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Abstract
We extend the Maurey-Rosenthal theorem on integral domination and factorization
of p-concave operators from a p-convex Banach function space through Lp-spaces for
the case of operators on abstract p-convex Banach lattices satisfying some essential
lattice requirements - mainly order density of its order continuous part - that are
shown to be necessary. We prove that these geometric properties can be
characterized by means of an integral inequality giving a domination of the pointwise
evaluation of the operator for a suitable weight also in the case of abstract Banach
lattices. We obtain in this way what in a sense can be considered the most general
factorization theorem of operators through Lp-spaces. In order to do this, we prove a
new representation theorem for abstract p-convex Banach lattices with the Fatou
property as spaces of p-integrable functions with respect to a vector measure.
MSC: Primary 46G10; secondary 46E30; 46B42
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1 Introduction
The so called Maurey-Rosenthal theorem on domination and factorization of operators
through Lp-spaces provides a large set of tools for the analysis of operators on Banach
spaces. Essentially, this result provides, for a Banach lattice F of a particular class, an
equivalence between the p-concavity of a Banach space valued operator T : F → E and
the fact that it satisfies a pointwise integral inequality involving the norms of the evalu-
ations ‖T(x)‖, x ∈ F . In recent years, this (family of ) theorem(s) has been studied widely
by several authors, and nowadays we have a clear methodology for giving a unified ver-
sion of this technique. Following the seminal ideas in [] that allowed the understanding
by means of the basic principle of a lot of similar arguments found in the mathematical
literature since the sixties, several generalizations and applications have been done (see,
for instance, [–]).
The version of this theorem that is normally used depends strongly on two facts that are

deeply connected with the essential nature of the Banach function spaces.
() The (topological) dual X(μ)∗ of an order continuous Banach function space X(μ)

(when defined over a σ -additive measure μ) is again a Banach function space (the
Köthe dual or associate space X(μ)′), i.e., X(μ)∗ = X(μ)′. The second space is
defined as integrals of some class of functions.

() If X(μ) is a p-convex Banach function space, its pth power is again a Banach
function space.
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In this paper we show a general version of the Maurey-Rosenthal theorem that is ob-
tained by relaxing these requirements as much as possible. In order to do this, we provide
a function space representation of a class of Banach lattices satisfying the necessary re-
quirements, which allows to perform the tandem ‘Banach lattices/order notions’ versus
‘function spaces/vector measures’ to provide the support for the factorization through an
Lp-space. Therefore, the key of the arguments that prove this type of factorization is in
fact the structure of the space from which the operator is defined. This is the reason why
our main tool is given by the representation of Banach lattices by means of spaces Lp(m)
and Lpw(m) of p-integrable functions with respect to a vector measure on a δ-ring. This
allows, for instance, to prove factorization theorems through �p(�)-spaces of an uncount-
able set �.
From the point of view of the general representation of Banach lattices as function

spaces, the main goal of this paper is to get a representation theorem for p-convex Ba-
nach lattices with the (σ -)Fatou property as general as possible by using vector measures
defined on a δ-ring to complete the picture when the existence of a weak unit is not as-
sumed. Section  is devoted to this. This becomes the main tool for proving, in Section ,
our general Maurey-Rosenthal theorem, closing in this way the question of how far this
kind of arguments can be extended: examples and counterexamples are also given.

2 Preliminaries
As the reader will notice soon, the setting that is needed for proving themain result of this
paper (Theorem ) and allows to prove the most general version of theMaurey-Rosenthal
theorem (Corollary ) is unusually technical and contains some notions and arguments
that are not standard in the framework of the Banach lattices. This is the reason why we
include a long section of preliminaries collecting all the results that are needed.

2.1 Banach lattices
We mainly use the terminology and the notation of [] and []. Let F be a real Banach
lattice. An ideal F̃ of F is a closed subspace of F satisfying that if y ∈ F with |y| ≤ |x|
for some x ∈ F̃ , then y ∈ F̃ . An ideal F̃ in F is said to be order dense in F if, for every
 ≤ x ∈ F , there exists an upwards directed system (xτ ) ⊂ F̃ such that  ≤ xτ ↑ x, and
is said to be super order dense if this condition holds for increasing sequences. We say
that F is order continuous if, for every (xτ ) ⊂ F with xτ ↓ , it follows that ‖xτ‖ ↓  and
F is σ -order continuous if this is the behavior on sequences. We denote by Fan the order
continuous part of F , that is, the largest order continuous ideal in F . Similarly, the σ -order
continuous part of F is the largest σ -order continuous ideal in F and is denoted by Fa.
Of course Fan ⊂ Fa. We say that F has the Fatou property if, for every upwards directed
system  ≤ xτ ↑ in F such that sup‖xτ‖ < ∞, it follows that there exists x = supxτ in F and,
moreover, ‖x‖ = sup‖xτ‖. If this condition holds for increasing sequences, we say that F
has the σ -Fatou property. Remark that under these conditions, Fan = Fa (see, for instance,
[, Theorems ., .]).
Let ≤ p < ∞. We say that F is p-convex if there exists a constantM >  such that

∥∥∥∥∥
( n∑

j=

|xj|p
) 

p
∥∥∥∥∥ ≤ M

( n∑
j=

‖xj‖p
) 

p
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for all n and x, . . . ,xn ∈ F . The smallest constant satisfying the previous inequality is called
the p-convexity constant of F and is denoted by M(p)(F). Similarly, a linear operator T :
F → E, where F is a Banach lattice and E is an arbitrary Banach space, is said to be p-
concave if there exists a constantM <∞ such that

( n∑
j=

∥∥T(xj)∥∥p
) 

p

≤ M

∥∥∥∥∥
( n∑

j=

|xj|p
) 

p
∥∥∥∥∥

for every choice of vectors (xj)nj=, n ∈ N in F . The smallest possible value ofM is denoted
byM(p)(T).
Let F , F̃ be Banach lattices and let T : F → F̃ be a linear operator. If Tx ≥  whenever

 ≤ x ∈ F , the operator T is said to be positive. Every positive linear operator between
Banach lattices is always continuous (see [, p.] or [, Theorem .]) and, in particular,
every inclusion F ⊂ F̃ of Banach lattices with the same order is continuous. We say that
T is an order isomorphism if it is one-to-one, onto and satisfies T(x∧ y) = Tx∧ Ty for all
x, y ∈ F . If, moreover, ‖Tx‖F̃ = ‖x‖F for all x ∈ F , we will say that T is an order isometry. We
say that F and F̃ are order isomorphic (order isometrics) if there is an order isomorphism
(isometry) T : F → F̃ .
Let (�,�,μ) be a measure space (without assumptions of finiteness on μ). As usual, a

property holds μ-almost everywhere (briefly, μ-a.e.) if it holds except on a μ-null set. We
denote by L(μ) the space of all measurable real functions on �, where functions which
are equal μ-a.e. are identified. The space L(μ) is an Archimedean vector lattice when
endowedwith theμ-a.e. pointwise order. By aBanach function space (briefly, B.f.s.) related
to μ, we mean a Banach space E ⊂ L(μ) satisfying that for every f ∈ L(μ), we have f ∈ E
whenever |f | ≤ |g| with g ∈ E and, moreover, ‖f ‖E ≤ ‖g‖E . Every B.f.s. is a Banach lattice
with theμ-a.e. pointwise order, in which convergence in normof a sequence impliesμ-a.e.
convergence for some subsequence.

2.2 Integration with respect to vector measures on δ-rings
The spaces L(ν) and Lw(ν) of integrable and weakly integrable functions with respect to
a vector measure defined on a σ -algebra and with values in a Banach space E have been
studied in depth by many authors and their behavior is now well understood (see [], [,
Chapter ] and the references therein). However, this setting is not rich enough for our
analysis, since vector measures on σ -algebras can only be used for representing Banach
lattices which have a weak unit, and our needs require to work in a more general context.
In [], there is an analysis of the space L(ν) with ν defined on a δ-ring and a detailed
study of the lattice behavior of the corresponding space Lw(ν) can be found in []. The
results in both papers give evidence of how large the difference can be between the δ-ring
and σ -algebra cases and justify the use of the general framework of δ-rings in this paper.
More information on the integration of vector measures on δ-rings and its applications
can be found in [–] and [, pp.-].
For the p-convexification of these spaces - the spaces Lp(ν) and Lpw(ν) of p-integrable

functions - the fundamental results that are needed in this paper are also known.When the
vectormeasure ν is defined on a σ -algebra, all the relevant (geometric, lattice, topological)
properties of the spaces Lp(ν) of p-integrable functions and Lpw(ν) of weakly p-integrable
functions with  ≤ p < ∞ can be found in [] and [, , ]. For the δ-ring case, the
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study of the main lattice properties of the spaces Lp(ν) and Lpw(ν) is developed in [],
where the general case  < p < ∞ is also considered (although for  < p <  these spaces
are not necessarily Banach spaces, completeness is proved, but under a quasinorm, and
the analogous definitions for Banach lattices are considered).
The theory of integration with respect to a vector measure defined on a δ-ring is due

to Lewis [] and Masani and Niemi [, ] (see also [, ] and []). This integration
theory extends the classical one for vector measures defined on σ -algebras. LetR be a δ-
ring of subsets of an abstract set�, that is, a ring closed under countable intersections.We
denote byRloc the σ -algebra given by the subsetsA⊂ � such thatA∩B ∈R for all B ∈R.
Clearly, ifR is a σ -algebra, thenRloc =R. We writeM(Rloc) for the space of measurable
real functions on (�,Rloc) and S(R) for the space of simple functions with support in R
(orR-simple functions).
Let λ : R→R be a countably additive measure, that is, for every sequence (An) of pair-

wise disjoint sets inR with
⋃

An inR, the sum
∑

λ(An) converges to λ(
⋃

An). The vari-
ation of λ is the countably additive measure |λ| : Rloc → [,∞] defined by

|λ|(A) = sup
{∑∣∣λ(Ai)

∣∣ : (Ai) finite disjoint sequence inR∩ A
}
.

We have that |λ|(A) < ∞ for every A ∈ R. The space L(λ) of integrable functions with
respect to λ is defined as the space L(|λ|) with the usual norm. Every R-simple func-
tion ϕ =

∑n
i= αiχAi is in L(λ), where the integral of ϕ with respect to λ is defined by∫

ϕ dλ =
∑n

i= αiλ(Ai). Furthermore, the space S(R) is dense in L(λ). For every f ∈ L(λ),
the integral of f with respect to λ is defined, as usual, as

∫
f dλ = lim

∫
ϕn dλ for any se-

quence (ϕn) ⊂ S(R) converging to f in L(λ).
Let E be a Banach space and let ν : R → E be a vector measure, that is, for every

sequence (An) of pairwise disjoint sets in R with
⋃

An ∈ R, the sum
∑

ν(An) con-
verges to ν(

⋃
An) in E. The semivariation of ν is the map ‖ν‖ : Rloc → [,∞] given by

‖ν‖(A) = sup{|x∗ν|(A) : x∗ ∈ BE∗} for all A ∈ Rloc, where |x∗ν| is the variation of the mea-
sure x∗ν : R → R given by x∗ν(A) = 〈ν(A),x∗〉, E∗ denotes the topological dual of E and
BE∗ the unit ball of E∗. The semivariation of ν is monotone increasing, countably sub-
additive, finite on R and satisfies 

‖ν‖(A) ≤ sup{‖ν(B)‖X : B ∈ R ∩ A} ≤ ‖ν‖(A) for all
A ∈ Rloc. Thus, the vector measure ν is bounded (i.e., its range is a bounded set in E) if
and only if ‖ν‖(�) < ∞. A set A ∈Rloc is ν-null if ‖ν‖(A) = , or equivalently, ν(B) =  for
all B ∈R∩A and a property holds ν-almost everywhere (briefly, ν-a.e.) if it holds as usual
except on a ν-null set.
A function f ∈ M(Rloc) is said to be weakly integrable with respect to ν if f ∈ L(x∗ν)

for all x∗ ∈ E∗, or equivalently, if ‖f ‖ν < ∞, where

‖f ‖ν = sup
x∗∈BE∗

∫
|f |d∣∣x∗ν

∣∣.
We denote by Lw(ν) the space of all weakly integrable functions with respect to ν , where
functions which are equal ν-a.e. are identified, which is a Banach space when endowed
with the norm ‖ · ‖ν . A function f ∈ Lw(ν) is integrable with respect to ν if, for each
A ∈ Rloc, there exists a vector denoted by

∫
A f dν ∈ E, satisfying the barycentric formula

x∗(
∫
A f dν) =

∫
A f dx

∗ν for all x∗ ∈ E∗. We write
∫
f dν for

∫
�
f dν . We denote by L(ν) the
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space of all integrable functions with respect to ν . Then, since L(ν) is a closed subspace of
Lw(ν), it is a Banach space with the norm ‖ ·‖ν . Moreover, S(R) is dense in L(ν), where for
everyR-simple function ϕ =

∑n
i= αiχAi , we have that

∫
ϕ dν =

∑n
i= αiν(Ai). The equality

Lw(ν) = L(ν) holds whenever the space E does not contain a copy of c (see [, Theo-
rem .]).
We will identify L(ν) = L(μ) and say B.f.s. related to ν for B.f.s. related to μ, for any

measure μ : Rloc → [,∞] with the same null sets as ν (the existence of such a measure
is guaranteed in [, Theorem .]). Therefore, L(ν) and Lw(ν) are both B.f.s.’ related to
ν . The space L(ν) is always order continuous and Lw(ν) have the σ -Fatou property. Fur-
thermore, L(ν) is always order dense in Lw(ν) (actually, in L(ν)) and (Lw(ν))a = L(ν).
We denote by [L(ν)]σ -F the minimal B.f.s. related to ν , with the σ -Fatou property and
containing L(ν). It can be described as

[
L(ν)

]
σ -F =

{
f ∈ Lw(ν) : supp(f ) =

(⋃
An

)
∪N , (An) ⊂R,Nν-null

}
.

The integration operator Iν : L(ν) → E given by Iν(f ) =
∫
f dν is linear and continuous

with ‖Iν(f )‖ ≤ ‖f ‖ν . A vector measure ν : R→ E with values in a Banach lattice E is posi-
tive if ν(A)≥  for all A ∈R.
Given  < p < ∞, the pth power space of Lw(ν) is defined as Lpw(ν) = {f ∈ L(ν) : |f |p ∈

Lw(ν)} and a function in Lpw(ν) will be called weakly p-integrable with respect to ν . Simi-
larly, the pth power space of L(ν) is defined as Lp(ν) = {f ∈ L(ν) : |f |p ∈ L(ν)}, and a func-
tion in Lp(ν) will be called p-integrable with respect to ν . Both spaces are B.f.s.’ related to

ν for p ≥  and q-B.f.s.’ for p <  when the lattice (quasi)norm given by ‖f ‖p,ν = ‖|f |p‖

p
ν ,

f ∈ Lpw(ν), is considered. The space Lp(ν) is order continuous and the space Lpw(ν) has
the σ -Fatou property. Moreover, S(R) is dense in Lp(ν); (Lpw(ν))a = Lp(ν); Lp(ν) is order
dense in Lpw(ν) (also in L(ν)) and if Lw(ν) has the Fatou property, so does Lpw(ν). Related
to the convexity behavior of these spaces, both are p-convex with p-convexity constant
M(p)(Lpw(ν)) =M(p)(Lp(ν)) = .

3 Representing p-convex Banach lattices
Representation of Banach lattices as spaces of integrable functions with respect to a vector
measure is nowadays a well-known useful technique. Depending on the fact that either the
lattice contains aweak unit or not, either vectormeasures on σ -algebras or on δ-ringsmust
be used. Curbera proved in [, Theorem] that an order continuous Banach lattice F with
a weak unit is always order isometric to a space L(ν), where ν is defined on a σ -algebra.
If the existence of a weak unit is not assumed, the result remains true but for ν defined
on a δ-ring. This was first stated in [, pp.-] with an outlined proof and later in [,
Theorem ] with a full detailed proof. Thinking now about the space Lw(ν), Curbera and
Ricker showed in [, Theorem .] that every Banach lattice F with the σ -Fatou property,
having aweak unit which belongs to the σ -order continuous part Fa of F , is order isometric
to a space Lw(ν) with ν defined on a σ -algebra. Again, the corresponding result in the case
when F has not a weak unit can be established by using a vector measure defined on a δ-
ring as Delgado and Juan proved in [, Theorem ]. In this case, every Banach lattice F
with the Fatou property, and such that its σ -order continuous part is an order dense subset
in F , can be represented as a space Lw(ν) for some vector measure ν defined on a δ-ring.
Furthermore, a representation theorem for the class of σ -Fatou Banach lattices F with the
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σ -order continuous part as a super order dense ideal in F , using again vector measures
on δ-rings, is established in [, Proposition .]. In this case, F is order isometric to the
σ -Fatou completion of L(ν).
Similar results are known for representing Banach lattices with convexity properties,

and in this case, the spaces of p-integrable functions with respect to vector measures play
a fundamental role. For  < p < ∞, if F is an order continuous p-convex Banach lattice,
then F is order isomorphic to an Lp-space with ν defined on a δ-ring [, Theorem ].
When there exists also a weak unit in F , the Banach lattice can be represented with an
Lp-space but with ν defined on a σ -algebra (see [, Proposition .]). On the other hand,
if E is a p-convex Banach lattice with the σ -Fatou property and has a weak unit belonging
to Ea, then E is order isomorphic to a space Lpw(ν) with ν on a σ -algebra []. The aim
of this section is to get a representation theorem for p-convex Banach lattices with the
(σ -)Fatou property as general as possible by using vector measures defined on a δ-ring to
complete the picture when the existence of a weak unit is not assumed. The starting point
to prove this result is the corresponding representation theorem for the case p = . In the
proof of this theorem, the vectormeasure which allows to establish the order isometry has
a special behavior (the so-calledR-decomposability), under which the space Lw(ν) has the
Fatou property (see [, Proposition ] and [, Theorem . and Section ]). We recall
here the corresponding definition as follows.
A vector measure ν is said to be R-decomposable if we can write � = (

⋃
α∈� �α) ∪ N ,

where N ∈ Rloc is a ν-null set and {�α : α ∈ �} is a family of pairwise disjoint sets in R
satisfying that

(i) if Aα ∈R∩ �α for all α ∈ �, then
⋃

α∈� Aα ∈Rloc, and
(ii) for each x∗ ∈ X∗, if Zα ∈R∩ �α is |x∗ν|-null for all α ∈ �, then

⋃
α∈� Zα is

|x∗ν|-null.
(N can be taken to be disjoint with

⋃
α∈� �α).

Note that each p-convex Banach lattice F can be renormed equivalently in a way that
F with the new norm and the same order is a p-convex Banach lattice with p-convexity
constant equal to  (see [, Proposition .d.]).

Theorem  Let p >  and let F be a p-convex Banach lattice with p-convexity constant
equal to , having the Fatou property and such that its σ -order continuous part Fa is an
order dense subset. Then there exists a vector measure ν on a δ-ring and with values in Fa
such that F and Lpw(ν) are order isometric.

Proof The hypothesis on F gives anR-decomposable vectormeasure ν on a δ-ringR and
an order isometry ϕ : F → Lw(ν) (see Theorem  in [] and Section  in []). Remark
that Lw(ν) is then p-convex with p-convexity constant equal to  and, consequently, the
space L/pw (ν) is a B.f.s., that is, its quasi-norm is actually a norm (see [, Proposition ]).
Moreover, L/pw (ν) has the Fatou property and L/p(ν) is order dense in L/pw (ν) (see the
comments before Section  in []). Take now the vector measure ν :R → L/p(ν) de-
fined by ν(A) = χA, A ∈ R for which the integration operator Iν : L(ν) → L/p(ν) is the
identity map and L(ν) = L/p(ν) with equal norms (see the proof of Theorem  in []).
It can be checked easily that ν is alsoR-decomposable since ν is; in order to see this, note
that the vector measures ν and ν have the same null sets, and follow the construction of
R in Section  in []. Hence, Lw(ν) has the Fatou property (see [, Theorem .]).

http://www.journalofinequalitiesandapplications.com/content/2013/1/213
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We claim now that Lw(ν) = L/pw (ν) with equal norms. For showing this, take  ≤ f ∈
Lw(ν). Since L(ν) is order dense in L(ν) (see Remark . in []), there exists an up-
wards directed system (fτ )τ in L(ν) such that  ≤ fτ ↑ f in L(ν). Then  ≤ fτ ↑ in
L/pw (ν) and sup‖fτ‖ 

p ,ν
= sup‖fτ‖ν ≤ ‖f ‖ν . Therefore, the Fatou property of L

/p
w (ν) gives

h ∈ L/pw (ν) such that ‖h‖ 
p ,ν

= supτ ‖fτ‖ 
p ,ν

. Since for each τ we have that fτ ≤ h ν-a.e. or,

equivalently, ν-a.e., then f ≤ h and so f ∈ L/pw (ν). On the other hand, fτ ≤ f ν-a.e. (i.e.,
ν-a.e.) for all τ and thus h ≤ f . Therefore, ‖f ‖ 

p ,ν
= ‖h‖ 

p ,ν
= supτ ‖fτ‖ 

p ,ν
= supτ ‖fτ‖ν

due to the Fatou property of Lw(ν) as  ≤ fτ ↑ f also in Lw(ν). By taking positive and
negative parts for a general f ∈ Lw(ν), we have that Lw(ν) ⊂ L/pw (ν) with equal norms.
The converse inclusion can be proved by using the same arguments. Therefore, the

equality Lw(ν) = L/pw (ν) holds with equal norms. Consequently, Lpw(ν) = Lw(ν) with
equal norms, and hence E and Lpw(ν) are order isometric. �

Remark  Aproof based on similar arguments to those in the previous theorem allows us
to represent p-convex Banach lattices (with p-convexity constant equal to ) having the σ -
Fatou property and such that Ea is super order dense in E. In this case, E is order isometric
to [Lp(ν)]σ -F for some vector measure ν defined on a δ-ring. This result generalizes [,
Theorem ] where E has a weak unit in Ea. Remark that our proof differs from the one
given in [, Theorem ].

4 TheMaurey-Rosenthal theorem for abstract Banach lattices
In this section we prove the main result of this paper. As we said in the introduction, our
aim is to explore the limits of the arguments that allow to prove the factorization theorem
regarding the structure of the Banach lattice where the operator is defined.
We say that an operator T :G → E from a closed subspace G of a Banach lattice F with

Fan ⊂ G ⊂ F on a Banach space E is Fatou if it satisfies that for every upwards directed
system  ≤ xτ ↑ x, with xτ ∈ Fan for every τ and x ∈G, we have that limτ ‖T(xτ )‖ = ‖T(x)‖.
Continuous operators between two Banach lattices F and F̃ , when restricted to G = Fan,
are clearly Fatou. Also, positive order continuous operators from a Banach lattice F into a
Fatou Banach lattice F̃ , when restricted to a closed subspace G of F with Fan ⊂G ⊂ F , are
so (for the definition of order continuous operator, see, for instance, []). Obviously, there
are examples of operators which are not Fatou, as we show in the next example.

Example  Consider �∞(�), where� is an uncountable set. Take its (σ )-order continuous
part c(�) and a continuous operator S : c(�) → �∞(�) with ‖S‖ = 

 . Use the Hahn-
Banach theorem to find a functional φ ∈ (�∞(�))∗ such that φ(x) =  for all x ∈ c(�) and
φ(χ�) = , and define the operatorT : c(�)+span{χ�} → �∞(�) given byT(·) = S(Pc(�)·)+
φ(·)χ� , where Pc(�) is the projection of every element of the (direct) sum c(�) + span{χ�}
endowed with themax norm on c(�). To see that T is not Fatou, just consider x = χ� , and
for every finite set N of �, define xN as the characteristic function χN . Take the increasing
net {xN : N finite,N ⊂ �} (order is given by inclusion of the indexes), and notice that for
all N , ‖T(xN )‖ = ‖S(xN )‖ ≤ 

 and ‖T(x)‖ = ‖χ�‖ = . We will come back to this example
in Remark ().

Theorem  Let  ≤ p < ∞ and consider a positive vector measure ν :R → F on a δ-ring
with values in a Banach lattice, and a closed subspace of measurable functions Y such that
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Lp(ν) ⊂ Y ⊂ Lpw(ν). Let T : Y → E be a Fatou operator, where E is a Banach space. Then
the following statements are equivalent.
() T |Lp(ν) is p-concave.
() There exists a measure η :Rloc →R

+ that is absolutely continuous with respect to ν

and such that

∥∥T(f )∥∥ ≤
(∫

|f |p dη

)/p

< +∞, f ∈ Y .

() There are a scalar measure η :Rloc →R
+ and a continuous operator S : E → Lp(η)

such that the following diagram commutes:

Lp(ν) ⊂ Y
T

[i]

E,

Lp(η)
S

where [i] is the inclusion/quotient map given by [i](f ) = [f ] - the equivalence class of f
with respect to η.

Proof Let us prove () → (). Consider first the restriction T of T to the space Lp(ν).
A standard separation procedure gives the existence of a positive element φ :=M(p)(T)φ

of (L(ν))∗ (where φ ∈ BL(ν)∗ ) satisfying that

∥∥T(f )
∥∥ ≤ 〈|f |p,φ

〉/p, f ∈ Lp(ν).

To see this, since (Lp(ν))

p = L(ν), it is enough to apply Ky-Fan’s lemma to the concave

family of convex continuous functions ψ : (BL(ν)∗ , τw∗) →R defined as

ψ
(
x∗) := n∑

i=

∥∥T(fi)∥∥p –
(
M(p)(T)

)p〈 n∑
i=

|fi|p,x∗
〉
, x∗ ∈ B(L(ν))∗ ,

for each finite set f, . . . , fn ∈ Lp(ν) (see, for instance, this technique in [] - see Corollary 
and the proof of Theorem  - or the proof of Theorem . in []).
Let us show now that we can identify φ with a measure on the measurable space

(�,Rloc). Since the space L(ν) is order continuous and ν is positive, the inequalities

φ(χA) ≤ ‖φ‖ · ‖χA‖L(ν) = ‖φ‖ · ‖ν‖(A) = ‖φ‖ · ∥∥ν(A)
∥∥
F , A ∈R

give easily that the set function η :R→R
+ defined by η(A) = φ(χA) is countably additive,

and so it defines a measure with the domain in the semi-ringR. Using the Carathéodory
extension procedure (see, for instance, Section . in []), we get that η can be extended
to the σ -algebra of measurable sets with respect to the outer measure defined by η∗.
So, we only need to show the following claim: each set in Rloc is η-measurable. To see

that, we have to prove that for a set B ∈Rloc, η(A) = η∗(A∩B) + η∗(A∩Bc) for each A ∈R
(see, for instance, Lemma . in []). Notice that fixed A ∈ R, A ∩ B and A ∩ Bc are
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also inR due to the definition ofRloc, so we really have to prove that φ(χA) = φ(χA∩B) +
φ(χA∩Bc ) for every A ∈ R. Finally, since χA, χA∩B and χA∩Bc belong to L(ν), the linearity
of φ proves the claim.
Remark also that η is absolutely continuous with respect to ν , that is, if B ∈ Rloc is ν-

null, then B is also η-null. To prove this fact, it suffices to fix A ∈R with A ⊂ B and check
that η(A) = , but η(A) = φ(χA) ≤ ‖φ‖ · ‖χA‖L(ν) = ‖φ‖ · ‖ν‖(A) =  since B is ν-null.
Consequently, a (ν-a.e.) class in L(ν) represented by f can be considered then a (η-a.e.)
class in L(η) represented by the same f . We will call again η the restriction of η∗ toRloc.
EachR-simple function is of course η-integrable - recall that η comes from a functional

of (L(ν))∗ - and then the density of this set in Lp(ν) gives that the inequality involving φ

that was proved using Ky Fan’s lemma can be rewritten as

∥∥T(f )
∥∥ ≤

(∫
|f |p dη

)/p

, f ∈ Lp(ν),

since for such functions,
∫ |f |p dη = 〈|f |p,φ〉. Notice also that for all f ∈ Lp(ν), we have

that
∫ |f |p dη < +∞. For this aim, take  ≤ f ∈ Lp(ν) and an increasing sequence (fn) of

R-simple functions such that  ≤ fn ↑ f in the ν-a.e. order and in the norm of Lp(ν). Then
 ≤ fn ↑ in Lp(η). Moreover, for every n,

∫
|fn|p dη =

〈|fn|p,φ
〉 ≤ ‖f pn ‖ · ‖φ‖L(ν)∗ ≤ ‖f p‖L(ν) · ‖φ‖L(ν)∗ ,

so supn ‖fn‖Lp(η) < +∞, and consequently f ∈ Lp(η) with supn ‖fn‖Lp(η) = ‖f ‖Lp(η) due to the
σ -Fatou property of the space Lp(η). The same occurs for a general f ∈ Lp(η) following a
standard procedure with f = f + – f –. This allows to write a factorization of T through the
space Lp(η).
Now we prove that this is enough for getting an extension of T that coincides with T

using the same construction that proves Proposition . in []. In the proof, the operator
considered is the integration map. As this is not our case, this is the reason why we write
here a detailed proof. Take an element  ≤ f ∈ Y . Then there is an upwards directed system
(fτ ) ⊂ Lp(ν) with  ≤ fτ ↑ f ν-a.e. due to the order density of Lp(ν) in Lpw(ν). Moreover,
following the same arguments as above, fτ ↑ in Lp(η) with supτ ‖fτ‖Lp(η) < +∞. Finally,
since the space Lp(η) is order continuous and has the σ -Fatou property, Theorem . in
[] yields that Lp(η) has the Fatou property, and so f ∈ Lp(η). Now the Fatou property of
the operator gives also that limτ ‖T(fτ )‖ = ‖T(f )‖. Consequently, since for every τ ,

∥∥T(fτ )∥∥ =
∥∥T(fτ )

∥∥ ≤ ‖fτ‖Lp(η),

we have that

∥∥T(f )∥∥ = lim
τ

∥∥T(fτ )
∥∥ ≤ lim

τ
‖fτ‖Lp(η) = sup

τ

‖fτ‖Lp(η) = ‖f ‖Lp(η),

the last equality due again to the Fatou property of Lp(η). Therefore,

∥∥T(f )∥∥ ≤
(∫

|f |p dη

)/p

http://www.journalofinequalitiesandapplications.com/content/2013/1/213
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holds also for  ≤ f ∈ Y . Again, a standard argument - decomposing a general f ∈ Y as
f + – f –,  ≤ f +, f – - gives the result for all f ∈ Y .
For ()→ (), consider the inclusion/quotient map [i] : Y → Lp(η), given by [i](f ) := [f ],

that is well defined by the absolute continuity of η with respect to ν . Notice that the R-
simple functions are dense in Lp(η), and so the range [i](Y ) is obviously dense in Lp(η),
and we can define an operator S : Lp(η) → E by S(f ) := T(f ) for each R-simple function
f ∈ Y (note that T(f ) = T(f ′) if f = f ′ η-a.e.), and then for all functions in Lp(η) by density.
The implication () → () can be proved just by considering the following inequalities:

( n∑
i=

∥∥T(fi)∥∥p
) 

p

=

( n∑
i=

∥∥S ◦ [i](fi)
∥∥p

) 
p

≤ ‖S‖
( n∑

i=

∥∥[i](fi)∥∥p
Lp(η)

) 
p

= ‖S‖ ·
∥∥∥∥∥
( n∑

i=

|fi|p
) 

p
∥∥∥∥∥
Lp(η)

≤ ‖S‖ ·
∥∥∥∥∥
( n∑

i=

|fi|p
) 

p
∥∥∥∥∥
Lp(ν)

,

which hold for every finite family (fi)ni= ⊂ Y and n ∈N, where we use the fact that Lp(η) is
a p-convex space with p-convexity constant equal to . �

Example  Consider  ≤ p < q < ∞ and the Fatou operator T : �q(�) → E, where � is
uncountable. Remark that �q(�) is clearly q-convex and so �q(�) is p-convex (see Proposi-
tion .d. in []). Since the space is order continuous, Theorem in [] gives the existence
of a vectormeasure on a δ-ring ν :R→ �

q
p (�) such that �q(�) is order isomorphic to Lp(ν).

Furthermore, since �
q
p (�) does not have a copy of c, L(ν) = Lw(ν) and so Lp(ν) = Lpw(ν)

also. Notice that then the operator T can be considered as a Fatou operator from Lpw(ν)
into E. Now, if T is p-concave, Theorem  assures that there is a factorization through
a space Lp(η). This natural and easy Maurey-Rosenthal type theorem, which is a direct
consequence of Theorem , can only be proved using the abstract setting of the vector
measure representation of p-convex Banach lattices that has been shown in the previous
section. Remark that �q(�) cannot be written as an Lp(β) for a vector measure β defined
on a σ -algebra since the space has not a weak unit.

Corollary  Let p ≥ , E be a Banach space and F be a p-convex Banach lattice with the
Fatou property. Suppose that Fa is order dense in F .Consider a closed subspace G such that
Fa ⊂G ⊂ F . Then the following statements are equivalent for a Fatou operator T :G → E.
() T |Fa is p-concave.
() There exist a vector measure ν on a δ-ringR→ Fa, a scalar measure η :Rloc →R

+

that is absolutely continuous with respect to ν and an order isomorphism on the
range ϕ : F → Lpw(ν) such that

∥∥T(x)∥∥ ≤
(∫ ∣∣ϕ(x)∣∣p dη

)/p

< +∞, x ∈ G.

() There are a vector measure on a δ-ring ν :R→ Fa, a scalar measure η :Rloc →R
+,

an order isomorphism on the range ϕ : F → Lpw(ν) and a continuous operator

http://www.journalofinequalitiesandapplications.com/content/2013/1/213
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S : Lp(η) → E such that the following diagram commutes:

G
T

ϕ|G

E

Lpw(ν)⊃ ϕ(G)
[i]

Lp(η).

S

Proof First, remark that Fa = Fan due to the Fatou property of F . Let us show () → ().
The existence of the vector measure on a δ-ring and the order isomorphism ϕ : F → Lpw(ν)
are direct consequences of Theorem . So, we can apply () → () in Theorem  to the
subspace ϕ(G) that satisfies Lp(ν)⊂ ϕ(G) ⊂ Lpw(ν). Note thatT ◦ϕ–|Lp(ν) is also p-concave.
This gives the measure η :R→R

+ satisfying that

∥∥(
T ◦ ϕ–)(f )∥∥ ≤

(∫
|f |p dη

) 
p
< +∞, f ∈ ϕ(G).

If f = ϕ(x) with x ∈G, we obtain the inequality in ().
The implication () → () is given by () → () in Theorem  composing also with ϕ.

Finally, () → () is given directly by Theorem . �

Remark  To finish the paper, let us report that the main requirements in Theorem  -
density of the σ -order continuous part together with T being a Fatou operator - are nec-
essary, which means that in some sense this result is optimal.
() A simple counterexample that proves that the order density of the σ -order contin-

uous part is necessary is a functional φ ≥  in (L∞[, ])∗ not belonging to L[, ]. The
σ -order continuous part of L∞[, ] is trivial, the operator φ is obviously p-concave and
L∞[, ] is p-convex for every ≤ p. Since (L∞[, ])[p] = L∞[, ], the factorization would
mean that φ ∈ L[, ] just using the domination by the measure and the Radon-Nikodým
theorem, which gives a contradiction. Notice that φ is trivially a Fatou operator.
() A bit more elaborated example is the following. Consider �∞(�), where � is an

uncountable set, and let a functional φ : �∞(�) → R with φ not belonging to �(�) =
(c(�))∗ = ca(�). Recall that (�∞(�))∗ = ca(�) ⊕ pa(�), where ca(�) is the space of the
countably additive measures and pa(�) is the space of the purely finite additive measures
(see, for example, Corollary ., Section . and Section . in []). Let P be the pro-
jection of (�∞(�))∗ on ca(�). We have that φ := φ – P(φ) �= . Since φ is not countably
additive, there is a sequence (Ai)∞i= of measurable sets such that

∑∞
i= φ(χAi ) �= φ(χ⋃∞

i= Ai ).
Let us define now T : c(�) + span{χ� ;χAi , i ∈ N} →R given by T(·) := φ(·). The operator
T is clearly p-concave, but T is not Fatou, which can be proved using an argument similar
to the one given in Example . Moreover, T cannot be bounded by an integral; otherwise,
φ would be countably additive.
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