = 0 mod n. (2.4)

It is then simply a matter of group theory to project out the states in the massive KK tower.

Before considering the orbifold, we rewrite the shortened S5 spectrum in terms of

SU(2)×U(1)q×U(1)r quantum numbers. This is obtained by appropriately branching the

representations in table 2, and the result is given in table 3. Of course this contains the

same information as table 2. However, it is now in a form that is applicable to the S5/Zn
orbifold models.

2.2 Subleading Weyl anomaly computation

We now turn to the computation of c − a for the orbifolds S5/Zn. Basically, our goal is

to sum the individual contributions given in the last column of table 2 over the shortened

representations of table 3 that survive the orbifolding. It is more convenient to rewrite

the sums over KK level p and SU(2) representation k in table 3 in terms of sums over the

U(1)q charge q and KK level p. In this case, we can then restrict the sum over q to those

satisfying the projection condition (2.4), namely q = 0 mod n.

One simplifying step is to note that the contribution to c − a from the conserved

multiplets at KK level p = 2 in fact matches the sum of the corresponding contributions

to c − a from the SLI and SLII multiplets, if their contributions were to be extrapolated

from p > 2 to p = 2. For example, if we took the graviton SLI and SLII contributions from

– 6 –
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Multiplet KK Shortened representation Shortening c− a for one

level type

Graviton p = 2 D(3, 12 ,
1
2 ; 0)(0, 0) conserved −5

8

p > 2 D(p+ 1, 12 ,
1
2 ;−2

3(p− 2))(p− 2, 0) SLI − 5
48(p+ 1)

D(p+ 1, 12 ,
1
2 ; 2

3(p− 2))(0, p− 2) SLII − 5
48(p+ 1)

Gravitino I p = 2 D(52 ,
1
2 , 0; 1

3)(1, 0) conserved 35
192

p ≥ 2 D(p+ 1
2 ,

1
2 , 0; 2

3(p+ 1
2))(0, p− 1) chiral − 5

48(p− 1)

p > 2 D(p+ 1
2 ,

1
2 , 0;−2

3(p− 5
2))(p− 1, 0) SLI − 1

96(p+ 1
2)

D(p+ 1
2 ,

1
2 , 0; 2

3(p− 3
2))(1, p− 2) SLII 5

48p

Gravitino II p ≥ 3 D(p+ 3
2 ,

1
2 , 0;−2

3(p− 3
2))(p− 3, 0) SLI − 1

96(p+ 3
2)

Gravitino III p = 2 D(52 , 0,
1
2 ;−1

3)(0, 1) conserved 35
192

p ≥ 2 D(p+ 1
2 , 0,

1
2 ;−2

3(p+ 1
2))(p− 1, 0) anti-chiral − 5

48(p− 1)

p > 2 D(p+ 1
2 , 0,

1
2 ; 2

3(p− 5
2))(0, p− 1) SLII − 1

96(p+ 1
2)

D(p+ 1
2 , 0,

1
2 ;−2

3(p− 3
2))(p− 2, 1) SLI 5

48p

Gravitino IV p ≥ 3 D(p+ 3
2 , 0,

1
2 ; 2

3(p− 3
2))(0, p− 3) SLII − 1

96(p+ 3
2)

Vector I p = 2 D(2, 0, 0; 0)(1, 1) conserved 1
32

p ≥ 2 D(p, 0, 0; 2
3p)(0, p) chiral − 1

96(p− 3
2)

D(p, 0, 0;−2
3p)(p, 0) anti-chiral − 1

96(p− 3
2)

p > 2 D(p, 0, 0;−2
3(p− 2))(p− 1, 1) SLI 1

96(p− 1
2)

D(p, 0, 0; 2
3(p− 2))(1, p− 1) SLII 1

96(p− 1
2)

Vector II — — —

Vector III p ≥ 2 D(p+ 1, 0, 0;−2
3(p+ 1))(p− 2, 0) anti-chiral − 1

96(p− 1
2)

p ≥ 3 D(p+ 1, 0, 0;−2
3(p− 1))(p− 3, 1) SLI 1

96(p+ 1
2)

Vector IV p ≥ 2 D(p+ 1, 0, 0; 2
3(p+ 1))(0, p− 2) chiral − 1

96(p− 1
2)

p ≥ 3 D(p+ 1, 0, 0; 2
3(p− 1))(1, p− 3) SLII 1

96(p+ 1
2)

Table 2. Shortening structure of the S5 KK tower. Note that Vector Multiplet II is never shortened.

The contribution of a single shortened multiplet to c−a is given in the last column. This factor must

be multiplied by the dimension of the SU(3) representation to obtain the total contribution to c−a.

table 2 and set p = 2, we would find

− 5

48
(p+ 1)− 5

48
(p+ 1)

∣∣∣
p=2

= −5

8
, (2.5)

which agrees with the value for the conserved graviton multiplet. It is easy to see that this

holds in general for all of the conserved multiplets.

Continuing with the graviton multiplet, since the SLI and SLII multiplets are conju-

gates of each other, it is sufficient to consider only one of them, and double the result. We

– 7 –
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Multiplet KK Shortened representation Shortening

level type

Graviton p = 2 D(3, 12 ,
1
2 ; 0)10 conserved

p > 2 D(p+ 1, 12 ,
1
2 ;−2

3(p− 2))
∑p−2

k=0(k + 1)−2p+3k+4 SLI

D(p+ 1, 12 ,
1
2 ; 2

3(p− 2))
∑p−2

k=0(k + 1)2p−3k−4 SLII

Gravitino I p = 2 D(52 ,
1
2 , 0; 1

3)1−2 + 21 conserved

p ≥ 2 D(p+ 1
2 ,

1
2 , 0; 2

3(p+ 1
2))
∑p−1

k=0(k + 1)2p−3k−2 chiral

p > 2 D(p+ 1
2 ,

1
2 , 0;−2

3(p− 5
2))
∑p−1

k=0(k + 1)−2p+3k+2 SLI

D(p+ 1
2 ,

1
2 , 0; 2

3(p− 3
2))
∑p−1

k=1(k + 1)2p−3k SLII

+
∑p−2

k=0(k + 1)2p−3k−6

Gravitino II p ≥ 3 D(p+ 3
2 ,

1
2 , 0;−2

3(p− 3
2))
∑p−3

k=0(k + 1)−2p+3k+6 SLI

Gravitino III p = 2 D(52 , 0,
1
2 ;−1

3)12 + 2−1 conserved

p ≥ 2 D(p+ 1
2 , 0,

1
2 ;−2

3(p+ 1
2))
∑p−1

k=0(k + 1)−2p+3k+2 anti-chiral

p > 2 D(p+ 1
2 , 0,

1
2 ; 2

3(p− 5
2))
∑p−1

k=0(k + 1)2p−3k−2 SLII

D(p+ 1
2 , 0,

1
2 ;−2

3(p− 3
2))
∑p−1

k=1(k + 1)−2p+3k SLI

+
∑p−2

k=0(k + 1)−2p+3k+6

Gravitino IV p ≥ 3 D(p+ 3
2 , 0,

1
2 ; 2

3(p− 3
2))
∑p−3

k=0(k + 1)2p−3k−6 SLII

Vector I p = 2 D(2, 0, 0; 0)10 + 23 + 2−3 + 30 conserved

p ≥ 2 D(p, 0, 0; 2
3p)
∑p

k=0(k + 1)2p−3k chiral

D(p, 0, 0;−2
3p)
∑p

k=0(k + 1)−2p+3k anti-chiral

p > 2 D(p, 0, 0;−2
3(p− 2))

∑p−1
k=0(k + 1)−2p+3k+4 SLI

+
∑p

k=1(k + 1)−2p+3k−2

D(p, 0, 0; 2
3(p− 2))

∑p
k=1(k + 1)2p−3k+2 SLII

+
∑p−1

k=0(k + 1)2p−3k−4

Vector II — — —

Vector III p ≥ 2 D(p+ 1, 0, 0;−2
3(p+ 1))

∑p−2
k=0(k + 1)−2p+3k+4 anti-chiral

p ≥ 3 D(p+ 1, 0, 0;−2
3(p− 1))

∑p−3
k=0(k + 1)−2p+3k+8 SLI

+
∑p−2

k=1(k + 1)−2p+3k+2

Vector IV p ≥ 2 D(p+ 1, 0, 0; 2
3(p+ 1))

∑p−2
k=0(k + 1)2p−3k−4 chiral

p ≥ 3 D(p+ 1, 0, 0; 2
3(p− 1))

∑p−3
k=0(k + 1)2p−3k−8 SLII

+
∑p−2

k=1(k + 1)2p−3k−2

Table 3. The shortened multiplets of the S5 KK tower decomposed in terms of SU(2)×U(1)q×U(1)r
quantum numbers. Note that the SU(2) representations are given in terms of their dimensions.

are thus led to the contribution

c− a
∣∣∣
graviton

= 2×
∞∑
p=2

p−2∑
k=0

zp
(
− 5

48

)
(p+ 1)(k + 1), (2.6)
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where zp is used to regulate the sum over KK modes, and where the k + 1 factor is the

dimension of the SU(2) representation. For the Zn orbifold, the sum in (2.6) should be

restricted to q = 0 mod n, where q = −2p+ 3k + 4.

In order to make the q charge explicit, we write

c− a
∣∣∣
graviton

=

∞∑
p=2

p−2∑
k=0

f(−2p+ 3k + 4, p, k), (2.7)

where f(q, p, k) is the summand in (2.6). It is a simple exercise to convert this into a set

of sums over q

c− a
∣∣∣
graviton

=
∞∑
j=0

∞∑
l=0

f(j, j + 3l + 2, j + 2l) +
∞∑
j=1

∞∑
l=0

f(−2j, j + 3l + 2, 2l)

+
∞∑
j=0

∞∑
l=0

f(−2j − 1, j + 3l + 4, 2l + 1). (2.8)

In particular, the first sum in (2.8) is over non-negative q, the second sum is over negative

even q and the final sum is over negative odd q. Given this decomposition, it is now

straightforward to restrict the q charges for the Zn orbifold.

Note that for even n, the negative odd q sum in (2.8) drops out, while for odd n all three

sums will contribute. Thus we consider even and odd cases separately. For even n, we have

c− a
∣∣∣even Zn

graviton
=

∞∑
j=0

∞∑
l=0

f(nj, nj + 3l+ 2, nj + 2l) +

∞∑
j=1

∞∑
l=0

f(−nj, nj/2 + 3l+ 2, 2l), (2.9)

and for odd n we have

c− a
∣∣∣odd Zn

graviton
=

∞∑
j=0

∞∑
l=0

f(nj, nj + 3l + 2, nj + 2l) +

∞∑
j=1

∞∑
l=0

f(−2nj, nj + 3l + 2, 2l)

+
∞∑
j=0

∞∑
l=0

f(−n(2j + 1), (n(2j + 1)− 1)/2 + 3l + 4, 2l + 1). (2.10)

In both cases, the function f(q, p, k) for the graviton is given in (2.6):

f(q, p, k) = − 5

24
zp(p+ 1)(k + 1). (2.11)

The sums can be evaluated, and the result for the graviton contribution is

c− a
∣∣∣
graviton

=


− 5

8n(z−1)4
− 5

4n(z−1)3
− 65

96n(z−1)2
+
n4+20n2+84

4608n
+· · · , n even;

− 5

8n(z−1)4
− 5

4n(z−1)3
− 5

8n(z−1)2
+
n4+30n2−31

4608n
+· · · , n odd.

(2.12)

Recall that z is used to regulate the sum over the infinite KK tower; following [7], we

expect to ignore the pole terms and keep only the finite contribution to c− a.
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To obtain the full result, we sum over all shortened multiplets in table 3. Since the

procedure for the other multiplets parallels that of the graviton multiplet, we omit the

details here. However, there is one small detail for some of the other multiplets, which is

that the restriction on KK level leads to a few exceptions in the sums for n = 1 (ie the

round S5) and n = 2 (ie S5/Z2). These exceptions are perhaps not surprising, as these

cases have additional supersymmetry compared with the generic orbifolds.

2.2.1 Odd orbifolds

For odd n, the Zn element (2.1) acts freely on S5. Hence there is no need to consider any

twisted sectors, and the sum over the shortened KK spectrum gives the entire contribution

to c − a. Curiously, the pole terms vanish identically when summing over all multiplets,

and we are left with the simple result

c− a
∣∣∣
S5/Zn

=

0, n = 1;
n

16
+ · · · , n ≥ 3 odd,

(2.13)

where the ellipses denote terms vanishing in the limit z → 1. This matches the field theory

result (1.9).

2.2.2 Even orbifolds

For even n, there is the added complication that the Zn action admits a Z2 subgroup

generated by

Ωn/2 =


−1

−1

1

 . (2.14)

This element leaves a fixed plane in C3, which gives rise to a fixed circle on S5. Thus, to

understand the even orbifolds, we will have to consider the effect of the twisted sector in

addition to the KK tower discussed above.

Before discussing the twisted sector, we present the result from the sum over the

shortened KK spectrum in the untwisted sector

c− a
∣∣∣
untwisted

=


− 1

8(z − 1)2
− 1

8(z − 1)
+

1

16
+ · · · , n = 2;

− 1

4n(z − 1)2
− 1

4n(z − 1)
+

5n2 − 4

96n
+ · · · , n ≥ 4 even.

(2.15)

Unlike in the odd case, here the pole terms do not disappear. Note, however, that the

leading fourth and third order poles cancel when summed over the complete set of mul-

tiplets. The n = 2 case is an exception since the dual quiver gauge theory has N = 2

supersymmetry and chiral matter in the adjoint, as indicated in figure 1.

The twisted modes of the even orbifolds are known to arise from the KK reduction of the

six-dimensional (2, 0) tensor theory on AdS5×S1 [18, 19]. Since these states originate from

the Z2 action generated by (2.14), they preserve N = 4 supersymmetry in five dimensions.
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Figure 1. Two of the orbifold quivers. The Z2 orbifold is special because of the chiral multiplets

in the adjoints and is shown on the left. The Z6 orbifold follows the generic pattern and is shown

on the right.

However, they may be further decomposed intoN = 2 multiplets. The result is presented in

table 4. (See appendix A for additional details.) For even n ≥ 4, an additional projection

q = 0 mod n must be imposed. In this case, the zero mode (p = 0) must be treated

separately from the KK tower on S1. We find

c− a
∣∣∣
p=0 twisted

=

{
1/48, n = 2;

1/32, n ≥ 4 even,
(2.16)

and

c− a
∣∣∣
p≥1 twisted

=


− 1

4(z − 1)2
− 1

4(z − 1)
+ 0 + · · · , n = 2;

− 1

2n(z − 1)2
− 1

2n(z − 1)
+
n2 − 3n+ 4

96n
, n ≥ 4 even.

(2.17)

Again, a zp regulator is used, with p the KK level on S1. Here the double pole is leading,

so there is no partial pole cancellation as there was in the untwisted sector. Note that one

could introduce a different fugacity for the twisted states, say multiplying each term by yp

instead of zp, but that would not change the finite part of the final result in (2.18) after

one also expands around y = 1.

Adding together (2.15), (2.16) and (2.17), we find

c− a
∣∣∣
S5/Zn

=


− 3

8(z − 1)2
− 3

8(z − 1)
+

1

12
+ · · · , n = 2;

− 3

4n(z − 1)2
− 3

4n(z − 1)
+

n

16
+ · · · , n ≥ 4 even.

(2.18)

Although the second and first order poles survive in this result, if we follow the regulation

procedure of [7] and drop the poles, we see that the finite part agrees with the field theory

result (1.9).

Thus we have successfully reproduced the field theory result for c− a, (1.9), for all Zn
orbifolds of S5. For odd n, the regulated sum over the KK tower is finite, and directly

gives c − a = n/16. For even n, the regulated sum diverges with first and second order

poles. However, the finite term correctly gives c − a = n/16 (or c − a = 1/12 for n = 2).

This distinction between even and odd orbifolds is presumably related to the presence of a

twisted sector in the former case. Furthermore, the holographic contribution to c− a from

massive string loops vanishes in this case [3], so the result from the KK tower is complete.
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KK level Representation Shortening type

p = 0 D(2, 0, 0; 0)10 conserved

D(2, 0, 0; 4
3)1−2 chiral

D(2, 0, 0;−4
3)12 anti-chiral

p ≥ 1 D(p+ 1, 0, 0; 2
3(p+ 1))12p+2 chiral

D(p+ 3
2 ,

1
2 , 0; 2

3(p+ 3
2))12p

D(p+ 2, 0, 0; 2
3(p+ 2))12p−2

D(p+ 1, 0, 0;−2
3(p+ 1))1−2p−2 anti-chiral

D(p+ 3
2 , 0,

1
2 ;−2

3(p+ 3
2))1−2p

D(p+ 2, 0, 0;−2
3(p+ 2))1−2p+2

Table 4. The twisted sector states for the orbifold S5/Z2 written in an N = 2 language. We use

the same SU(2)×U(1)q ×U(1)r decomposition as in (2.2).

3 Orbifolds of T 1,1

Having successfully matched the gravity and field theory results for c−a for the supersym-

metric orbifolds S5/Zn, we would like to extend this comparison to more quiver gauge theo-

ries and their gravitational duals. Because the holographic computation requires knowledge

of the shortened KK spectrum, we restrict our consideration to T 1,1, where the spectrum

is known [20, 21].

3.1 The spectrum and shortenings

As demonstrated in [22], the generic KK spectrum for compactification of IIB supergravity

on a Sasaki-Einstein manifold consists of nine generic KK multiplets (originally identified

for T 1,1 in [20, 21]), along with possibly additional ‘special’ KK multiplets and Betti mul-

tiplets. An example of the special and Betti multiplets can be seen in the case of S5/Z2,

were the twisted sector states shown in table 4 can be organized into three chiral and three

anti-chiral towers, corresponding to special multiplets, along with the three q = 0 repre-

sentations D(2, 0, 0; 0), D(3, 0, 0, 2) and D(3, 0, 0,−2), corresponding to Betti multiplets.2

These special and Betti multiplets do not exist for the round S5 nor for its odd orbifolds.

For a given Sasaki-Einstein manifold, the KK spectrum (excluding special and Betti

multiplets) can be obtained in terms of the eigenvalues of the scalar Laplacian [20–22]. For

T 1,1, define the eigenvalues of the scalar Laplacian on T 1,1 as

�Y = −H0Y, H0 = 6[j(j + 1) + `(`+ 1)− r2/8], (3.1)

where (j, `, r) specify the SU(2) × SU(2) × U(1) quantum numbers. Here the r-charge is

integer quantized, and is bounded by

|r| ≤ 2 min(j, `). (3.2)

2Recall that the topology of S5/Z2 with the fixed circle blown up is the same as T 1,1 and therefore it

admits the same type of Betti multiplets as the latter.
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Supermultiplet Representation e0 condition

Graviton D(e0 + 3, 12 ,
1
2 ; r) e0 ≥ 0

Gravitino I and III D(e0 + 3
2 ,

1
2 , 0; r + 1) +D(e0 + 3

2 , 0,
1
2 ; r − 1) e0 > 0

Gravitino II and IV D(e0 + 9
2 ,

1
2 , 0; r − 1) +D(e0 + 9

2 , 0,
1
2 ; r + 1) e0 ≥ 0

Vector I D(e0, 0, 0; r) e0 > 0

Vector II D(e0 + 6, 0, 0; r) e0 ≥ 0

Vector III and IV D(e0 + 3, 0, 0; r − 2) +D(e0 + 3, 0, 0; r + 2) e0 ≥ 0

Betti vector D(2, 0, 0; 0)

Betti hyper D(3, 0, 0; 2) +D(3, 0, 0;−2)

Table 5. The N = 2 spectrum of IIB supergravity on T 1,1. All representations transform as (j, `)

under SU(2)× SU(2).

Supermultiplet Representation Name given in [24]

Graviton D(3, 12 ,
1
2 ; 0) supergraviton

Gravitino II and IV D(92 ,
1
2 , 0;−1) +D(92 , 0,

1
2 , 1) LH+RH massive gravitino

Vector II D(6, 0, 0; 0) massive vector

Vector III and IV D(3, 0, 0;−2) +D(3, 0, 0; 2) LH+RH chiral

Table 6. The e0 = 0 multiplets. These are the multiplets that survive the consistent Sasaki-

Einstein truncation.

Now let

H0 = e0(e0 + 4), (3.3)

or

e0 =
√
H0 + 4− 2 ≥ 0. (3.4)

The Kaluza-Klein supermultiplet spectrum on T 1,1 is then given in table 5. Note that

e0 = 0 corresponds to the zero mode on T 1,1, with j = ` = r = 0. There are four sets

of supermultiplets where this is allowed; these are the ones that may be retained in the

massive consistent truncation on Sasaki-Einstein [23–26], and they are shown in table 6.

It is straightforward to work out the multiplet shortening conditions for the T 1,1 spec-

trum, and the result is shown in table 7. We have also included the Betti multiplets in this

table, as they are part of the shortened spectrum. There are no special multiplets for T 1,1.

Although the T 1,1 harmonics do not have an obvious single ‘KK level’ arrangement

(since they involve harmonics on S2 × S2 × S1 instead of a single S5), the shortened mul-

tiplets follow the same pattern as those of S5. Thus in table 7 we have assigned KK levels

based on what they would have been for S5 (or its orbifolds). Note, however, that j can

take on both integer and half-integer values. The lowest KK level is p = 3/2, and it consists

of only Vector I (chiral and anti-chiral). In fact, this lowest KK level is unusual, in that

the shortened representation D(32 , 0, 0; 1)(12 ,
1
2) + D(32 , 0, 0;−1)(12 ,

1
2) contains a complex
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Multiplet KK level Shortened representation Shortening type

Graviton p = 2 D(3, 12 ,
1
2 ; 0)(0, 0) conserved

p = 3j + 2 D(3j + 3, 12 ,
1
2 ;−2j)(j, j) SLI (j > 0)

D(3j + 3, 12 ,
1
2 ; 2j)(j, j) SLII (j > 0)

Gravitino I p = 3j + 1 D(3j + 3
2 ,

1
2 , 0; 2j + 1)(j, j) chiral (j > 0)

D(3j + 3
2 ,

1
2 , 0;−2j + 1)(j, j) SLI (j > 0)

p = 3j + 3 D(3j + 7
2 ,

1
2 , 0; 2j + 1)(j + 1, j)⊕ (j, j + 1) SLII

Gravitino II p = 3j + 3 D(3j + 9
2 ,

1
2 , 0;−2j − 1)(j, j) SLI

Gravitino III p = 3j + 1 D(3j + 3
2 , 0,

1
2 ;−2j − 1)(j, j) anti-chiral (j > 0)

D(3j + 3
2 , 0,

1
2 ; 2j − 1)(j, j) SLII (j > 0)

p = 3j + 3 D(3j + 7
2 , 0,

1
2 ;−2j − 1)(j + 1, j)⊕ (j, j + 1) SLI

Gravitino IV p = 3j + 3 D(3j + 9
2 , 0,

1
2 ; 2j + 1)(j, j) SLII

Vector I p = 2 D(2, 0, 0; 0)(1, 0)⊕ (0, 1) conserved

p = 3j D(3j, 0, 0; 2j)(j, j) chiral (j > 0)

D(3j, 0, 0;−2j)(j, j) anti-chiral (j > 0)

p = 3j + 2 D(3j + 2, 0, 0;−2j)(j + 1, j)⊕ (j, j + 1) SLI (j > 0)

D(3j + 2, 0, 0; 2j)(j + 1, j)⊕ (j, j + 1) SLII (j > 0)

Vector II — — —

Vector III p = 3j + 2 D(3j + 3, 0, 0;−2j − 2)(j, j) anti-chiral

p = 3j + 4 D(3j + 5, 0, 0;−2j − 2)(j + 1, j)⊕ (j, j + 1) SLI

Vector IV p = 3j + 2 D(3j + 3, 0, 0; 2j + 2)(j, j) chiral

p = 3j + 4 D(3j + 5, 0, 0; 2j + 2)(j + 1, j)⊕ (j, j + 1) SLII

Betti vector − D(2, 0, 0; 0)(0, 0) conserved

Betti hyper − D(3, 0, 0; 2)(0, 0) chiral

D(3, 0, 0;−2)(0, 0) anti-chiral

Table 7. Shortening structure of the T 1,1 KK tower. The supermultiplets are given in the con-

ventional notation D(E0, s1, s2; r) with the SU(2) × SU(2) representation (j, `) appended. Here

j = 0, 12 , 1,
3
2 , . . ., unless otherwise indicated. Note that Vector Multiplet II is never shortened. The

‘KK level’ is suggested by analogy with the S5 spectrum.

scalar with E0 = 3/2. This is in the range where both modes are normalizable. Thus the

scalar needs to be quantized with Neumann (as opposed to the usual Dirichlet) boundary

conditions in order to select out the E0 = 3/2 mode. We will have more to say more about

this below.

3.2 Subleading Weyl anomaly computation

The holographic computation of c − a proceeds along the same lines as that for S5. We

essentially take the contributions to c − a from table 2 and sum over the shortened T 1,1

spectrum of table 7. As in the S5 case, we can simplify the sum over the spectrum by

ignoring the conserved Graviton and Vector I multiplets and instead extend the sums for

the corresponding SLI and SLII towers to include j = 0.
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As an example, we present the computation of c− a for the graviton tower. Using the

same regularization procedure of multiplying by zp (where p is the assigned KK level), we

have

c− a
∣∣∣
graviton

= 2×
∑

zp
(
− 5

48

)
(p+ 1)(2j + 1)(2l + 1)

= 2×
∑
j

z3j+2

(
− 5

48

)
(3j + 3)(2j + 1)2, (3.5)

where j = 0, 12 , 1, . . ., and the overall factor of two takes care of the conjugate multiplets. In

the first line, the factor (2j+ 1)(2l+ 1) corresponds to the dimension of the SU(2)×SU(2)

representation, and in the second line we have substituted in the relation between p, j and

l as shown in table 7. The sum can be easily evaluated, and the result for the graviton

contribution is

c− a
∣∣∣
graviton

= − 10

27(z − 1)4
− 20

27(z − 1)3
− 125

324(z − 1)2
+

385

31104
+ · · · . (3.6)

The contributions from the other towers can be worked out in a similar manner. In

addition, the contribution from the Betti vector (1/32) cancels against that from the Betti

hyper (−1/32). There is one subtlety, however, and that is related to the quantization of

the E0 = 3/2 scalar in the p = 3/2 KK level, as mentioned above. The alternate boundary

conditions used to quantize this scalar may modify its contribution to c − a [27]. Thus

we add a term δalt. quant. that accounts for this contribution. This, however, is at most

a finite shift, and will not affect the convergence of the sum over the KK tower. Putting

everything together, one arrives at

c− a
∣∣∣
T 1,1

= − 2

9(z − 1)2
− 2

9(z − 1)
+

1

8
+ δalt. quant. + · · · . (3.7)

While the fourth and third order poles cancel at z = 1, the second and first order poles do

not. Hence the sum over the KK tower is divergent. Following the prescription of [7], we

drop the pole terms, so we are left with the finite result c− a = 1/8 + δalt. quant. for T 1,1.

The shift δalt. quant. due to imposing Neumann boundary conditions for the E0 = 3/2

scalar is not well understood. Ref. [27] reports an answer for this shift corresponding to

δ = −1/180 for each real scalar with E0 < 2, but finds disagreement with the established

results [28–30] on the shift in the a central charge due to the alternative boundary condition.

We are not able to resolve this contradiction. However, it is interesting to note that the

conifold gauge theory has c− a = 1/8, suggesting that δalt. quant. should in fact vanish.

3.2.1 The T 1,1/Z2 orbifold

One way to avoid the issue of working with alternate boundary conditions is to consider

orbifolds of T 1,1 where the p = 3/2 KK level is projected out. We first consider the orbifold

T 1,1/Z2 defined by taking the period along the U(1) fiber to be 2π instead of the normal

4π. This orbifold maintains the SU(2) × SU(2) × U(1) isometry of T 1,1, but projects to

integer SU(2) charges only. This corresponds to taking integer j in table 7, so the KK level
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Figure 2. The quivers corresponding to T 1,1/Z2 (on the left) and T 1,1/Z4 (on the right). The

latter is an example of typical quivers corresponding to orbifolds of T 1,1.

p is now an integer; in particular this removes the p = 3/2 multiplets from the spectrum.

The dual quiver is shown in figure 2.

Computing the holographic c− a is quite similar to the case of T 1,1, but the sums are

now over integer j. We find

c− a
∣∣∣
T 1,1/Z2

= − 1

9(z − 1)2
− 1

9(z − 1)
+

1

4
+ · · · . (3.8)

Keeping the finite part gives c− a = 1/4, in perfect agreement with the field theory result

corresponding to the four-node dual quiver.

3.2.2 The T 1,1/Zn orbifolds

We now consider the Y n,0 = T 1,1/Zn orbifolds obtained by taking a Zn quotient of the

conifold. In particular, we take the conifold to be defined by

xy − zw = 0. (3.9)

Then the Zn action is defined by [31]

x→ e2πi/nx, y → e−2πi/ny, z → e2πi/nz, w → e−2πi/nw. (3.10)

This corresponds to a Zn quotient of the SU(2)j subgroup of the isometry group SU(2)j ×
SU(2)l × U(1)r of T 1,1. Note that these orbifolds are all fixed-point-free, and that the

n = 2 case corresponds to taking integer j, and hence reduces to the Z2 orbifold considered

above. For n > 2, the isometry group of the orbifold is reduced to SU(2)l ×U(1)j ×U(1)r.

To find the Zn-singlet states, one simply decomposes SU(2)j ⊃ U(1)j , where U(1)j is

just the third component of isospin, and then keeps jz = 0 mod n/2. For example, the con-

served graviton multiplet with (j, l) = (0, 0) along with the conserved vector multiplet with

(j, l) = (0, 1) survives the orbifolding. However, the conserved vector with (j, l) = (1, 0)

will be branched to (0)−1 + (0)0 + (0)1 (where the l quantum number is shown inside the

parentheses and the U(1)j charge is subscripted). Only the (0)0 state will survive the Zn
projection for n > 2.

As above, we highlight the computation of c− a for the graviton tower. We have

c− a
∣∣∣
graviton

= 2×
∑
j

zp
(
− 5

48

)
(p+ 1)γ

(n)
j (2l + 1). (3.11)
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This expression is identical to the first line of (3.5), except that the dimension of the com-

plete SU(2)j representation, 2j + 1, is replaced by γ
(n)
j , which counts the number of states

surviving the orbifolding by Zn. For example, take n = 3 and consider the SU(2)j repre-

sentation given by j = 4. The jz charges are then all integers from −4 to 4, and only three

of the states, with jz = −3, 0, 3 survive the projection. Hence we find γ
(3)
4 = 3. For the

general case, we may write j = (nα + β)/2, with α, β nonnegative integers where β < n.

When n is even, it turns out that γ
(n)
j = 2α+ 1. When n is odd, γ

(n)
j = α for odd β, and

γ
(n)
j = α+ 1 for even β.

We skip the rest of the details and report the final answer

c− a
∣∣∣
T 1,1/Zn

= − 2

9n(z − 1)2
− 2

9n(z − 1)
+
n

8
+ · · · . (3.12)

Interestingly, although the computation bifurcates depending on even or odd n, this final

result takes the same form in both cases. Setting n = 1 reproduces the T 1,1 answer (3.7),

but without δalt. quant.. Keeping only the finite part, we find c−a = n/8, again in agreement

with the field theory result for the 2n-node quiver corresponding to Y n,0.

It appears that we have been successful in reproducing the quiver field theory result

c− a = n/8 for the entire family of Zn orbifolds of T 1,1. However, this does raise a puzzle

in that it was argued in [3] that c− a for T 1,1 would receive an additional contribution of

1/24 from massive string loop corrections, and it can be shown that this corresponds to a

contribution of n/24 for T 1,1/Zn. For T 1,1 itself, this would suggest that δalt. quant. in (3.7)

should take the value −1/24, so as to cancel the massive string loop correction. However,

there is no added room for removing the n/24 contribution for the orbifolds with n > 1.

This suggests that the conjecture in [3] that one simply adds the massive string loop to

the supergravity KK loop contributions in order to obtain c− a needs refinement.

4 Discussion

Our main result is the exact matching of the holographic c−a with the gauge theory result

for the families of theories dual to IIB string theory on S5/Zn and T 1,1/Zn. This exact

matching is achieved by considering in the bulk effective supergravity theory the one-loop

contribution3 on AdS5 with all possible states in the shortened KK spectrum running in

the loop. (The long multiplets have a vanishing contribution, and hence can be discarded

from the computation.) Since the KK tower is unbounded, the sum (1.6) over the tower

does not converge, and needs to be regulated. We have followed the regularization method

of [8], which is to multiply the contribution at each KK level by zp, where p is the level.

This sum converges for |z| < 1, and the value of c − a is obtained by dropping the pole

terms and keeping only the finite term when z → 1.

One difficulty with this regulator is how to extend the notion of a KK level p to the

case of a generic Sasaki-Einstein compactification. For S5 and its orbifolds, one can take p

to be the usual KK level on the round S5 before projection. However, for a space like T 1,1,

3We need α′ and gs to be small enough (or λ and N large enough) that the ten dimensional supergravity

gives a good approximation to the bulk effective action, but we must not take strict limits, as it would hide

the subleading effects due to respectively massive and massless loops. The fact that c−a of the quivers are

independent of both λ and N then seems to guarantee the one-loop exactness of the gravitational results.

– 17 –



J
H
E
P
0
1
(
2
0
1
4
)
0
0
2

there is no unambiguous notion of a KK level. Nevertheless, we have proposed a working

definition of ‘KK level’ based on associating the E0 values of the shortened spectrum with

p values corresponding to what they would have been had they come from compactification

on S5. Although this yields non-integer levels p for T 1,1 and its odd orbifolds, the agree-

ment we have found in the c− a values suggests that this is a valid regulator. In fact, the

number p has a clear AdS (or CFT) interpretation for the multiplets of S5 compactifica-

tion: it is the number of oscillator pairs that make up the representations of the isometry

group SO(4, 2) ∼ SU(2, 2) [9, 32] (see also [33]). It seems likely that the ‘KK level’ we have

assigned to the multiplets on T 1,1 has a similar purely AdS interpretation. It would be

interesting to establish this explicitly.

Curiously, we have found that the regulated sum contributing to c−a is finite at z = 1

for the odd orbifolds of S5. As we have shown in ref. [13], a zeta-function regularization

yields the same result as the zp regulator for S5/Z3; we have also checked that this is the

case for S5/Z5, and expect it to hold for all the odd orbifolds. However, the regulated sum

does have double and single poles at z = 1 for the case of even orbifolds of S5 and for all

orbifolds of T 1,1. In these cases, it appears that a zeta function regularization will produce

a different result. This is something we do not fully understand.

In fact, any time pole terms are present in the regulated c−a, it is possible to shift the

finite part simply by transforming z. For example, if we took the result (3.7) for T 1,1 and let

z → z2, we would end up with 5/36 + δalt. quant. instead. Of course, such a transformation

corresponds to a redefinition of the effective KK level. Hence this ambiguity in the finite

term is closely related to how we define the KK level.

Curiously, whenever we have found a divergent expression for c−a, it has taken the form

c− a =
α

(z − 1)2
+

α

z − 1
+ finite = α

z

(z − 1)2
+ finite. (4.1)

(The third and fourth order poles that could be present always seem to vanish when the

contributions from the different multiplets are combined.) This suggests that the pole

terms may be attributed to the sum over the KK tower as follows

α
z

(z − 1)2
=

∞∑
p=1

zp(αp). (4.2)

It would be curious to see if there is any physical interpretation of this sum and in par-

ticular of the value of α. Note that α = 0 for odd orbifolds of S5, α = −3/4n for even

orbifolds of S5 and α = −2/9n for orbifolds of T 1,1.

One possible way around the possible ambiguities in choosing a regulator would be to

work directly in ten-dimensional IIB supergravity. Then instead of summing over the KK

tower and regulating this sum by multiplying by zp, we could simply use a ten-dimensional

heat kernel regularization (or nine-dimensional heat kernel for the directions transverse to

the radial direction). This can be facilitated by taking advantage of the factorizability of the

heat kernel on product spaces. Of course, this would just replace the spectral analysis on

the internal manifold with an essentially equivalent heat kernel computation. However, it

would naturally provide a uniform regularization instead of having separate ones involving

the four-dimensional heat kernel coefficient along with the zp regulator.
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Up to a possible ambiguity due to the unknown factor δalt. quant. for the case of T 1,1,

we have shown that the holographic computation of c − a in the IIB supergravity theory

reproduces the corresponding field theory result. In particular, this leaves no room for con-

tributions from massive string states running in the loop. This does not present a difficulty

for the orbifolds of S5, as the string loop contribution to c − a vanishes in this case [3].

However, the contribution does not appear to vanish for orbifolds of T 1,1, and adding this

contribution to the supergravity result would then destroy the perfect agreement with the

dual gauge theory. One possible explanation for this disparity is that the string loop com-

putation may not be completely independent of the supergravity computation. Although

the supergravity computation necessarily excludes massive string states, there may be over-

lap in the massless sector.4 In this case, adding the string loop result to the supergravity

result would then end up double counting some of the contributions to c− a.

In the course of the present work, we have received insightful suggestions5 as to how

the zp regulator may be generalized to cases where the KK level p may be ill-defined.

A potentially fruitful idea is to introduce separate chemical potentials for the individual

quantum numbers (or charges) associated to the isometry group of the internal manifold.

This idea is particularly appealing when recalling the index-like nature of the holographic

c − a. For example, the KK multiplets on T 1,1 are labeled by three quantum numbers j,

l, r, corresponding to SU(2)j × SU(2)l × U(1)r. In this case, one would regulate the T 1,1

tower by multiplying by zj1z
l
2z
r
3. However, j, l and r are all related to each other in the

shortened towers, so it is not clear if anything is gained by introducing separate chemical

potentials for all three quantum numbers.

Another possibility is to regulate the sum by zL, associating a chemical potential to

the length L of the superfield dual to a given bulk multiplet. For S5 and its orbifolds,

this matches the zp regularization in the untwisted sector. However, the length of the dual

superfield and the assigned ‘KK level’ no longer coincide for T 1,1 and its orbifolds. Using

the zL regulator in these cases would yield results in disagreement with the field theory ex-

pectation (whether the massive string loop corrections suggested in [3] are included or not).

Some of these regulator issues, as well as puzzles about the possible contribution from

massive string loops could potentially be resolved by studying additional pairs of AdS/CFT

duals. A natural extension would be to consider the Sasaki-Einstein manifolds Y p,q. Al-

though knowledge of the full spectrum appears to be out of reach, we would only need

information about the shortened spectrum in order to investigate c− a. A partial analysis

for Y p,q was performed in [35], and we anticipate that this can be extended to provide

information on the complete shortened spectrum. This is currently under investigation.
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A The twisted sector states for the S5/Z2 orbifold

The S5/Z2 orbifold preserves 16 real supercharges, and the twisted sector may be described

by a six-dimensional (2,0) theory with a single tensor multiplet [36]. The field content is

(B−µν , 5φ, 4χ) transforming as the 1+ 5+ 4 of USp(4). This may be reduced on AdS5×S1

to give an effective five-dimensional N = 4 spectrum classified by SU(2, 2|2) [18, 19].

Making use of the decompositions 5→ 30 + 12 + 1−2 and 4→ 21 + 2−1 under USp(4) ⊃
SU(2)R×U(1)R, the zero mode on the circle gives rise to the shortened N = 4 multiplet [19]

D(2, 0, 0;30) = D(2, 0, 0)30 +D

(
5

2
,
1

2
, 0

)
2−1 +D

(
5

2
, 0,

1

2

)
21 +D

(
3,

1

2
,
1

2

)
10

+D(3, 0, 0)1−2 +D(3, 0, 0)12, (A.1)

where the AdS5 representations are labeled by D(E0, s1, s2), and the SU(2)R × U(1)R
quantum numbers are appended. The non-zero-modes are also shortened. For positive KK

level p ≥ 1, we have [18, 19]

D(p+1, 0, 0;12p+2) =D(p+1, 0, 0)12p+2+D

(
p+

3

2
,
1

2
, 0

)
22p+1+D(p+2, 1, 0)12p

+D(p+2, 0, 0)32p+D

(
p+

5

2
,
1

2
, 0

)
22p−1+D(p+3, 0, 0)12p−2. (A.2)

The negative KK modes are just the conjugates of the positive ones.

The reduction of the N = 4 representations to N = 2 follows from the decomposition

SU(2)R ×U(1)R ⊃ U(1)q ×U(1)r, where

q = R− 2T 3, r =
1

3
(R+ 4T 3). (A.3)

Here T 3 is the Cartan generator of SU(2)R. The U(1)q normalization is chosen to match

that of the untwisted sector, while U(1)r takes the conventional normalization for the

N = 2 R-charge. The zero mode then breaks up into three N = 2 multiplets

D(2, 0, 0;30) = D
(

2, 0, 0;−4

3

)
2

+D(2, 0, 0; 0)0 +D
(

2, 0, 0;
4

3

)
−2
, (A.4)

where the q-charge is subscripted. The positive KK tower breaks up according to

D(p+ 1, 0, 0;12p+2) = D
(
p+ 1, 0, 0;

2

3
(p+ 1)

)
2p+2

+D
(
p+

3

2
,
1

2
, 0;

2

3

(
p+

3

2

))
2p

+D
(
p+ 2, 0, 0;

2

3
(p+ 2)

)
2p−2

. (A.5)

These are all shortened N = 2 states. This information is presented in table 4, where it

is noted that they all transform as singlets under the SU(2) corresponding to rotations in

the first two complex planes acted upon by the Z2 generator (2.14).
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