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INTRODUCTION

Diamond nanoparticles of mean size several nanom-
eters were found in explosive detonation products [1]
and primitive meteorites [2] about 20 years ago.
Ultradisperse detonation diamonds (UDD) are a prom-
ising nanomaterial for technological applications [3].
The chemical properties of the surface of UDD to a
great extent determine the behavior of nanodiamonds
in various processes and are the object of extensive
studies [4–8]. Meteorite nanodiamonds (MND) are of
interest as the most widespread type of cosmic dust
formed before the formation of the Solar system and
containing information about processes in stars and
circumstellar space [9]. The main efforts in studies of
MND were directed toward isotope analysis of impu-
rity elements (mainly, noble gases) [10, 11], which
allows suggestions to be made about nuclear synthesis
in stars [12, 13].

Much less progress was achieved in studies of the
chemistry of the surface of interstellar nanodiamonds.
Because of the high specific surface area of nanoparti-
cles, such data would allow us to draw conclusions
about physicochemical processes and their differences
during the cosmic “life” of nanodiamonds found in var-
ious meteorites. The main reason for this is the substan-
tial influence of the “hard” chemical procedure used to
extract MND from meteorites on the chemistry of the
surface of particles [14–17]. A similar dependence of
the composition of the functional coating on the surface
of nanodiamonds on the procedure for their technolog-
ical purification is also characteristic of synthetic UDD
[18–21]. With meteorite diamonds, the situation is
aggravated by the use of different extraction procedures
in different research centers. In one work, equal chem-

ical procedures were applied to two different meteor-
ites, and the details of the IR spectra of the surface
groups on extracted MND were different [16]. For this
reason, we cannot beforehand exclude the existence of
a relation between the surface properties of nanodia-
monds before and after chemical extraction (the mem-
ory effect).

Such a possible relation cannot be established
experimentally for meteorite diamonds whose initial
properties can be different. In the present work, this dif-
ficulty was overcome by the use of UDD as synthetic
analogues of MND. A similar approach was earlier suc-
cessfully applied in experiments on ion implantation
[22]. The distinguishing feature of this work is a study
of the influence of

 

 the same 

 

chemical procedure used to
extract diamonds from meteorites on the chemistry of
the surface of nanodiamonds of

 

 different types 

 

with
substantially

 

 different 

 

and characterized surface prop-
erties. This approach allows us to determine whether or
not it makes sense to study the chemistry of the surface
of extracted MND from the point of view of cosmo-
chemistry and find possible methods for the reconstruc-
tion of the initial surface properties formed on the sur-
face of interstellar diamonds in space from the data of
laboratory studies of MND. The chemistry of the sur-
face of UDD before and after chemical treatment was
studied using the mutually complementary IR spectros-
copy and thermal desorption mass spectrometry meth-
ods, whose combination was successfully applied to
study the surface of disperse diamonds [23], including
nanodiamonds [24, 25]. The thermal desorption mass
spectrometry data also allowed information to be
obtained about possible mechanisms of noble gas release
from meteorite diamonds at various temperatures.
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EXPERIMENTAL

We used UDD samples of two types (CH-7 and
K-2), which differed in details of their explosive syn-
thesis (explosion in frozen water and carbon dioxide,
respectively) and purification (the use of chromic and
boric anhydrides, respectively). The specific surface
area measured from nitrogen adsorption was 290–
310 m

 

2

 

/g for both samples. The Raman spectra of the
samples did not reveal significant differences between
their crystal structures (Fig. 1). The width and position
of the diamond peak at 1324 cm

 

–1

 

 (

 

sp

 

3

 

 hybridization)
can be used to estimate [26] the mean size of diamond
particles (4–5 nm in both samples). This is in agree-
ment with the data of direct mass spectrometric mea-
surements of the mean size of CH-7 particles (3.9 nm)
[27]. The intensity of the peak at 1600 cm

 

–1

 

 (Fig. 1) is
indicative of a somewhat higher content of nondiamond
carbon (

 

sp

 

2

 

 hybridization) in CH-7 compared with K-2.

UDD of both types were subjected to identical mul-
tistage chemical treatment in acid media used for the
extraction of nanodiamonds from meteorites [28]. The
composition and structure of the functional surface
groups on UDD before and after chemical treatment
were studied using Fourier transform IR spectroscopy
(4000–700 cm

 

–1

 

) under diffuse reflectance conditions
and thermal desorption mass spectrometry. The thermal

desorption mass spectra were obtained on a quadrupole
mass spectrometer over the mass interval 2–100 amu
during programmed heating of a sample (

 

~1

 

 mg) in a
vacuum at a rate of 15 K/min to 

 

1200°ë

 

; desorption
products were continuously pumped off. In some
experiments, samples were heated to 

 

1600°ë

 

.

RESULTS AND DISCUSSION

 

IR Spectroscopy

 

Like the spectra of meteorite diamonds [16], the IR
spectra of UDD of both types (Fig. 2) were character-
ized by the presence of the main absorption bands near
3600–3000 and 1620 cm

 

–1

 

 (OH groups), 3000–
2800 cm

 

–1

 

 (CH

 

x

 

), 1800–1700

 

 cm

 

–1

 

 (CO), and 1400–
700 cm

 

–1

 

 (N, CN, CO, CH groups, etc.). These bands
are typical of the surface functional groups of UDD of
other types [4, 19–21]. The main differences between
the spectra of CH-7 and K-2 were the difference in the
intensity of the 3000–2800 cm

 

–1

 

 band, the shape of the
complex band at 1400–700 cm

 

–1

 

, and the position and
intensity of the 1800–1700 cm

 

–1

 

 band characterizing
the configuration of surface C–O bonds (ketone groups,
carboxyl anhydrides, and lactones [23]). The band at
1570 cm

 

–1

 

 is only characteristic of CH-7; it is related to
unidentified surface groups (possibly, CNH groups

 

1200 1400 1600 1800

 

∆ν

 

, Òm

 

–1

 

1

2

3

 

Fig. 1.

 

 Raman spectra of detonation nanodiamonds (

 

1

 

) K-2 and (

 

2

 

) CH-7 and (

 

3

 

) volume diamond; 

 

∆ν

 

 is the Raman shift, excitation
wavelength is 514 nm.
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[29]). It follows that the difference between the CH-7
and K-2 samples mainly reduces to differences in the
concentration of CH groups and the “degree of surface
oxidation” characterized by the peak at 1700–1800 cm

 

–1

 

.

The IR spectra of CH-7 and K-2 after chemical
treatment were closer to each other (Fig. 2), but certain
differences persisted. In particular, the absorption band
of CH groups (3000–2800 cm

 

–1

 

) remained in the
spectrum of CH-7 after treatment. In addition, absorp-
tion bands of oxygen-containing groups (1715 and
1780 cm

 

–1

 

 for CH-7 and K-2, respectively), although
shifted after treatment, did not become identical (1760
and 1810 cm

 

–1

 

 for CH-7 and K-2, respectively). The
deconvolution of the band at 1800–1700 cm

 

–1

 

 into

Gauss components showed the presence of several ele-
mentary bands with maxima close to 1700, 1750, and
1850 cm

 

–1

 

 (see inset in Fig. 1), which could be assigned
to ketone (carbonyl), lactone, and carboxyl anhydride
groups, respectively, on the surface of diamond [23].
The results of mathematical processing of this band for
samples before and after chemical treatment are pre-
sented in Table 1.

These results lead us to suggest that carbonyl groups
(low degree of oxidation) predominate in initial CH-7.
More oxidized K-2 is characterized by the predomi-
nance of lactone groups. Chemical treatment increases
the degree of surface oxidation and causes the appear-
ance of carboxyl anhydride groups, but the final oxida-
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Fig. 2.

 

 IR spectra of UDD of different types: (

 

1

 

) CH-7 before chemical treatment, (

 

2

 

) K-2 before treatment, (

 

3

 

) CH-7 after treatment,
and (

 

4

 

) K-2 after treatment. An example of the deconvolution of part of a spectrum into elementary absorption bands for K-2 after
chemical treatment is shown in the inset.
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tion state depends on the initial UDD properties. Inter-
estingly, in the spectra of cosmic nanodiamonds
extracted from two different meteorites “Allende” and
“Murchison” using the same chemical procedure, the
IR absorption bands of oxygen-containing groups had
different positions (1759 and 1780 cm

 

–1

 

) [16]; the
authors, however, did not pay attention to this circum-
stance.

 

Mass Spectrometry

 

The main products of thermal desorption from the
surface of UDD are 

 

H

 

2

 

O (100–600°C)

 

, hydrocarbons
(

 

200–400°C), CO

 

2

 

 (200–600°C

 

), CO (

 

400–1000°C

 

),
and 

 

H

 

2

 

 (above 

 

800°C

 

). The temperature profiles of des-
orption and mass spectra of the main volatile products
for CH-7 are shown in Fig. 3. Different initial samples
had different intensities and shapes of the temperature
profiles of the desorption of 

 

C

 

x

 

H

 

y

 

, CO

 

2

 

, and CO (Fig. 4),
in conformity with the IR spectral data on these sam-
ples. An increased concentration of hydrocarbons on
CH-7 is likely related to the special features of chemi-
cal purification (with ion-exchange resins) used by the
manufacturer. The CO and 

 

ëé

 

2

 

 desorption profiles are
formed as a result of the thermal destruction of surface
oxygen-containing groups and are determined by their
structure [23]. The larger the degree of surface oxida-
tion, the lower the temperature of CO desorption max-
imum and the larger the amount of desorbed carbon
oxides. These profiles underwent noticeable changes as
a result of chemical treatment (Fig. 4), which was evi-
dence of the additional oxidation of the surface of
UDD. In particular, after chemical treatment, the CO
desorption maxima shifted to lower temperatures, and
the total amount of desorbed carbon oxides increased
(Table 2). As with the IR spectra, we, however,
observed a memory effect with respect to the chemical
properties of the surface in the initial state.

Another important observation is the detection of
chlorine desorbed in the form of HCl over the tempera-
ture range 

 

400–700°ë

 

 (Fig. 4). Chlorine was likely
introduced with chlorine-containing acids used in
chemical treatment. The contents of chlorine in the
treated CH-7 and K-2 samples differed by more than an
order of magnitude (Table 2). This is evidence of sub-
stantially different chemical activities of nanodiamonds
of different types.

The IR spectroscopy and thermal desorption mass
spectrometry data show that, although the extraction
procedure influences the chemistry of the surface of
synthetic nanodiamonds, the degree of modification of
certain surface characteristics (

 

ëç

 

x

 

 and CO groups)
after chemical treatment depends on the initial proper-
ties of untreated UDD. Suppose that the same is true of
meteorite nanodiamonds. Our results then show that the
real chemistry of interstellar diamonds can in principle
be reproduced to a certain degree from the data on
chemically extracted meteorite diamonds. Such studies
would allow us to determine possible differences in the

chemical properties of meteorite diamonds from differ-
ent meteorites, which would be evidence of different
sources of the formation and different chemical “his-
tory” of interstellar diamonds.

Another important consequence of the results
obtained is the conclusion of substantially different
chemical activities of UDD of different types in reac-
tions with chemical substances used in chemical extrac-
tion. CH-7 and K-2 were synthesized under substan-
tially different conditions. The explosive synthesis con-
ditions can influence both the shape [30] and structure
[26, 31] of the surface shell of nanodiamonds. On the
other hand, the chemical activity of the surface of a dia-
mond in various media depends on the atomic structure
of the surface [32, 33]. It can therefore be suggested
that the difference in chemical activity between UDD
of different types is caused by “inherited” properties
formed at the stage of the synthesis of nanodiamonds.

 

Thermal Desorption of Active and Noble Gases

 

The data on the chemical composition of volatile
products desorbed from UDD during heating (the ther-
mal desorption mass spectrometry data) were used to
establish the role played by the chemistry of surfaces in
the thermal desorption of noble gases from nanodia-
monds, which was necessary for the determination of
thermal desorption mechanisms at low and high tem-

 

Table 1. 

 

 Calculated intensities (areas) of IR spectrum bands
at 2000–1650 cm

 

–1

 

 for various UDD samples; the positions
of band maxima (cm

 

–1

 

) are given in parentheses

Sample
Ketone

and carbonyl 
groups

Lactone
groups

Carboxyl
anhydride

CH-7 3.3 (1721) 0.48 (1771) –

K-2 – 10.8 (1774)
3.1 (1807)

0.26 (1846)

CH-7-
chem

1.8 (1701) 2.36 (1744)
9.1 (1790)

1.6 (1841)

K-2-chem 1.35 (1690) 3.5 (1767) 8.6 (1839)

 

Table 2. 

 

 Parameters characterizing thermal desorption from
various UDD samples under linear heating conditions

Sample

 

T

 

max

 

(CO)

 

I

 

max

 

(CO)

 

I

 

total

 

I

 

max

 

(HCl)

CH-7 750 64 100 –
K-2 570 246 220 –
CH-7-
chem

590 108 120 25

K-2-chem 530 310 270 0.3

 

Note:

 

T

 

max

 

(CO) is the temperature corresponding to the highest
rate of CO desorption, 

 

°

 

C; 

 

I

 

max

 

(CO) and 

 

I

 

max

 

(HCl) are the
highest CO and HCl desorption rates, arb. units; and 

 

I

 

total

 

 is
the total amount of volatile products desorbed up to 800

 

°

 

C,
arb. units.
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peratures and interpretation of data obtained by analyz-
ing noble gases in meteorite diamonds [10, 11]. For this
purpose, we developed a procedure for simultaneously
recording active and noble gases under the conditions
of programmed heating up to 1600

 

°

 

C [34]. We studied
CH-7o and CH-7x samples with substantially different
surface properties. The implantation of argon ions of a
1 keV energy at equal doses was performed as in [22].

The temperature profiles of the release of implanted
argon are bimodal and have maxima close to 500–800
and 

 

1200–1500°ë

 

 (Fig. 5), as with noble gases from
meteorite diamonds [10]; they weakly depend on the
type of UDD. At the same time, the thermal desorption
curves of active gases (CO, 

 

ëé

 

2

 

, ë

 

x

 

ç

 

y

 

, etc.) shown in
Fig. 5 in the form of the total mass spectrometer ion
current are substantially different for the two samples.
There is no correlation between the low-temperature
desorption of argon and active gases. It follows that the
low-temperature desorption of noble gases from nano-

diamonds is not related to the destruction of the surface
layer accompanied by the desorption of active gases. At
the same time, the high-temperature desorption of
argon is accompanied by the desorption of nitrogen
(measured in mass spectra in the form of the 

 

N

 

2+

 

 doubly
charged ion), which is a bulk impurity in UDD.

Our data substantiate the suggested model of the
formation of the temperature profiles of the release of
noble gases from meteorite diamonds. According to
this model, noble gas atoms are trapped in diamonds by
defects of two types with substantially different binding
energies [35, 36]. The low-temperature desorption of
noble gases is caused by the thermal activation of
trapped atoms with a low binding energy. High-temper-
ature desorption is determined by the release of
strongly bound noble gas atoms caused by diamond
structure destruction (“graphitization”), which devel-
ops from the surface toward the center of a diamond
nanoparticle [37]. Nitrogen high-temperature desorp-
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Fig. 3. Temperature profiles of the thermal desorption of various components and mass spectra of volatile products at various tem-
peratures for CH-7 in the initial state; I is the rate of desorption.
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tion profiles can be used to quantitatively estimate the
effectiveness of this process. This model can be used to
evaluate the energies of ions introduced into cosmic
nanodiamonds in the circumstellar space from the lab-
oratory analysis data on meteorite diamonds [36].

CONCLUSIONS

To summarize, although the chemical procedure
used in the extraction of cosmic nanodiamonds from
meteorites modifies the composition and structure of
surface functional groups, some special features can in
part remain unchanged (ëçx groups). Changes in the
chemistry of the surface (CO and Cl groups) as a result
of the extraction procedure are controlled by the initial
properties of the surface. This means that the extraction
procedure does not completely wipe off information
about the chemical properties of the surface of nanodi-
amonds in interstellar space. The use of a special set of
synthetic UDD with different chemical properties in

such experiments allows “calibration curves” to be con-
structed, which can be used to reconstruct some special
features of the chemical structure of the surface of dia-
mond particles in interstellar space. This in turn can be
used to draw conclusions about chemical processes in
circumstellar space. In addition, it was shown that
simultaneous study of the thermal desorption of noble
and active (nitrogen) gases allows the energy of ionic
implantation of noble gases into nanodiamonds to be
estimated.
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