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Abstract

Context Green infrastructure may improve water

quality and mitigate flooding in forest-urban water-

sheds, but reliably quantifying all benefits is chal-

lenging because most land cover maps depend on

moderate- to low-resolution data. Complex and spa-

tially heterogeneous landscapes that typify forest-

urban watersheds are not fully represented with these

types of data. Hence important questions concerning

how green infrastructure influences water quality and

quantity at different spatial scales remain unanswered.

Objectives Demonstrate the feasibility of creating

novel high-resolution land cover maps across entire

watersheds and highlight deficiencies of standard land

cover products.

Methods We used object-based image analysis

(OBIA) to create high-resolution (0.5 m) land cover

maps and detect tree canopy overlapping impervious

surfaces for a representative forest-urban watershed in

Duluth, MN, USA. Unbiased estimates of accuracy

and area were calculated and compared with similar

metrics for the 30-m National Land Cover Database

(NLCD).

Results Mapping accuracies for the high-resolution

land cover and canopy overlap maps were *90 %.

Error-adjusted estimates of area indicated that imper-

vious surfaces comprised *21 % of the watershed,

tree canopy overlapped *10 % of impervious sur-

faces, and that three high-resolution land cover classes

differed significantly from similar NLCD classes.

Conclusions OBIA can efficiently generate high-

resolution land cover products of entire watersheds

that are appropriate for research and inclusion in the

decision-making process of managers. Metrics

derived from these products will likely differ from

standard land cover maps and may produce new

insights, especially when considering the unprece-

dented opportunity to evaluate fine-scale spatial

heterogeneity across watersheds.

Keywords Aerial photography � LiDAR � Green

infrastructure � Impervious surfaces � Object-based

image analysis � Scaling

Introduction

Anthropogenic biomes are directly influenced and

shaped by human activities (Ellis and Ramankutty

2008). The vast majority of ice-free land and most of

the global tree cover extent on earth are composed of
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anthropogenic biomes, yet these areas receive com-

paratively less attention from ecologists and other

scientists (Ellis and Ramankutty 2008). Furthermore,

many of Earth’s largest cities occupy watersheds in

forest biomes that are also adjacent to invaluable

freshwater and saltwater ecosystems (Schneider et al.

2010). These aptly named forest-urban watersheds are

frequently characterized by rapid shifts between

‘‘green’’ land cover and developed areas containing a

high proportion of impervious surfaces (Inkiläinen

et al. 2013). In this case, ‘‘green’’ refers to all natural or

man-made land cover that moderates runoff, mediates

temperatures, mitigates soil loss, and provides habitat;

such as trees, shrubs, grass, wetlands, and retention

ponds at all spatial scales (i.e. green infrastructure, as

in Tzoulas et al. 2007). Dense populations of people

and large areas of impervious surfaces deteriorate

water quality, increase flood frequency and/or sever-

ity, and generally decrease the quality of life in most

forest-urban watersheds (Paul and Meyer 2001; Walsh

et al. 2005; Inkiläinen et al. 2013) (Fig. 1).

The potential benefits of green infrastructure in

mitigating water pollution and flooding in forest-urban

watersheds are well known (e.g. Gill et al. 2007), but

there are numerous unresolved issues concerning how

the spatial arrangement and quantity of green infra-

structure observed at multiple spatial scales (i.e. grain

or resolution and extent) are best able to meet quality

of life, development, and environmental goals (Felson

et al. 2013). Determining the precise quantity and

spatial distribution of green infrastructure necessary to

achieve maximum ecological services and minimum

costs is of paramount interest to scientists, planners,

politicians, government agencies, and the local citi-

zenry (e.g. McPherson et al. 2011). This is especially

true in light of increasingly stricter regulations con-

cerning land management and development issued by

government agencies. To achieve the promise of green

infrastructure, we need to (1) construct reliable and

detailed maps of existing green and developed infra-

structure at multiple spatial resolutions and extents, (2)

use corresponding empirical models to link mapped

infrastructure with different response variables in

nearby aquatic ecosystems (e.g. water quality and/or

quantity), and (3) construct predictive simulation

models for different planning, weather, and climate

scenarios.

The focus of this paper is step 1, although

substantial progress has been made in achieving all

three steps with moderate- to low-resolution data at the

watershed scale, where abundant research links

increasing proportions of impervious surfaces with

poor water quality and more frequent or severe flood

events (e.g. Paul and Meyer 2001; Haidary et al.

2013). These studies provide excellent conceptual

advancements and adequate recommendations con-

cerning the proportion, and in some cases broad-scale

Fig. 1 Pictures of Miller Creek in the Lincoln Park area of

Duluth, MN, USA during normal conditions (top panel) and

after a heavy rainfall event (bottom panel). The landscape is

representative of a typical forest-urban watershed that contains

rapid transitions from green infrastructure (e.g. small patches of

trees or grass and individual trees) to impervious surfaces (e.g.

flat paved areas and rooftops). Small patches of trees and shrubs

are difficult to map with moderate- to low-resolution data, yet

may significantly influence water quality and quantity. Google

collected the picture in the top panel during 2014 and Todd

Carlson from the City of Duluth collected the picture in the

bottom panel during a heavy rainfall event in 2007
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spatial configuration, of developed versus green

infrastructure from the perspective of an entire

watershed at low spatial resolutions. However, the

scope and utility of the findings are limited because

sufficient land cover data are not available for

depicting finer scales, rapid spatial changes, and also

the complex three-dimensional structure of green

infrastructure that typify forest-urban watersheds at

local scales on a block-by-block basis. For example,

green infrastructure is not only important at watershed

scales, but is also germane at neighborhood and site-

specific extents—smaller patch sizes of 100–200 m2

predominate in these areas and are not precisely

mapped by even moderate-resolution data. The cumu-

lative effects of green infrastructure at local extents

may be significant when summarized at the watershed

scale, but without high-resolution land cover products

we cannot even consider fine-scale features across

entire watersheds because these features are not

observable.

Relatively recent (i.e. last *10–15 years) and

ongoing advances in remote sensing have allowed

computerized mapping of detailed land cover and land

use maps at spatial resolutions of 1–2 m or less that

accurately represent fine-scale patchiness in hetero-

geneous forest-urban landscapes (e.g. Hodgson et al.

2003; Zhou and Troy 2008). These land cover data are

not widely available and rarely link high-resolution

land cover data with water quality and quantity.

Moreover, no study that we are aware of has

accurately mapped the three-dimensional structure of

green infrastructure at high resolutions across an entire

watershed. This lack of fine-scale observation is

significant. For example, the canopies of urban forests

and trees extend out over impervious surfaces and are

capable of intercepting up to two-thirds of precipita-

tion (Asadian and Weiler 2009), thus mitigating the

detrimental effects of the underlying impervious

surface on water quality and quantity (King and Locke

2013). Mapping the percent canopy overlapping

impervious surfaces could be a useful tool in devel-

oping recommendations of where green infrastructure

should be added or possibly removed, especially when

such information is incorporated with other land cover

data, ecological expertise, and watershed modeling.

Here, we assemble a stack of high-resolution geospa-

tial data from multiple sources for a complex forest-

urban watershed in Duluth, MN, USA and evaluate the

use of object-based image analysis in (1) generating a

9-class land cover map and (2) mapping the percent

tree canopy overlapping impervious surfaces. We also

conduct some basic area comparisons with three key

analog classes from the 2011 NLCD.

Methods

Study area

Miller Creek is a cold-water trout stream that occupies

a forest-urban watershed containing a patchy land-

scape of green infrastructure and development. The

watershed covers about 2500 ha of land at the

southern border of the boreal forest biome in Duluth,

MN, USA (pop. of 86,211 in 2012), draining into the

Saint Louis River and eventually into Lake Superior.

Wetlands, ponds, streams, shrubs, deciduous trees,

coniferous trees, bare ground, and development exist

in a complex mosaic across the spatially heteroge-

neous landscape of the watershed. Rising water

temperatures, sediment and turbidity levels, chloride

concentrations, and mercury levels in fish are all

problematic in Miller Creek, which has been desig-

nated as ‘‘impaired water’’ by the Minnesota Pollution

Control Agency (Minnesota Pollution Control Agency

2012).

Geospatial data acquisition

We assembled a diverse geospatial dataset for map-

ping the spatially complex nature of land cover in the

Miller Creek watershed, including data from a suite of

active and passive aerial remote sensing systems and

existing online archives (Table 1). Light Detection

and Ranging (i.e. LiDAR) is a form of active remote

sensing where laser pulses generated from a sensor are

used to detect information about ground elevation,

buildings, and vegetation types (Asner et al. 2011). It

is particularly useful for differentiating between

buildings, trees, and bare earth surfaces. Four-band

aerial photography is widely available for most urban

areas during leaf-off and leaf-on conditions. This is a

form of passive remote sensing where the sensor

records naturally reflected wavelengths from the

visible (red, green, and blue) and near-infrared

portions of the electromagnetic spectrum. It is partic-

ularly useful for differentiating between coniferous/

deciduous trees and green/developed areas. USGS
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10-m digital elevation models (DEMs) are available in

existing online archives. This type of DEM is derived

from many different types of ‘‘best-available’’ source

data. 10-m DEMs offer the advantage of fewer surface

anomalies from bridges, roads, and other artificial

‘‘dams’’ that plague high-resolution DEMs. Soil

Survey Geographic database (SSURGO) data are

derived from field surveys and interpretations of aerial

photographs, offering the most detailed level of soils

information.

Pre-processing and extracting derivatives

from geospatial data

Using 38 ground control points evenly distributed

around the perimeter and interior of the watershed, we

registered all raster-based data to the 2011 leaf-off

orthophoto. Second order polynomial transformations

and bilinear resampling techniques were used for

registration procedures because of the relatively

complex terrain in the watershed, continuous nature

of the input rasters, and disinterest in directly extract-

ing biophysical data. We achieved RMSEs of 1–3

pixels for the high-resolution data and less than 0.5

pixels for the low-resolution data.

Invaluable spatial information is often lost if simply

relying on the original bands for LiDAR data, aerial

photography, and 10-m DEMs. Calculating deriva-

tives from geospatial data can significantly enhance

land cover classification quality, especially when

using object-based approaches (Guan et al. 2013).

Based off recommendations from the literature and

our own empirical observations, we calculated a

multitude of derivatives from the geospatial data for

inclusion in the object-based image analysis classifi-

cation. Pre-processing and derivative calculations

provided 23 layers of geospatial data for inclusion in

the object-based image analysis (Table 1).

Developing maps for land cover and percent

canopy over impervious surfaces

The Feature Analyst 5.0 extension in ArcGIS 10.1 was

used to apply an object-based image analysis (OBIA)

technique (Opitz and Blundell 2008) for sequentially

extracting nine land cover classes from the 23 layers of

assembled data. OBIA techniques provide a superior

approach for classifying high-resolution data encom-

passing the complex landscapes of forest-urban

environments because shape and texture are consid-

ered in addition to values from individual pixels (Chen

et al. 2009). Classes included in the approach were

water, conifer tree, deciduous tree, building, grass,

impervious, wetland, shrub, and bare ground. We

applied supervised techniques predicated on training

data capturing a range of spatial, textural, and spectral

variability for each class, using iterative refinements to

improve some of the most challenging classes (e.g. up

to 8 iterations for wetlands and shrubs). As few as 3–4

training polygons may suffice for classification of

simple classes (Opitz and Blundell 2008), but many of

our classes displayed a complex range of variables

(e.g. size, shape, texture, etc.) and therefore our

training polygons ranged between 30–50 for each

class. We used squaring algorithms for anthropogenic

objects and a series of smoothing and aggregation

algorithms for post-classification processing that were

all embedded in the Feature Analyst 5.0 software.

After classification, we applied a majority filter to

assign values to small remaining areas of unclassified

pixels, which resulted in less than 0.5 % of the

watershed being unclassified.

Each land cover class was generated individually

from a vertical aerial perspective, which produced

cumulative class estimates of area from all land cover

classes that exceeded total area of the watershed

because of spatial overlaps between the classes. Most

of the overlap was a result of tree branches (i.e.

canopy) overhanging impervious areas, which pre-

sented an opportunity to map the area of canopy

overlapping impervious surfaces by clipping tree

classifications to an impervious layer (i.e. flat imper-

vious surfaces and buildings). Visual inspection of our

geospatial data indicated that LiDAR, leaf-off/on

aerial imagery, and corresponding derivatives high-

lighted many of the areas containing canopy overlap

with impervious surfaces. We created new training

sets for these areas and applied object-based image

analysis with Feature Analyst 5.0 to create an imper-

vious class occupying the space under overhead tree

canopy. This new class was merged with the previ-

ously mapped building and impervious classes. The

merge was imperfect and included some gaps between

the two classes. We filled the gaps and squared the

edges before clipping out any trees (i.e. from the high-

resolution deciduous and conifer classes) overlapping

the impervious layer. The clipped out trees represent

the map of canopy overlapping impervious surfaces.
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Accuracy assessments and class comparisons

Accuracy of the high-resolution land cover classifica-

tion was assessed using contemporary insight and

methods outlined by Olofsson et al. (2013) and Mas

et al. (2014) as opposed to assessment techniques

traditionally used in remote sensing (e.g. Congalton

and Plourde 2002). A stratified random sampling

scheme of 33 points per class was implemented in a

geographic information system. We discarded points

randomly placed on the edge (i.e. within 2 m or less)

of two or more land cover types. The remaining 269

points were assessed for accuracy by comparisons

with available aerial imagery (Google maps, NAIP

imagery etc.) in a GIS and/or visual confirmation from

field visits when necessary. We created a validation

raster based on the assessed points and added it to

accuracy flow models (i.e. ‘‘calculate_matrices’’ and

‘‘calculate_accuracy_indices_withCI’’ models) con-

taining the high-resolution land cover raster in DIN-

AMICA EGO software. This allowed us to generate

unbiased estimates of accuracy and area at the 95 %

confidence level (i.e. similar to methods outlined by

Mas et al. 2014). A similar technique was applied to

the map of tree canopy overlapping impervious

surfaces, but a total of 100 points were randomly

distributed across each of two classes (i.e. canopy

overlap and non-canopy overlap of impervious sur-

faces). The sample points were increased because of

the extreme variability in percent canopy overlapping

impervious surfaces across the watershed. We

restricted the non-canopy overlap to within 20 m of

existing impervious surfaces, which corresponds to

the maximum distance of potential tree overlap

associated with patches of very large trees. It was

necessary to discard 19 points that straddled class

borders, which provided 181 points for the accuracy

assessment. 2011 NLCD data was also downloaded for

the watershed and assessed with similar techniques for

comparative purposes. Small NLCD classes were

merged together. We sampled 30 points out of the 10

remaining classes in the watershed and again removed

points straddling class edges, which left 322 points for

the assessment. The main focus on the NLCD pertains

to unbiased area estimates of three key analog classes

that match up with the high-resolution land cover data

(i.e. water, conifer, and deciduous). Hence only

overall accuracy is presented in addition to adjusted

area estimates from the three classes.

Results

Accuracies

Unbiased estimates of overall accuracies for both

high-resolution mapping techniques hovered around

90 % (Tables 2 and 3). The high-resolution land cover

map was 90.40 ± 4.58 % and the percent tree canopy

overlapping impervious surfaces was 92.69 ±

5.10 %. Individual unbiased accuracies (Table 2) for

many classes in the high-resolution land cover map

(Fig. 2) were near 90 % or more. Water, conifer,

deciduous, building, and impervious classes exhibited

the highest accuracies. Grass, wetland, shrub, and bare

ground classes were less accurate. Individual unbiased

accuracies (Table 3) of the two classes present in the

percent canopy overlaying impervious surfaces map

(Fig. 3) were 80–90 % or more, except for a low

producer accuracy for canopy overlap.

Unbiased area estimates and watershed metrics

Of the 2,580.30 ha mapped at a high resolution in the

watershed, unbiased area estimates produced generally

narrow ranges for each class (Table 2). Water com-

prised 8.90–10.10 ha (0.34–0.39 %) of the watershed.

Trees comprised 1,104.86–1,334.91 ha (42.82–

51.73 %) of the watershed. Buildings and other imper-

vious flat surfaces comprised 485.48–583.06 ha

(18.81–22.60 %) of the watershed. Tree canopy over-

lapped 9.71–55.97 ha in the watershed (0.38–2.17 %)

or 5.48–14.6 % of impervious surfaces (Table 3).

Compared to the high-resolution land cover classifica-

tion, the 2011 NLCD overestimated the area of water in

the watershed and underestimated the area of conifer

and deciduous trees (Tables 2 and 4).

Discussion/Conclusions

Both the high-resolution land cover and canopy

overlapping impervious surface maps displayed rela-

tively high overall accuracy consistent with other

high-resolution mapping endeavors (e.g. Mathieu

et al. 2007; Zhou et al. 2008; Myint et al. 2011), some

widely used moderate-resolution products such as

NLCD and Vegetation Change Tracker (e.g. Stueve

et al. 2011; Wickham et al. 2013), and established

thresholds for acceptable accuracy in land cover
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products (Shao and Wu 2008). The comparatively

narrow adjusted area ranges of several individual

high-resolution land cover classes demonstrate a

higher degree of confidence in these respectively

mapped areas. Not surprisingly, land cover classes

containing vertical structure were more reliably clas-

sified than other land cover classes, except for water.

Indeed, it is challenging to discern the spatial and

spectral differences between shrub, grass, wetland,

and bare ground because the three dimensional

capabilities of LiDAR and seasonal aerial snapshots

offer fewer advantages. Platforms with increased

spectral and/or temporal resolutions may improve

these underperforming classes. The range of the

adjusted area estimate for tree canopy overlapping

impervious surfaces is wider than many of the most

accurate classes from the high-resolution land cover

map, but much narrower than the ranges for the three

key NLCD classes. This indicates the canopy overlap

output is quite useful in small spatially heterogeneous

watersheds and a worthwhile endeavor, but that some

improved accuracy and confidence would be benefi-

cial. Increasing pulse density from LiDAR sensors

may provide an opportunity to improve this classifi-

cation because the LiDAR used here failed to pene-

trate a few areas of dense tree canopy and slightly

underestimated the extent of individual tree canopy

with complex edges. The latter two issues probably

explain why the user accuracy for canopy overlap was

so low.

Scale selection errors are inherent in all remotely

sensed land cover products and are highly dependent

on the spatial resolution of data used in the analysis,

spatial extent of the study, and the functional scales of

processes being investigated (Shao and Wu 2008). For

example, a moderate-resolution land cover map such

as the NLCD data may contain respectable overall

accuracy for comparatively large county- and state-

wide analyses, yet simultaneously fail to capture

important hydrologic, ecologic, social, and other

features on select landscapes and watersheds of

interest embedded at local scales. Features existing

at more local scales may nevertheless be important in

aggregate across the entire study area. Indeed, the

patchy and highly variable nature of green infrastruc-

ture in forest-urban watersheds fits the aforementioned

criteria and is likely difficult to detect with a high

degree of confidence when using moderate- to low-

resolution data. Comparisons between three key

analog NLCD classes and the high-resolution land

cover map quantitatively capture some of these

pitfalls. For example, water is one of the most easily

mapped classes in remote sensing and one would

expect significant overlap between the adjusted area

ranges of water for both the NLCD and high-resolu-

tion land cover map. However, the NLCD data greatly

overestimates the area of water in the watershed (i.e.

the lowest NLCD estimate is about double the

maximum area estimate from the high-resolution

map). A highly probable explanation of the disparity

is that surface water comprises a small proportion of

Miller Creek watershed and is interspersed as small

patches with wetlands and shrubs, which makes it

difficult to map at lower spatial resolutions. A similar

phenomenon probably occurs with key green infra-

structure, such as trees, but the trend with trees is

Table 2 Unbiased

accuracy and area statistics

for the high-resolution land

cover classification in the

Miller Creek watershed

Class Code Adjusted area

(ha)

Adjusted area 95 % CI

range (ha)

% Producer

accuracy

% User

accuracy

Water 1 9.54 8.90–10.10 100.00 96.67

Conifer 2 116.77 108.88–124.66 100.00 96.67

Deciduous 3 1103.11 995.98–1210.25 98.83 93.33

Building 4 148.20 138.10–158.10 96.67 100.00

Grass 5 541.38 425.58–657.18 70.52 97.14

Impervious 6 386.17 347.38–424.96 98.45 93.33

Wetland 7 69.78 47.10–92.46 78.69 65.52

Shrub 8 114.18 80.64–147.71 64.19 89.29

Bare

Ground

9 91.17 49.98–132.36 85.11 46.43

Overall accuracy = 90.40 ± 4.58 %

Landscape Ecol (2015) 30:313–323 319

123



difficult to directly extract from the NLCD data

because various developed NLCD classes include

some trees and there is a small ‘‘mixed’’ class of trees.

These issues probably explain why the 2011 NLCD is

significantly underestimating the adjusted area of trees

in the Miller Creek watershed (506.57–691.28 ha

versus 1104.86–1334.91 ha). For example, the top left

subset panel of Fig. 4 contains only three broad

‘‘developed’’ classes, but the high-resolution land

cover map to the right reveals a much more complex

landscape consisting of conifer trees, deciduous trees,

roads, buildings, grass, and shrubs in a variety of patch

sizes and shapes.

Overall, our analysis demonstrates that objected-

based image analysis techniques used in conjunction

with high-resolution geospatial datasets in forest-

urban watersheds can produce reliable mapping

products suitable for scientific analysis and inclusion

in the decision-making processes of managers. These

high-resolution products could fill an important

information gap in NLCD data and other comparable

moderate- to low-resolution products that struggle to

Fig. 2 High-resolution land cover maps of Miller Creek based on object-based image analysis

Table 3 Unbiased accuracy and area statistics for the percent tree canopy overlapping impervious surface classification in the Miller

Creek watershed

Class Code Adjusted area (ha) Adjusted area 95 % CI range (ha) % Producer accuracy % User accuracy

No overlap 1 520.25 490.87–549.63 99.16 93.18

Canopy overlap 2 55.97 26.59–85.35 32.56 80.65

Overall accuracy = 92.69 ± 5.10 %
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quantify fine-scale changes across large areas. More

specifically, the quantity and spatial distribution of

green infrastructure detected by high-resolution pro-

ducts could exert significant influences on water

quality and quantity that are difficult, if not impos-

sible, to detect with moderate- to low-resolution land

cover products. Achieving an increased level of

detail with high-resolution maps allows careful

empirical evaluations and modeled simulations of

the relationships between green infrastructure and

both water quality and quantity. Of paramount

interest is the exploration of the potential shifts in

the strength and nature of these relationships at an

array of ecologically meaningful scales ranging from

local neighborhoods to entire watersheds. Further-

more, the success of our approach and recent

successes in the automated classification of geospa-

tial data (e.g. Huang et al. 2010) suggest automation

and efficient applications of OBIA-based high-reso-

lution mapping are plausible.

As expounded upon by Nixon (2009) in describing

one of H.T. Odum’s intellectual contributions from the

systems approach, the study of nature requires interplay

and study between observations using ‘‘microscopes’’

and ‘‘macroscopes’’ and the distinct realms they each

focus on. Our successful development of high-resolu-

tion products in Miller Creek provides evidence that

finer scale limits can be pushed with remote sensing

Fig. 3 High-resolution map of tree canopy overlapping imper-

vious surfaces (i.e. buildings and flat impervious surfaces) in

Miller Creek based on a stack of multiple geospatial data sources

and object-based image analysis. Leaf-off imagery from 2011 is

in the background. Notice the high proportion of overlap

throughout the old neighborhood depicted in the lower left

subset

Table 4 Unbiased overall accuracy and area statistics for

three key 2011 NLCD classes

Class Code Adjusted area

(ha)

Adjusted area 95 % CI

range (ha)

Water 11 87.2 20.07–154.34

Deciduous 41 580.02 481.02–679.02

Conifer 42 68.32 25.55–111.08

Overall accuracy = 68.20 ± 6.01 %
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technologies and contemporary analytical approaches.

Automation and cost-effective applications of high-

resolution mapping across multiple watersheds and

broader scales could regularly provide a more compre-

hensive ‘‘microscopic’’ view of landscapes in the

ecologist’s toolkit to complement the more traditional

macroscopic use of remote sensing. Moreover, theoret-

ical ecologists as well as physicists and other scientists

point out that there is no single ‘‘correct’’ scale of

observation for nature, yet they also offer that macro-

scopic behaviors often provide predictability from

among more unpredictable lower levels of ecological

hierarchies (O’Neill et al. 1986, Levin 1992). In

advocating for the wide array of research applications

made possible by contemporary high-resolution map-

ping technologies, we are setting the stage to allow

comprehensive evaluations of the impacts relatively

small features distinguishable at fine scales exert on

watersheds, and this is the exciting advance for

ecologists and managers to consider as an opportunity.
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