Liu et al. *Fixed Point Theory and Applications* 2014, 2014:246 http://www.fixedpointtheoryandapplications.com/content/2014/1/246 Fixed Point Theory and Applications a SpringerOpen Journal

RESEARCH

Open Access

Fixed points for mappings satisfying some multi-valued contractions with *w*-distance

Zeqing Liu¹, Xiaochen Wang¹, Shin Min Kang^{2*} and Sun Young Cho³

*Correspondence: smkang@gnu.ac.kr ²Department of Mathematics and RINS, Gyeongsang National University, Jinju, 660-701, Korea Full list of author information is available at the end of the article

Abstract

The existence of fixed points and iterative approximations for some nonlinear multi-valued contraction mappings in complete metric spaces with *w*-distance are proved. Two examples are included. The results presented in this paper extend, improve and unify many known results in recent literature. **MSC:** 54H25; 47H10

Keywords: multi-valued contractions; w-distance; fixed point theorems

1 Introduction and preliminaries

In 1996, Kada *et al.* [1] introduced the concept of *w*-distance and got some fixed point theorems for single-valued mappings under *w*-distance. In 2006, Feng and Liu [2, Theorem 3.1] proved the following fixed point theorem for a multi-valued contractive mapping, which generalizes the nice fixed point theorem due to Nadler [3, Theorem 5].

Theorem 1.1 ([2]) Let (X, d) be a complete metric space and T be a multi-valued mapping from X into CL(X), where CL(X) is the family of all nonempty closed subsets of X. Assume that

- (c₁) the mapping $f: X \to \mathbb{R}^+$, defined by $f(x) = d(x, T(x)), x \in X$, is lower semi-continuous;
- (c₂) there exist constants $b, c \in (0,1)$ with c < b such that for any $x \in X$, there is $y \in T(x)$ satisfying

 $bd(x, y) \le f(x)$ and $f(y) \le cd(x, y)$.

Then T has a fixed point in X.

In 2007, Klim and Wardowski [4, Theorem 2.1] extended Theorem 1.1 and proved the following result.

Theorem 1.2 ([4]) Let (X, d) be a complete metric space and T be a multi-valued mapping from X into CL(X) satisfying (c_1) . Assume that

(c₃) there exist $b \in (0,1)$ and $\varphi : \mathbb{R}^+ \to [0,b)$ satisfying

 $\limsup_{r \to t^+} \varphi(r) < b, \quad \forall t \in \mathbb{R}^+,$

©2014 Liu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and for any $x \in X$, there is $y \in T(x)$ satisfying

 $bd(x,y) \leq d(x,T(x))$ and $f(y) \leq \varphi(d(x,y))d(x,y)$.

Then T has a fixed point in X.

In 2009 and 2010, Ćirić [5, Theorem 2.1] and Liu *et al.* [6, Theorems 2.1 and 2.3] established a few fixed point theorems for some multi-valued nonlinear contractions, which include the multi-valued contraction in Theorem 1.1 as a special case.

Theorem 1.3 ([5]) Let (X, d) be a complete metric space and T be a multi-valued mapping from X into CL(X) satisfying (c_1) . Assume that

(c₄) there exists a function $\varphi : \mathbb{R}^+ \to [a, 1), 0 < a < 1$, satisfying

$$\limsup_{r \to t^+} \varphi(r) < 1, \quad \forall t \in \mathbb{R}^+,$$

and for any $x \in X$, there is $y \in T(x)$ satisfying

$$\sqrt{\varphi(f(x))}d(x,y) \le f(x)$$
 and $f(y) \le \varphi(f(x))d(x,y)$

Then T has a fixed point in X.

Theorem 1.4 ([6]) *Let* T *be a multi-valued mapping from a complete metric space* (X, d) *into* CL(X) *such that*

for each $x \in X$, there exists $y \in T(x)$ satisfying $\alpha(f(x))d(x,y) \leq f(x)$ and $f(y) \leq \beta(f(x))d(x,y)$,

where

$$B = \begin{cases} [0, \sup f(X)] & \text{if } \sup f(X) < \infty, \\ [0, \infty) & \text{if } \sup f(X) = \infty, \end{cases}$$

 $\alpha: B \rightarrow (0,1]$ and $\beta: B \rightarrow [0,1)$ satisfy that

$$\liminf_{r\to 0^+} \alpha(r) > 0 \quad and \quad \limsup_{r\to t^+} \frac{\beta(r)}{\alpha(r)} < 1, \quad \forall t \in [0, \sup f(X)).$$

Then

- (a1) for each $x_0 \in X$, there exist an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T and $z \in X$ such that $\lim_{n \to \infty} x_n = z$;
- (a2) z is a fixed point of T in X if and only if the function $f(x) = d(x, T(x)), x \in X$, is T-orbitally lower semi-continuous at z.

Theorem 1.5 ([6]) Let T be a multi-valued mapping from a complete metric space (X, d) into CL(X) such that

for each $x \in X$, there exists $y \in T(x)$ satisfying $\alpha(d(x,y))d(x,y) \le f(x)$ and $f(y) \le \beta(d(x,y))d(x,y)$, where

$$A = \begin{cases} [0, \operatorname{diam}(X)] & if \operatorname{diam}(X) < \infty, \\ [0, \infty) & if \operatorname{diam}(X) = \infty, \end{cases}$$

 $\alpha: A \rightarrow (0,1]$ and $\beta: A \rightarrow [0,1)$ satisfy that

$$\liminf_{r \to t^+} \alpha(r) > 0 \quad and \quad \limsup_{r \to t^+} \frac{\beta(r)}{\alpha(r)} < 1, \quad \forall t \in [0, \operatorname{diam}(X)),$$

and one of α and β is nondecreasing. Then

- (a1) for each $x_0 \in X$, there exist an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T and $z \in X$ such that $\lim_{n \to \infty} x_n = z$;
- (a2) z is a fixed point of T in X if and only if the function $f(x) = d(x, T(x)), x \in X$, is T-orbitally lower semi-continuous at z.

In 2011, Latif and Abdou [7, Theorem 2.1] generalized Theorem 1.3 and proved the following fixed point theorem for some multi-valued contractive mapping with *w*-distance.

Theorem 1.6 ([7]) Let (X, d) be a complete metric space with a w-distance w, and let T be a multi-valued mapping from X into CL(X). Assume that

- (c₅) the mapping $f: X \to \mathbb{R}^+$, defined by $f_w(x) = w(x, T(x)), x \in X$, is lower semi-continuous;
- (c₆) there exists a function $\varphi : \mathbb{R}^+ \to [b,1), 0 < b < 1$, satisfying

$$\limsup_{r \to t^+} \varphi(r) < 1, \quad \forall t \in \mathbb{R}^+$$

and for any $x \in X$, there is $y \in T(x)$ satisfying

$$\sqrt{\varphi(f_w(x))}w(x,y) \leq f_w(x)$$
 and $f_w(y) \leq \varphi(f_w(x))w(x,y).$

Then there exists $v_0 \in X$ such that $f_w(v_0) = 0$. Further, if $w(v_0, v_0) = 0$, then $v_0 \in T(v_0)$.

The purpose of this paper is to prove the existence of fixed points and iterative approximations for some multi-valued contractive mappings with *w*-distance. Two examples with uncountably many points are included. The results presented in this paper extend, improve and unify Theorem 3.1 in [2], Theorem 2.1 in [4], Theorems 2.1 and 2.2 in [5], Theorems 2.1 and 2.3 in [6], Theorems 2.1-2.3 and 2.5 in [7], Theorem 6 in [8], Theorems 2.2 and 2.4 in [9] and Theorems 3.1-3.4 in [10].

Throughout this paper, we assume that $\mathbb{R}^+ = [0, \infty)$, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, where \mathbb{N} denotes the set of all positive integers.

Definition 1.7 ([1]) A function $w : X \times X \to \mathbb{R}^+$ is called a *w*-distance in *X* if it satisfies the following:

 $(w_1) \quad w(x,z) \le w(x,y) + w(y,z), \, \forall x,y,z \in X;$

- (w₂) for each $x \in X$, a mapping $w(x, \cdot) : X \to \mathbb{R}^+$ is lower semi-continuous, that is, if $\{y_n\}_{n \in \mathbb{N}}$ is a sequence in X with $\lim_{n \to \infty} y_n = y \in X$, then $w(x, y) \leq \liminf_{n \to \infty} w(x, y_n)$;
- (w₃) for any $\varepsilon > 0$, there exists $\delta > 0$ such that $w(z, x) \le \delta$ and $w(z, y) \le \delta$ imply $d(x, y) \le \varepsilon$.

For any $u \in X$, $D \subseteq X$, *w*-distance *w* and $T : X \rightarrow CL(X)$, put

$$\begin{aligned} d(u,D) &= \inf_{y \in D} d(u,y), & w(u,D) = \inf_{y \in D} w(u,y), \\ f(u) &= d(u,T(u)), & f_w(u) = w(u,T(u)), \\ \text{diam}(X) &= \sup\{d(x,y) : x, y \in X\}, & \text{diam}(X_w) = \sup\{w(x,y) : x, y \in X\}, \\ A_w &= \begin{cases} [0, \text{diam}(X_w)] & \text{if } \text{diam}(X_w) < \infty, \\ [0,\infty) & \text{if } \text{diam}(X_w) = \infty \end{cases} \end{aligned}$$

and

$$B_{w} = \begin{cases} [0, \sup f_{w}(X)] & \text{if } \sup f_{w}(X) < \infty, \\ [0, \infty) & \text{if } \sup f_{w}(X) = \infty. \end{cases}$$

A sequence $\{x_n\}_{n\in\mathbb{N}_0}$ in X is called *an orbit* of T at $x_0 \in X$ if $x_n \in T(x_{n-1})$ for all $n \in \mathbb{N}$. A function $g: X \to \mathbb{R}^+$ is said to be *T*-orbitally lower semi-continuous at $z \in X$ if $g(z) \leq \liminf_{n\to\infty} g(x_n)$ for each orbit $\{x_n\}_{n\in\mathbb{N}_0} \subset X$ of T with $\lim_{n\to\infty} x_n = z$. A function $\varphi: A_w \to \mathbb{R}^+$ is called *subadditive* in A_w if $\varphi(s + t) \leq \varphi(s) + \varphi(t)$ for all $s, t \in A_w$. A function $\varphi: A_w \to \mathbb{R}^+$ is called *strictly inverse* in A_w if $\varphi(t) < \varphi(s)$ implies that t < s.

Lemma 1.8 ([11]) Let (X, d) be a metric space with a w-distance w and $D \in CL(X)$. Suppose that there exists $u \in X$ such that w(u, u) = 0. Then w(u, D) = 0 if and only if $u \in D$.

2 Fixed point theorems

In this section we prove the existence of fixed points and iterative approximations for some nonlinear multi-valued contraction mappings in complete metric spaces with *w*-distance.

Theorem 2.1 Let (X,d) be a complete metric space, w be a w-distance in X and T be a multi-valued mapping from X into CL(X) such that

for each
$$x \in X$$
, there exists $y \in T(x)$ satisfying
 $\alpha(f_w(x))\varphi(w(x,y)) \le f_w(x)$ and $f_w(y) \le \beta(f_w(x))\psi(w(x,y))$,
$$(2.1)$$

where

$$\alpha$$
 and β are functions from B_w into (0,1] and [0,1), respectively, with

$$\beta(0) < \alpha(0), \qquad \liminf_{r \to 0^+} \alpha(r) > 0 \quad and \quad \limsup_{r \to t^+} \frac{\beta(r)}{\alpha(r)} < 1, \quad \forall t \in B_w,$$
(2.2)

 φ and ψ are functions from A_w into \mathbb{R}^+ with $\psi(t) \le \varphi(t)$, $\forall t \in A_w$ and (2.3)

 φ is subadditive in A_w and satisfies that either

$$\varphi \text{ is strictly inverse in } A_w, \varphi(0) = 0, \varphi(t) > 0, \quad \forall t \in A_w \setminus \{0\}$$

$$(2.4)$$

or

$$\varphi$$
 is strictly increasing in A_w and $\lim_{t \to 0^+} \varphi^{-1}(t) = 0$, where φ^{-1}
stands for the inverse function of φ . (2.5)

stantas jor the inverse junea

Then

- (a1) for each $x_0 \in X$, there exists an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of T such that $\lim_{n \to \infty} x_n = u_0$ for some $u_0 \in X$;
- (a2) $f_w(u_0) = 0$ if and only if the function f_w is *T*-orbitally lower semi-continuous at u_0 ;
- (a3) $u_0 \in T(u_0)$ provided that $w(u_0, u_0) = 0 = f_w(u_0)$;
- (a4) *T* has a fixed point in *X* if for each orbit $\{z_n\}_{n \in \mathbb{N}_0}$ of *T* in *X* and $v \in X$ with $v \notin T(v)$, one of the following conditions is satisfied:

$$\inf \{ w(z_n, v) + \varphi(w(z_n, z_{n+1})) : n \in \mathbb{N}_0 \} > 0;$$
(2.6)

$$\inf \{ w(z_n, \nu) + w(z_n, T(z_n)) : n \in \mathbb{N}_0 \} > 0.$$
(2.7)

Proof Firstly, we prove (a1). Let

$$\gamma(t) = \frac{\beta(t)}{\alpha(t)}, \quad \forall t \in B_w.$$
(2.8)

It follows from (2.1) that for each $x_0 \in X$, there exists $x_1 \in T(x_0)$ satisfying

$$\alpha\big(f_w(x_0)\big)\varphi\big(w(x_0,x_1)\big) \leq f_w(x_0) \quad \text{and} \quad f_w(x_1) \leq \beta\big(f_w(x_0)\big)\psi\big(w(x_0,x_1)\big),$$

which together with (2.3) and (2.8) yields that

$$\begin{split} f_w(x_1) &\leq \beta \left(f_w(x_0) \right) \psi \left(w(x_0, x_1) \right) \leq \beta \left(f_w(x_0) \right) \varphi \left(w(x_0, x_1) \right) \\ &\leq \beta \left(f_w(x_0) \right) \frac{f_w(x_0)}{\alpha (f_w(x_0))} = \gamma \left(f_w(x_0) \right) f_w(x_0). \end{split}$$

Continuing this process, we choose easily an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of *T* satisfying

$$\begin{aligned} x_{n+1} \in T(x_n), \quad \alpha \left(f_w(x_n) \right) \varphi \left(w(x_n, x_{n+1}) \right) &\leq f_w(x_n) \quad \text{and} \\ f_w(x_{n+1}) &\leq \beta \left(f_w(x_n) \right) \psi \left(w(x_n, x_{n+1}) \right), \quad \forall n \in \mathbb{N}_0. \end{aligned}$$

$$(2.9)$$

It follows from (2.3), (2.8) and (2.9) that

$$f_{w}(x_{n+1}) \leq \beta(f_{w}(x_{n}))\psi(w(x_{n}, x_{n+1})) \leq \beta(f_{w}(x_{n}))\varphi(w(x_{n}, x_{n+1}))$$
$$\leq \beta(f_{w}(x_{n}))\frac{f_{w}(x_{n})}{\alpha(f_{w}(x_{n}))} = \gamma(f_{w}(x_{n}))f_{w}(x_{n}), \quad \forall n \in \mathbb{N}_{0}.$$
(2.10)

Now we claim that

$$\lim_{n \to \infty} f_w(x_n) = 0. \tag{2.11}$$

Notice that the ranges of α and β , (2.2) and (2.8) ensure that

$$0 \le \gamma(t) < 1, \quad \forall t \in B_w. \tag{2.12}$$

Using (2.10) and (2.12), we conclude that $\{f_w(x_n)\}_{n \in \mathbb{N}_0}$ is a nonnegative and nonincreasing sequence, which means that there is a constant $a \ge 0$ satisfying

$$\lim_{n \to \infty} f_w(x_n) = a. \tag{2.13}$$

Suppose that *a* > 0. Using (2.2), (2.8), (2.10), (2.12) and (2.13), we obtain that

$$a = \limsup_{n \to \infty} f_w(x_{n+1}) \le \limsup_{n \to \infty} [\gamma(f_w(x_n))f_w(x_n)]$$
$$\le \limsup_{n \to \infty} \gamma(f_w(x_n)) \limsup_{n \to \infty} f_w(x_n)$$
$$\le a \limsup_{r \to a^+} \gamma(r) < a,$$

which is a contradiction. Thus a = 0, that is, (2.11) holds.

Next we claim that $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence. Put

$$b = \limsup_{n \to \infty} \gamma \left(f_w(x_n) \right) \quad \text{and} \quad c = \liminf_{n \to \infty} \alpha \left(f_w(x_n) \right). \tag{2.14}$$

It follows from (2.2), (2.8), (2.12) and (2.14) that

$$0 \le b < 1 \text{ and } c > 0.$$
 (2.15)

Let $p \in (0, c)$ and $q \in (b, 1)$. Because of (2.14) and (2.15), we deduce that there exists some $n_0 \in \mathbb{N}$ such that

$$\gamma(f_w(x_n)) < q$$
 and $\alpha(f_w(x_n)) > p$, $\forall n \ge n_0$,

which together with (2.9) and (2.10) yields that

$$f_w(x_{n+1}) \leq qf_w(x_n)$$
 and $\varphi(w(x_n, x_{n+1})) \leq \frac{f_w(x_n)}{p}, \quad \forall n \geq n_0,$

which implies that

$$f_w(x_{n+1}) \le q^{n+1-n_0} f_w(x_{n_0})$$
 and $\varphi(w(x_n, x_{n+1})) \le \frac{f_w(x_{n_0})}{p} q^{n-n_0}, \quad \forall n \ge n_0.$ (2.16)

By means of (w_1) , (2.3) and (2.16), we deduce that

$$\varphi(w(x_n, x_m)) \leq \sum_{k=n}^{m-1} \varphi(w(x_k, x_{k+1})) \leq \sum_{k=n}^{m-1} \frac{f_w(x_{n_0})}{p} q^{k-n_0}$$
$$\leq \frac{f_w(x_{n_0})}{p(1-q)} q^{n-n_0}, \quad \forall m > n \geq n_0.$$
(2.17)

Given $\varepsilon > 0$, denote by δ the constant in (w₃) corresponding to ε . Assume that (2.4) holds. It follows from $\varphi(\delta) > 0$ and $q \in (b, 1)$ that there exists a positive integer $N \ge n_0$ satisfying

$$\frac{f_w(x_{n_0})}{p(1-q)}q^{n-n_0} < \varphi(\delta), \quad \forall n \ge N.$$
(2.18)

Combining (2.17) and (2.18), we infer that

$$\max\left\{\varphi\left(w(x_N,x_m)\right),\varphi\left(w(x_N,x_n)\right)\right\} \leq \frac{f_w(x_{n_0})}{p(1-q)}q^{n-n_0} < \varphi(\delta), \quad \forall m > n \geq N,$$

which together with (2.4) guarantees that

$$\max\left\{w(x_N, x_m), w(x_N, x_n)\right\} < \delta, \quad \forall m > n > N.$$
(2.19)

It follows from (w_3) and (2.19) that

$$d(x_m, x_n) \le \varepsilon, \quad \forall m > n > N.$$
(2.20)

It is clear that (2.20) yields that $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence.

Assume that (2.5) holds. Since φ is strictly increasing, so does φ^{-1} . It follows from (2.5) and $q \in (b, 1)$ that there exists a positive integer $N \ge n_0$ satisfying

$$\varphi^{-1}\left(\frac{f_w(x_{n_0})}{p(1-q)}q^{n-n_0}\right) < \delta, \quad \forall n \ge N,$$

which together with (2.5) and (2.17) means that

$$w(x_n, x_m) = \varphi^{-1} \left(\varphi \left(w(x_n, x_m) \right) \right) \le \varphi^{-1} \left(\frac{f_w(x_{n_0})}{p(1-q)} q^{n-n_0} \right) < \delta, \quad \forall m > n \ge N,$$

which ensures that (2.19) and (2.20) hold. Consequently, $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence.

It follows from completeness of (X, d) that there is some $u_0 \in X$ such that $\lim_{n\to\infty} x_n = u_0$. Secondly, we prove (a2). Suppose that f_w is *T*-orbitally lower semi-continuous at u_0 . Let $\{x_n\}_{n\in\mathbb{N}_0}$ be the orbit of *T* defined by (2.9) and satisfy (2.11). It follows from (2.11) that

$$0 \leq w(u_0, T(u_0)) = f_w(u_0) \leq \liminf_{n \to \infty} f_w(x_n) = 0,$$

which means that $f_w(u_0) = 0$. Conversely, suppose that $f_w(u_0) = 0$ for some $u_0 \in X$. Let $\{y_n\}_{n \in \mathbb{N}_0}$ be an arbitrary orbit of *T* in *X* with $\lim_{n \to \infty} y_n = u_0$. It follows that

$$f_w(u_0) = 0 \leq \liminf_{n \to \infty} f_w(y_n),$$

that is, f_w is *T*-orbitally lower semi-continuous at u_0 .

Thirdly, we prove (a3). Note that $T(u_0)$ is closed and

$$w(u_0, u_0) = 0 = f_w(u_0) = w(u_0, T(u_0)).$$

It follows from Lemma 1.8 that $u_0 \in T(u_0)$.

Finally, we prove (a4). Assume that $\{x_n\}_{n \in \mathbb{N}_0}$ is the orbit of *T* defined by (2.9) and that it satisfies (2.11), (2.16), (2.17) and $\lim_{n \to \infty} x_n = u_0 \in X$. Clearly, (2.16) and $q \in (b, 1)$ mean that

$$\lim_{n \to \infty} \varphi \left(w(x_n, x_{n+1}) \right) = 0. \tag{2.21}$$

Now we claim that

$$\lim_{n \to \infty} w(x_n, u_0) = 0.$$
(2.22)

In order to prove (2.22), we consider two possible cases as follows.

Case 1. Assume that (2.4) holds. Let $\varepsilon > 0$ be given. Notice that $\varphi(\varepsilon) > 0$ and $q \in (b, 1)$. It follows that there exists a positive integer $N > n_0$ satisfying

$$\frac{f_w(x_{n_0})}{p(1-q)}q^{n-n_0} < \varphi(\varepsilon), \quad \forall n \ge N,$$

which together with (2.17) yields that

$$\varphi(w(x_n, x_m)) \leq \frac{f_w(x_{n_0})}{p(1-q)}q^{n-n_0} < \varphi(\varepsilon), \quad \forall m > n \geq N.$$

Since φ is strictly inverse, it follows that

$$w(x_n, x_m) < \varepsilon, \quad \forall m > n \ge N.$$

Letting $m \to \infty$ in the above inequality and using (w₂), we get that

$$w(x_n, u_0) \leq \liminf_{m \to \infty} w(x_n, x_m) \leq \varepsilon, \quad \forall n \geq N,$$

that is, (2.22) holds.

Case 2. Assume that (2.5) holds. It follows from (2.5) and (2.17) that

$$w(x_n, x_m) = \varphi^{-1} \Big(\varphi \Big(w(x_n, x_m) \Big) \Big) \le \varphi^{-1} \Big(\frac{f_w(x_{n_0})}{p(1-q)} q^{n-n_0} \Big), \quad \forall m > n \ge n_0,$$

which together with (w_2) and (2.5) ensures that

$$w(x_n, u_0) \leq \liminf_{m \to \infty} w(x_n, x_m) \leq \varphi^{-1} \left(\frac{f_w(x_{n_0})}{p(1-q)} q^{n-n_0} \right) \to 0 \quad \text{as } n \to \infty,$$

that is, (2.22) holds.

Suppose that $u_0 \notin T(u_0)$. Let $v = u_0$ and $z_n = x_n$ for each $n \in \mathbb{N}_0$. Assume that (2.6) holds. Making use of (2.6), (2.21) and (2.22), we conclude that

$$0 < \inf \{w(x_n, u_0) + \varphi(w(x_n, x_{n+1})) : n \in \mathbb{N}_0\} = 0,$$

which is a contradiction. Assume that (2.7) holds. By virtue of (2.7), (2.11) and (2.22), we infer that

$$0 < \inf \{w(x_n, u_0) + w(x_n, x_{n+1}) : n \in \mathbb{N}_0\} = 0,$$

which is also a contradiction. Consequently, $u_0 \in T(u_0)$. This completes the proof. \Box

Theorem 2.2 Let (X, d) be a complete metric space, w be a w-distance in X and T be a multi-valued mapping from X into CL(X) such that (2.3) and one of (2.4) and (2.5) hold and

for each
$$x \in X$$
, there exists $y \in T(x)$ satisfying
 $\alpha(w(x,y))\varphi(w(x,y)) \le f_w(x)$ and $f_w(y) \le \beta(w(x,y))\psi(w(x,y))$,
$$(2.23)$$

where

 α and β are functions from A_w into (0,1] and [0,1), respectively, with

$$\beta(0) < \alpha(0), \qquad \liminf_{r \to 0^+} \alpha(r) > 0 \quad and \quad \limsup_{r \to t^+} \frac{\beta(r)}{\alpha(r)} < 1, \quad \forall t \in A_w$$
(2.24)

and

one of
$$\alpha$$
 and β is nondecreasing in A_w . (2.25)

Then (a1)-(a4) hold.

Proof Firstly, we prove (a1). Let

$$\gamma(t) = \frac{\beta(t)}{\alpha(t)}, \quad \forall t \in A_w.$$
(2.26)

Notice that the ranges of α and β , (2.24) and (2.26) ensure that

$$0 \le \gamma(t) < 1, \quad \forall t \in A_w. \tag{2.27}$$

It follows from (2.23) that for each $x_0 \in X$, there exists $x_1 \in T(x_0)$ satisfying

$$\alpha\big(w(x_0,x_1)\big)\varphi\big(w(x_0,x_1)\big) \leq f_w(x_0) \quad \text{and} \quad f_w(x_1) \leq \beta\big(w(x_0,x_1)\big)\psi\big(w(x_0,x_1)\big),$$

which together with (2.3) and (2.26) means that

$$\begin{split} f_w(x_1) &\leq \beta \big(w(x_0, x_1) \big) \psi \big(w(x_0, x_1) \big) \leq \beta \big(w(x_0, x_1) \big) \varphi \big(w(x_0, x_1) \big) \\ &\leq \beta \big(w(x_0, x_1) \big) \frac{f_w(x_0)}{\alpha (w(x_0, x_1))} = \gamma \big(w(x_0, x_1) \big) f_w(x_0). \end{split}$$

Continuing this process, we choose easily an orbit $\{x_n\}_{n \in \mathbb{N}_0}$ of *T* satisfying

$$x_{n+1} \in T(x_n), \quad \alpha \left(w(x_n, x_{n+1}) \right) \varphi \left(w(x_n, x_{n+1}) \right) \le f_w(x_n) \quad \text{and}$$

$$f_w(x_{n+1}) \le \beta \left(w(x_n, x_{n+1}) \right) \psi \left(w(x_n, x_{n+1}) \right), \quad \forall n \in \mathbb{N}_0,$$

$$(2.28)$$

which together with (2.3) and (2.26) gives that

$$f_{w}(x_{n+1}) \leq \beta \left(w(x_{n}, x_{n+1}) \right) \psi \left(w(x_{n}, x_{n+1}) \right) \leq \beta \left(w(x_{n}, x_{n+1}) \right) \varphi \left(w(x_{n}, x_{n+1}) \right)$$

$$\leq \beta \left(w(x_{n}, x_{n+1}) \right) \frac{f_{w}(x_{n})}{\alpha \left(w(x_{n}, x_{n+1}) \right)} = \gamma \left(w(x_{n}, x_{n+1}) \right) f_{w}(x_{n}), \quad \forall n \in \mathbb{N}_{0}$$
(2.29)

and

$$\varphi(w(x_{n+1}, x_{n+2})) \leq \frac{f_w(x_{n+1})}{\alpha(w(x_{n+1}, x_{n+2}))}$$
$$\leq \frac{\beta(w(x_n, x_{n+1}))}{\alpha(w(x_{n+1}, x_{n+2}))} \psi(w(x_n, x_{n+1})), \quad \forall n \in \mathbb{N}_0.$$
(2.30)

Now we claim that

$$w(x_{n+1}, x_{n+2}) \le w(x_n, x_{n+1}), \quad \forall n \in \mathbb{N}_0.$$
 (2.31)

Suppose that there exists $n_0 \in \mathbb{N}_0$ satisfying

$$w(x_{n_0+1}, x_{n_0+2}) > w(x_{n_0}, x_{n_0+1}).$$
(2.32)

Let (2.4) hold. It follows from (2.3), (2.25), (2.26), (2.30) and (2.32) that

$$\varphi\left(w(x_{n_{0}+1},x_{n_{0}+2})\right) \leq \frac{\beta(w(x_{n_{0}},x_{n_{0}+1}))}{\alpha(w(x_{n_{0}+1},x_{n_{0}+2}))}\psi\left(w(x_{n_{0}},x_{n_{0}+1})\right)$$
$$\leq \max\left\{\gamma\left(w(x_{n_{0}},x_{n_{0}+1})\right),\gamma\left(w(x_{n_{0}+1},x_{n_{0}+2})\right)\right\}\varphi\left(w(x_{n_{0}},x_{n_{0}+1})\right). (2.33)$$

If $\varphi(w(x_{n_0}, x_{n_0+1})) = 0$, it follows from (2.33) that $\varphi(w(x_{n_0+1}, x_{n_0+2})) = 0$. Thus (2.4) and (2.32) guarantee that

$$0 \leq w(x_{n_0}, x_{n_0+1}) < w(x_{n_0+1}, x_{n_0+2}) = 0,$$

which is a contradiction; if $\varphi(w(x_{n_0}, x_{n_0+1})) > 0$, (2.4), (2.26), (2.27) and (2.33) yield that

$$\varphi(w(x_{n_0+1}, x_{n_0+2})) \le \max\{\gamma(w(x_{n_0}, x_{n_0+1})), \gamma(w(x_{n_0+1}, x_{n_0+2}))\}\varphi(w(x_{n_0}, x_{n_0+1})) < \varphi(w(x_{n_0}, x_{n_0+1})).$$
(2.34)

Since φ is strictly inverse, it follows from (2.32) and (2.34) that

 $w(x_{n_0+1},x_{n_0+2}) < w(x_{n_0},x_{n_0+1}) < w(x_{n_0+1},x_{n_0+2}),$

which is impossible.

Let (2.5) hold. Notice that φ is strictly increasing. It follows from (2.3), (2.26), (2.27), (2.30) and (2.32) that

$$\begin{split} \varphi \Big(w(x_{n_0+1}, x_{n_0+2}) \Big) &\leq \frac{\beta(w(x_{n_0}, x_{n_0+1}))}{\alpha(w(x_{n_0+1}, x_{n_0+2}))} \psi \left(w(x_{n_0}, x_{n_0+1}) \right) \\ &\leq \max \Big\{ \gamma \left(w(x_{n_0}, x_{n_0+1}) \right), \gamma \left(w(x_{n_0+1}, x_{n_0+2}) \right) \Big\} \varphi \left(w(x_{n_0}, x_{n_0+1}) \right) \\ &\leq \varphi \Big(w(x_{n_0}, x_{n_0+1}) \Big) \\ &< \varphi \Big(w(x_{n_0+1}, x_{n_0+2}) \Big), \end{split}$$

which is absurd. Hence (2.31) holds. That is, $\{w(x_n, x_{n+1})\}_{n \in \mathbb{N}_0}$ is a nonincreasing and non-negative sequence. It follows that $\lim_{n \to \infty} w(x_n, x_{n+1}) = d$ for some $d \ge 0$.

Now we claim that (2.11) holds. Using (2.27) and (2.29), we conclude that $\{f_w(x_n)\}_{n \in \mathbb{N}_0}$ is a nonnegative and nonincreasing sequence. Consequently, (2.13) is satisfied for some $a \ge 0$. Suppose that a > 0. Using (2.13), (2.24), (2.27) and (2.29), we obtain that

$$a = \limsup_{n \to \infty} f_w(x_{n+1}) \le \limsup_{n \to \infty} \left[\gamma \left(w(x_n, x_{n+1}) \right) f_w(x_n) \right]$$
$$\le \limsup_{n \to \infty} \gamma \left(w(x_n, x_{n+1}) \right) \limsup_{n \to \infty} f_w(x_n) \le a \limsup_{t \to d^+} \gamma(t)$$
$$< a,$$

which is a contradiction. Thus a = 0, that is, (2.11) holds.

Next we claim that $\{x_n\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence. Put

$$b = \limsup_{n \to \infty} \gamma \left(w(x_n, x_{n+1}) \right) \quad \text{and} \quad c = \liminf_{n \to \infty} \alpha \left(w(x_n, x_{n+1}) \right). \tag{2.35}$$

It follows from (2.24), (2.27), (2.29) and (2.35) that (2.15) holds. Let $p \in (0, c)$ and $q \in (b, 1)$. Because of (2.15) and (2.35), we deduce that there exists some $n_0 \in \mathbb{N}$ such that

$$\gamma(w(x_n, x_{n+1})) < q$$
 and $\alpha(w(x_n, x_{n+1})) > p$, $\forall n \ge n_0$,

which together with (2.28) and (2.29) yields that

$$f_w(x_{n+1}) \le qf_w(x_n)$$
 and $\varphi\left(w(x_n, x_{n+1})\right) \le \frac{f_w(x_n)}{p}$, $\forall n \ge n_0$.

The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the proof. $\hfill \Box$

3 Remarks and illustrative examples

In this section we construct two nontrivial examples to illustrate the results in Section 2.

Remark 3.1 Theorem 2.1 extends Theorem 3.1 in [2], Theorem 2.1 in [5], Theorem 2.1 in [6], Theorems 2.1 and 2.2 in [7], Theorems 2.2 and 2.4 in [9], and Theorems 3.1 and 3.2 in [10]. Example 3.2 below shows that Theorem 2.1 extends substantially Theorem 3.1 in [2] and Theorem 2.1 in [5] and differs from Theorems 5 and 6 in [8] and Theorem 2.1 in [4].

Example 3.2 Let $X = [0,1] \cup \{\frac{6}{5}\}$ be endowed with the Euclidean metric $d = |\cdot|$ and $u_0 = 0$. Define $w: X \times X \to \mathbb{R}^+$, $T: X \to CL(X)$, $\alpha: [0, \frac{1}{4}] \to (0, 1]$, $\beta: [0, \frac{1}{4}] \to [0, 1)$ and $\varphi, \psi: [0, \frac{6}{5}] \to \mathbb{R}^+$ by

$$w(x, y) = y, \quad \forall x, y \in X,$$

$$T(x) = \begin{cases} \{\frac{x}{4}\}, & \forall x \in [0, \frac{2}{5}) \cup (\frac{2}{5}, 1], \\ \{\frac{1}{10}, \frac{1}{3}\}, & \forall x \in \{\frac{2}{5}, \frac{6}{5}\}, \end{cases}$$

$$\alpha(t) = \frac{8+t}{9}, \qquad \beta(t) = \frac{2+t}{3}, \quad \forall t \in \left[0, \frac{1}{4}\right]$$

and

$$\varphi(t) = t, \qquad \psi(t) = \min\{t, |1-t|\}, \quad \forall t \in \left[0, \frac{6}{5}\right].$$

It is easy to see that $A_w = [0, \frac{6}{5}], B_w = [0, \frac{1}{4}], (2.3), (2.4)$ and (2.5) hold and

$$f_w(x) = w(x, T(x)) = \begin{cases} \frac{x}{4}, & \forall x \in [0, \frac{2}{5}) \cup (\frac{2}{5}, 1], \\ \frac{1}{10}, & \forall x \in \{\frac{2}{5}, \frac{6}{5}\}, \end{cases}$$

is *T*-orbitally lower semi-continuous at u_0 ,

$$\begin{split} \beta(0) &= \frac{2}{3} < \frac{8}{9} = \alpha(0), \qquad \liminf_{r \to 0^+} \alpha(r) = \frac{8}{9} > 0, \\ \limsup_{r \to t^+} \frac{\beta(r)}{\alpha(r)} &= \limsup_{r \to t^+} \left(\frac{2+r}{3} \cdot \frac{9}{8+r} \right) = \frac{6+3t}{8+t} < 1, \quad \forall t \in \left[0, \frac{1}{4} \right]. \end{split}$$

For $x \in [0, \frac{2}{5}) \cup (\frac{2}{5}, 1]$, there exists $y = \frac{x}{4} \in T(x) = \{\frac{x}{4}\}$ satisfying

$$\alpha\left(f_{w}(x)\right)\varphi\left(w(x,y)\right)=\frac{8+\frac{x}{4}}{9}\cdot\frac{x}{4}\leq\frac{x}{4}=f_{w}(x)$$

and

$$f_w(y) = \frac{x}{16} \le \frac{2 + \frac{x}{4}}{3} \cdot \min\left\{\frac{x}{4}, 1 - \frac{x}{4}\right\} = \beta(f_w(x))\psi(w(x, y)).$$

For $x \in \{\frac{2}{5}, \frac{6}{5}\}$, there exists $y = \frac{1}{10} \in T(x) = \{\frac{1}{10}, \frac{1}{3}\}$ satisfying

$$\alpha(f_w(x))\varphi(w(x,y)) = \frac{8+\frac{1}{10}}{9}\cdot\frac{1}{10} \leq \frac{1}{10} = f_w(x)$$

and

$$f_{w}(y) = \frac{1}{40} \leq \frac{2 + \frac{1}{10}}{3} \cdot \min\left\{\frac{1}{10}, 1 - \frac{1}{10}\right\} = \beta\left(f_{w}(x)\right)\psi\left(w(x, y)\right).$$

Put $v \in X \setminus \{0\}$ and $\{z_n\}_{n \in \mathbb{N}_0}$ is an orbit of T in X. It is easy to verify that $\lim_{n \to \infty} z_n = u_0 = 0$ and

$$\inf \{ w(z_n, v) + \varphi(w(z_n, z_{n+1})) : n \in \mathbb{N}_0 \}$$

= $\inf \{ v + z_{n+1} : n \in \mathbb{N}_0 \}$
= $v + u_0 = v > 0.$

Hence (2.1), (2.2) and (2.6) hold, that is, the conditions of Theorem 2.1 are fulfilled. Thus Theorem 2.1 guarantees that (a1)-(a4) hold. Moreover, *T* has a fixed point $u_0 = 0 \in X$.

Now we show that Theorem 2.1 in [5] is unapplicable in proving the existence of fixed points for the multi-valued mapping *T*. Otherwise there exists a function $\varphi : \mathbb{R}^+ \to [a, 1)$,

0 < a < 1, such that

_

$$\limsup_{r \to t^+} \varphi(r) < 1, \quad \forall t \in \mathbb{R}^+,$$
(3.1)

and for any $x \in X$ there is $y \in T(x)$ satisfying

$$\sqrt{\varphi(f(x))}d(x,y) \le f(x) \tag{3.2}$$

and

$$f(y) \le \varphi(f(x))d(x,y). \tag{3.3}$$

Note that

$$f(x) = d(x, T(x)) = \begin{cases} \frac{3}{4}x, & \forall x \in [0, \frac{2}{5}) \cup (\frac{2}{5}, 1], \\ \frac{1}{15}, & x = \frac{2}{5}, \\ \frac{13}{15}, & x = \frac{6}{5}. \end{cases}$$

Put $x = \frac{2}{5}$. For $y \in T(x) = {\frac{1}{10}, \frac{1}{3}}$, we discuss two cases as follows. Case 1. $y = \frac{1}{10}$. It follows from (3.2) and (3.3) that

$$\frac{3}{10}\sqrt{\varphi\left(\frac{1}{15}\right)} = \sqrt{\varphi\left(f\left(\frac{2}{5}\right)\right)}d\left(\frac{2}{5},\frac{1}{10}\right) = \sqrt{\varphi\left(f(x)\right)}d(x,y) \le f(x) = f\left(\frac{2}{5}\right) = \frac{1}{15}$$

and

$$\frac{3}{40} = f\left(\frac{1}{10}\right) = f(y) \le \varphi(f(x))d(x,y) = \varphi\left(f\left(\frac{2}{5}\right)\right)d\left(\frac{2}{5},\frac{1}{10}\right) = \frac{3}{10}\varphi\left(\frac{1}{15}\right),$$

which imply that

$$0.25 = \frac{1}{4} \le \varphi\left(\frac{1}{15}\right) \le \frac{4}{81} = 0.049,$$

which is impossible.

Case 2. $y = \frac{1}{3}$. It follows from (3.3) that

$$\frac{1}{4} = f\left(\frac{1}{3}\right) = f(y) \le \varphi(f(x))d(x,y) = \varphi\left(f\left(\frac{2}{5}\right)\right)d\left(\frac{2}{5},\frac{1}{3}\right) = \frac{1}{15}\varphi\left(\frac{1}{15}\right),$$

which together with $\varphi(\mathbb{R}^+) \subseteq [a, 1)$ yields that

$$\frac{15}{4} \le \varphi\left(\frac{1}{15}\right) < 1,$$

which is absurd.

Next we show that Theorem 5 in [8] is useless in proving the existence of fixed points for the multi-valued mapping *T*. Otherwise there exists a function $\varphi : \mathbb{R}^+ \to [0,1)$ such that (3.1) holds, and for any $x \in X$ there is $y \in T(x)$ satisfying

$$d(x,y) \le \left(2 - \varphi(d(x,y))\right) f(x) \tag{3.4}$$

and

$$f(y) \le \varphi(d(x, y))d(x, y). \tag{3.5}$$

Put $x = \frac{2}{5}$. For $y \in T(x) = {\frac{1}{10}, \frac{1}{3}}$, we discuss two cases as follows. Case 1. $y = \frac{1}{10}$. It follows from (3.4) that

$$\frac{3}{10} = d\left(\frac{2}{5}, \frac{1}{10}\right) = d(x, y) \le \left(2 - \varphi(d(x, y))\right) f(x) = \left(2 - \varphi\left(\frac{3}{10}\right)\right) \frac{1}{15},$$

which together with $\varphi(\mathbb{R}^+) \subseteq [0,1)$ yields that

$$0 \le \varphi\left(\frac{3}{10}\right) \le -\frac{5}{2} < 0,$$

which is a contradiction.

Case 2. $y = \frac{1}{3}$. It follows from (3.4) that

$$\frac{1}{4} = f\left(\frac{1}{3}\right) = f(y) \le \varphi\left(d(x,y)\right)d(x,y) = \varphi\left(d\left(\frac{2}{5},\frac{1}{3}\right)\right)d\left(\frac{2}{5},\frac{1}{3}\right) = \frac{1}{15}\varphi\left(\frac{1}{15}\right),$$

which together with $\varphi(\mathbb{R}^+) \subseteq [0,1)$ gives that

$$\frac{15}{4} \le \varphi\left(\frac{1}{15}\right) < 1,$$

which is impossible.

Finally we show that Theorem 6 in [8] is futile in proving the existence of fixed points for the multi-valued mapping *T*. Otherwise there exist functions $\varphi : \mathbb{R}^+ \to (0, 1), b : \mathbb{R}^+ \to [b, 1), b > 0$ such that

$$\varphi(t) < b(t), \qquad \limsup_{r \to t^+} \varphi(r) < \limsup_{r \to t^+} b(r), \quad \forall t \in \mathbb{R}^+,$$
(3.6)

and for any $x \in X$, there is $y \in T(x)$ satisfying (3.5) and

$$b(d(x,y))d(x,y) \le f(x). \tag{3.7}$$

Put $x = \frac{2}{5}$. For $y \in T(x) = {\frac{1}{10}, \frac{1}{3}}$, we discuss two cases as follows. Case 1. $y = \frac{1}{10}$. It follows from (3.7) and (3.5) that

$$\frac{3}{10}b\left(\frac{3}{10}\right) = b\left(d\left(\frac{2}{5}, \frac{1}{10}\right)\right)d\left(\frac{2}{5}, \frac{1}{10}\right) = b(d(x, y))d(x, y) \le f(x) = f\left(\frac{2}{5}\right) = \frac{1}{15}$$

and

$$\frac{3}{40}=f\left(\frac{1}{10}\right)=f(y)\leq\varphi\left(d(x,y)\right)d(x,y)=\frac{3}{10}\varphi\left(\frac{3}{10}\right),$$

which together with (3.6) means that

$$b\left(\frac{3}{10}\right) \leq \frac{2}{9} < \frac{1}{4} \leq \varphi\left(\frac{3}{10}\right) < b\left(\frac{3}{10}\right),$$

which is absurd.

Case 2. $y = \frac{1}{3}$. It follows from (3.5) that

$$\frac{1}{4} = f\left(\frac{1}{3}\right) = f(y) \le \varphi\left(d(x,y)\right)d(x,y) = \varphi\left(d\left(\frac{2}{5},\frac{1}{3}\right)\right)d\left(\frac{2}{5},\frac{1}{3}\right) = \frac{1}{15}\varphi\left(\frac{1}{15}\right),$$

which together with $\varphi(\mathbb{R}^+) \subseteq [0,1)$ gives that

$$\frac{15}{4} \le \varphi\left(\frac{1}{15}\right) < 1,$$

which is impossible.

Observe that Theorem 6 in [8] extends Theorem 3.1 in [2], Theorem 2.1 in [4] and Theorem 2.2 in [5]. It follows that Theorem 3.1 in [2], Theorem 2.1 in [4] and Theorem 2.2 in [5] are not applicable in proving the existence of fixed points for the multi-valued mapping *T*.

Remark 3.3 Theorem 2.2 extends, improves and unifies Theorem 3.1 in [2], Theorem 2.1 in [4], Theorem 2.2 in [5], Theorem 2.3 in [6], Theorems 2.3 and 2.5 in [7], Theorem 6 in [8], and Theorems 3.3 and 3.4 in [10]. The following example reveals that Theorem 2.2 generalizes indeed the corresponding results in [2, 4, 5, 8].

Example 3.4 Let $X = [0, \infty)$ be endowed with the Euclidean metric $d = |\cdot|$ and $p \ge 1$ be a constant. Put $u_0 = 0$. Define $w : X \times X \to \mathbb{R}^+$, $T : X \to CL(X)$, $\alpha : [0, \infty) \to (0, 1]$ and $\varphi, \psi : [0, \infty) \to \mathbb{R}^+$ by $\beta : [0, \infty) \to [0, 1)$ by

$$\begin{split} w(x,y) &= y^{p}, \quad \forall x, y \in X, \\ T(x) &= \begin{cases} \left[\frac{x^{2}}{2}, \frac{x}{2}\right], \quad \forall x \in [0,1), \\ \left[\frac{1}{9}, \frac{1}{4}\right], \quad \forall x \in [1,\infty), \end{cases} \\ \alpha(t) &= \frac{5 + t^{\frac{1}{p}}}{10}, \qquad \beta(t) = \frac{3 + t^{\frac{1}{p}}}{10}, \quad \forall t \in [0,\infty) \end{split}$$

and

$$\varphi(t) = t, \quad \forall t \in [0,\infty), \qquad \psi(t) = \begin{cases} t, & \forall t \in [0,1), \\ \frac{1}{2}, & \forall t \in [1,\infty). \end{cases}$$

It is easy to see that $A_w = [0, \infty)$, (2.3), (2.4) and (2.5) hold, *w* is a *w*-distance in *X* and

$$f_{w}(x) = w(x, T(x)) = \begin{cases} \left(\frac{x^{2}}{2}\right)^{p}, & \forall x \in [0, 1), \\ \frac{1}{9^{p}}, & \forall x \in [1, \infty) \end{cases}$$

is *T*-orbitally lower semi-continuous in *X*, α and β are nondecreasing,

$$\beta(0) = \frac{3}{10} < \frac{1}{2} = \alpha(0), \qquad \liminf_{r \to 0^+} \alpha(r) = \frac{1}{2} > 0$$

and

$$\limsup_{r \to t^+} \frac{\beta(r)}{\alpha(r)} = \frac{3 + t^{\frac{1}{p}}}{5 + t^{\frac{1}{p}}} < 1, \quad \forall t \in A_w.$$

Put $x \in [0, 1)$ and $y = \frac{x^2}{2} \in T(x)$. Note that

$$5 + y \le 10$$
 and $\left(\frac{y}{2}\right)^p \le \frac{1}{4^p} \le \frac{3 + y}{10}$

imply that

$$\alpha\big(w(x,y)\big)\varphi\big(w(x,y)\big) = \frac{5+y}{10} \cdot y^p \le y^p = f_w(x)$$

and

$$f_w(y) = \left(\frac{y^2}{2}\right)^p \le \frac{3+y}{10} \cdot y^p = \beta\left(w(x,y)\right)\psi\left(w(x,y)\right)$$

Put $x \in [1, \infty)$ and $y = \frac{1}{9} \in T(x) = [\frac{1}{9}, \frac{1}{4}]$. It follows that

$$\alpha\big(w(x,y)\big)\varphi\big(w(x,y)\big)=\frac{5+\frac{1}{9}}{10}\cdot\frac{1}{9^p}\leq\frac{1}{9^p}=f_w(x)$$

and

$$f_w(y) = \frac{1}{182^p} \le \frac{3 + \frac{1}{9}}{10} \cdot \frac{1}{9^p} = \beta(w(x, y))\psi(w(x, y)).$$

Let $\nu \in X \setminus \{0\}$ and $\{z_n\}_{n \in \mathbb{N}_0}$ be an orbit of *T*. It is easy to verify that $\lim_{n \to \infty} z_n = 0$ and

$$\inf \{ w(z_n, v) + \varphi(w(z_n, z_{n+1})) : n \in \mathbb{N}_0 \}$$
$$= \inf \{ v^p + z_{n+1}^p : n \in \mathbb{N}_0 \} = v^p > 0.$$

That is, (2.6) and (2.23)-(2.25) hold. Thus the conditions of Theorem 2.2 are satisfied. Consequently, Theorem 2.2 ensures that (a1)-(a4) hold and $u_0 = 0$ is a fixed point of the multi-valued mapping *T* in *X*.

Notice that

$$f(x) = d(x, T(x)) = \begin{cases} \frac{x}{2}, & \forall x \in [0, 1), \\ x - \frac{1}{4}, & \forall x \in [1, \infty) \end{cases}$$

and

$$\liminf_{x \to 1} f(x) = \frac{1}{2} < \frac{3}{4} = f(1),$$

which implies that f is not lower semi-continuous at 1. Thus Theorem 3.1 in [2], Theorem 2.1 in [4], Theorem 2.2 in [5] and Theorem 6 in [8] could not be used to judge the existence of fixed points of the multi-valued mapping T in X.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Liaoning Normal University, Dalian, Liaoning 116029, People's Republic of China. ²Department of Mathematics and RINS, Gyeongsang National University, Jinju, 660-701, Korea. ³Department of Mathematics, Gyeongsang National University, Jinju, 660-701, Korea.

Acknowledgements

The authors would like to thank the referees for useful comments and suggestions. This research was supported by the Science Research Foundation of Educational Department of Liaoning Province (L2012380).

Received: 25 August 2014 Accepted: 4 December 2014 Published: 18 Dec 2014

References

- 1. Kada, O, Suzuki, T, Takahashi, W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 44, 381-391 (1996)
- 2. Feng, YQ, Liu, SY: Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. J. Math. Anal. Appl. **317**, 103-112 (2006). doi:10.1016/j.jmaa.2005.12.004
- 3. Nadler, SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
- 4. Klim, D, Wardowski, D: Fixed point theorems for set-valued contractions in complete metric spaces. J. Math. Anal. Appl. **334**, 132-139 (2007). doi:10.1016/j.jmaa.2006.12.012
- Ćirić, LB: Multi-valued nonlinear contraction mappings. Nonlinear Anal. 71, 2716-2723 (2009). doi:10.1016/j.na.2009.01.116
- Liu, Z, Sun, W, Kang, SM, Ume, JS: On fixed point theorems for multi-valued contractions. Fixed Point Theory Appl. 2010, Article ID 870980 (2010). doi:10.1155/2010/870980
- Latif, A, Abdou, AAN: Multivalued generalized nonlinear contractive maps and fixed points. Nonlinear Anal. 74, 1436-1444 (2011). doi:10.1016/j.na.2010.10.017
- 8. Ćirić, LB: Fixed point theorems for multi-valued contractions in complete metric spaces. J. Math. Anal. Appl. 348, 499-507 (2008). doi:10.1016/j.jmaa.2008.07.062
- Latif, A, Abdou, AAN: Fixed points of generalized contractive maps. Fixed Point Theory Appl. 2009, Article ID 487161 (2009). doi:10.1155/2009/487161
- Liu, Z, Lu, Y, Kang, SM: Fixed point theorems for multi-valued contractions with w-distance. Appl. Math. Comput. 224, 535-552 (2013). doi:10.1016/j.amc.2013.08.061
- 11. Lin, L, Du, WS: Some equivalent formulations of the generalized Ekeland's variational principle and their applications. Nonlinear Anal. 67, 187-199 (2007). doi:10.1016/j.na.2006.05.006

10.1186/1687-1812-2014-246

Cite this article as: Liu et al.: **Fixed points for mappings satisfying some multi-valued contractions with** *w*-**distance**. *Fixed Point Theory and Applications* **2014**, **2014**:246