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1 Introduction and preliminaries
In , Kada et al. [] introduced the concept of w-distance and got some fixed point
theorems for single-valued mappings under w-distance. In , Feng and Liu [, Theo-
rem .] proved the following fixed point theorem for amulti-valued contractivemapping,
which generalizes the nice fixed point theorem due to Nadler [, Theorem ].

Theorem . ([]) Let (X,d) be a complete metric space and T be amulti-valuedmapping
from X into CL(X), where CL(X) is the family of all nonempty closed subsets of X . Assume
that

(c) the mapping f : X →R
+, defined by f (x) = d(x,T(x)), x ∈ X , is lower semi-continuous;

(c) there exist constants b, c ∈ (, ) with c < b such that for any x ∈ X , there is y ∈ T(x)
satisfying

bd(x, y)≤ f (x) and f (y) ≤ cd(x, y).

Then T has a fixed point in X.

In , Klim and Wardowski [, Theorem .] extended Theorem . and proved the
following result.

Theorem . ([]) Let (X,d) be a complete metric space and T be amulti-valuedmapping
from X into CL(X) satisfying (c). Assume that

(c) there exist b ∈ (, ) and ϕ :R+ → [,b) satisfying

lim sup
r→t+

ϕ(r) < b, ∀t ∈R
+,
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and for any x ∈ X , there is y ∈ T(x) satisfying

bd(x, y)≤ d
(
x,T(x)

)
and f (y) ≤ ϕ

(
d(x, y)

)
d(x, y).

Then T has a fixed point in X.

In  and , Ćirić [, Theorem .] and Liu et al. [, Theorems . and .] estab-
lished a few fixed point theorems for some multi-valued nonlinear contractions, which
include the multi-valued contraction in Theorem . as a special case.

Theorem . ([]) Let (X,d) be a complete metric space and T be amulti-valuedmapping
from X into CL(X) satisfying (c). Assume that

(c) there exists a function ϕ :R+ → [a, ),  < a < , satisfying

lim sup
r→t+

ϕ(r) < , ∀t ∈R
+,

and for any x ∈ X , there is y ∈ T(x) satisfying
√

ϕ
(
f (x)

)
d(x, y)≤ f (x) and f (y) ≤ ϕ

(
f (x)

)
d(x, y).

Then T has a fixed point in X.

Theorem . ([]) Let T be a multi-valued mapping from a complete metric space (X,d)
into CL(X) such that

for each x ∈ X, there exists y ∈ T(x) satisfying

α
(
f (x)

)
d(x, y)≤ f (x) and f (y) ≤ β

(
f (x)

)
d(x, y),

where

B =

⎧⎨
⎩[, sup f (X)] if sup f (X) <∞,

[,∞) if sup f (X) = ∞,

α : B → (, ] and β : B → [, ) satisfy that

lim inf
r→+

α(r) >  and lim sup
r→t+

β(r)
α(r)

< , ∀t ∈ [
, sup f (X)

)
.

Then
(a) for each x ∈ X , there exist an orbit {xn}n∈N of T and z ∈ X such that

limn→∞ xn = z;
(a) z is a fixed point of T in X if and only if the function f (x) = d(x,T(x)), x ∈ X , is

T-orbitally lower semi-continuous at z.

Theorem . ([]) Let T be a multi-valued mapping from a complete metric space (X,d)
into CL(X) such that

for each x ∈ X, there exists y ∈ T(x) satisfying

α
(
d(x, y)

)
d(x, y)≤ f (x) and f (y) ≤ β

(
d(x, y)

)
d(x, y),
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where

A =

⎧⎨
⎩[,diam(X)] if diam(X) <∞,

[,∞) if diam(X) = ∞,

α : A→ (, ] and β : A→ [, ) satisfy that

lim inf
r→t+

α(r) >  and lim sup
r→t+

β(r)
α(r)

< , ∀t ∈ [
,diam(X)

)
,

and one of α and β is nondecreasing. Then
(a) for each x ∈ X , there exist an orbit {xn}n∈N of T and z ∈ X such that

limn→∞ xn = z;
(a) z is a fixed point of T in X if and only if the function f (x) = d(x,T(x)), x ∈ X , is

T-orbitally lower semi-continuous at z.

In , Latif and Abdou [, Theorem .] generalized Theorem . and proved the fol-
lowing fixed point theorem for some multi-valued contractive mapping with w-distance.

Theorem . ([]) Let (X,d) be a complete metric space with a w-distance w, and let T be
a multi-valued mapping from X into CL(X). Assume that

(c) the mapping f : X →R
+, defined by fw(x) = w(x,T(x)), x ∈ X , is lower semi-continuous;

(c) there exists a function ϕ :R+ → [b, ),  < b < , satisfying

lim sup
r→t+

ϕ(r) < , ∀t ∈R
+

and for any x ∈ X , there is y ∈ T(x) satisfying

√
ϕ
(
fw(x)

)
w(x, y) ≤ fw(x) and fw(y) ≤ ϕ

(
fw(x)

)
w(x, y).

Then there exists v ∈ X such that fw(v) = . Further, if w(v, v) = , then v ∈ T(v).

The purpose of this paper is to prove the existence of fixed points and iterative approxi-
mations for somemulti-valued contractivemappings withw-distance. Two examples with
uncountably many points are included. The results presented in this paper extend, im-
prove and unify Theorem . in [], Theorem . in [], Theorems . and . in [], The-
orems . and . in [], Theorems .-. and . in [], Theorem  in [], Theorems .
and . in [] and Theorems .-. in [].
Throughout this paper, we assume that R+ = [,∞), N =N∪ {}, where N denotes the

set of all positive integers.

Definition . ([]) A function w : X × X → R
+ is called a w-distance in X if it satisfies

the following:

(w) w(x, z) ≤ w(x, y) +w(y, z), ∀x, y, z ∈ X ;

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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(w) for each x ∈ X , a mappingw(x, ·) : X → R
+ is lower semi-continuous, that is, if {yn}n∈N

is a sequence in X with limn→∞ yn = y ∈ X , then w(x, y) ≤ lim infn→∞ w(x, yn);
(w) for any ε > , there exists δ >  such that w(z,x) ≤ δ and w(z, y) ≤ δ imply d(x, y)≤ ε.

For any u ∈ X, D⊆ X, w-distance w and T : X → CL(X), put

d(u,D) = inf
y∈Dd(u, y), w(u,D) = inf

y∈Dw(u, y),

f (u) = d
(
u,T(u)

)
, fw(u) = w

(
u,T(u)

)
,

diam(X) = sup
{
d(x, y) : x, y ∈ X

}
, diam(Xw) = sup

{
w(x, y) : x, y ∈ X

}
,

Aw =

⎧⎨
⎩[,diam(Xw)] if diam(Xw) <∞,

[,∞) if diam(Xw) = ∞

and

Bw =

⎧⎨
⎩[, sup fw(X)] if sup fw(X) <∞,

[,∞) if sup fw(X) = ∞.

A sequence {xn}n∈N in X is called an orbit of T at x ∈ X if xn ∈ T(xn–) for all n ∈ N.
A function g : X → R

+ is said to be T-orbitally lower semi-continuous at z ∈ X if g(z) ≤
lim infn→∞ g(xn) for each orbit {xn}n∈N ⊂ X of T with limn→∞ xn = z. A function ϕ : Aw →
R

+ is called subadditive in Aw if ϕ(s + t)≤ ϕ(s) + ϕ(t) for all s, t ∈ Aw. A function ϕ : Aw →
R

+ is called strictly inverse in Aw if ϕ(t) < ϕ(s) implies that t < s.

Lemma . ([]) Let (X,d) be ametric space with a w-distance w andD ∈ CL(X). Suppose
that there exists u ∈ X such that w(u,u) = . Then w(u,D) =  if and only if u ∈D.

2 Fixed point theorems
In this sectionwe prove the existence of fixed points and iterative approximations for some
nonlinear multi-valued contraction mappings in complete metric spaces with w-distance.

Theorem . Let (X,d) be a complete metric space, w be a w-distance in X and T be a
multi-valued mapping from X into CL(X) such that

for each x ∈ X, there exists y ∈ T(x) satisfying

α
(
fw(x)

)
ϕ
(
w(x, y)

) ≤ fw(x) and fw(y) ≤ β
(
fw(x)

)
ψ

(
w(x, y)

)
,

(.)

where

α and β are functions from Bw into (, ] and [, ), respectively, with

β() < α(), lim inf
r→+

α(r) >  and lim sup
r→t+

β(r)
α(r)

< , ∀t ∈ Bw,
(.)

ϕ and ψ are functions from Aw into R+ with ψ(t)≤ ϕ(t), ∀t ∈ Aw and

ϕ is subadditive in Aw and satisfies that either
(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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ϕ is strictly inverse in Aw,ϕ() = ,ϕ(t) > , ∀t ∈ Aw \ {} (.)

or

ϕ is strictly increasing in Aw and lim
t→+

ϕ–(t) = ,where ϕ–

stands for the inverse function of ϕ.
(.)

Then
(a) for each x ∈ X , there exists an orbit {xn}n∈N of T such that limn→∞ xn = u for

some u ∈ X ;
(a) fw(u) =  if and only if the function fw is T-orbitally lower semi-continuous at u;
(a) u ∈ T(u) provided that w(u,u) =  = fw(u);
(a) T has a fixed point in X if for each orbit {zn}n∈N of T in X and v ∈ X with v /∈ T(v),

one of the following conditions is satisfied:

inf
{
w(zn, v) + ϕ

(
w(zn, zn+)

)
: n ∈N

}
> ; (.)

inf
{
w(zn, v) +w

(
zn,T(zn)

)
: n ∈N

}
> . (.)

Proof Firstly, we prove (a). Let

γ (t) =
β(t)
α(t)

, ∀t ∈ Bw. (.)

It follows from (.) that for each x ∈ X, there exists x ∈ T(x) satisfying

α
(
fw(x)

)
ϕ
(
w(x,x)

) ≤ fw(x) and fw(x) ≤ β
(
fw(x)

)
ψ

(
w(x,x)

)
,

which together with (.) and (.) yields that

fw(x) ≤ β
(
fw(x)

)
ψ

(
w(x,x)

) ≤ β
(
fw(x)

)
ϕ
(
w(x,x)

)
≤ β

(
fw(x)

) fw(x)
α(fw(x))

= γ
(
fw(x)

)
fw(x).

Continuing this process, we choose easily an orbit {xn}n∈N of T satisfying

xn+ ∈ T(xn), α
(
fw(xn)

)
ϕ
(
w(xn,xn+)

) ≤ fw(xn) and

fw(xn+)≤ β
(
fw(xn)

)
ψ

(
w(xn,xn+)

)
, ∀n ∈ N.

(.)

It follows from (.), (.) and (.) that

fw(xn+) ≤ β
(
fw(xn)

)
ψ

(
w(xn,xn+)

) ≤ β
(
fw(xn)

)
ϕ
(
w(xn,xn+)

)
≤ β

(
fw(xn)

) fw(xn)
α(fw(xn))

= γ
(
fw(xn)

)
fw(xn), ∀n ∈ N. (.)

Now we claim that

lim
n→∞ fw(xn) = . (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/246


Liu et al. Fixed Point Theory and Applications 2014, 2014:246 Page 6 of 17
http://www.fixedpointtheoryandapplications.com/content/2014/1/246

Notice that the ranges of α and β , (.) and (.) ensure that

 ≤ γ (t) < , ∀t ∈ Bw. (.)

Using (.) and (.), we conclude that {fw(xn)}n∈N is a nonnegative and nonincreasing
sequence, which means that there is a constant a≥  satisfying

lim
n→∞ fw(xn) = a. (.)

Suppose that a > . Using (.), (.), (.), (.) and (.), we obtain that

a = lim sup
n→∞

fw(xn+) ≤ lim sup
n→∞

[
γ
(
fw(xn)

)
fw(xn)

]
≤ lim sup

n→∞
γ
(
fw(xn)

)
lim sup
n→∞

fw(xn)

≤ a lim sup
r→a+

γ (r) < a,

which is a contradiction. Thus a = , that is, (.) holds.
Next we claim that {xn}n∈N is a Cauchy sequence. Put

b = lim sup
n→∞

γ
(
fw(xn)

)
and c = lim inf

n→∞ α
(
fw(xn)

)
. (.)

It follows from (.), (.), (.) and (.) that

 ≤ b <  and c > . (.)

Let p ∈ (, c) and q ∈ (b, ). Because of (.) and (.), we deduce that there exists some
n ∈N such that

γ
(
fw(xn)

)
< q and α

(
fw(xn)

)
> p, ∀n≥ n,

which together with (.) and (.) yields that

fw(xn+) ≤ qfw(xn) and ϕ
(
w(xn,xn+)

) ≤ fw(xn)
p

, ∀n≥ n,

which implies that

fw(xn+) ≤ qn+–n fw(xn ) and ϕ
(
w(xn,xn+)

) ≤ fw(xn )
p

qn–n , ∀n≥ n. (.)

By means of (w), (.) and (.), we deduce that

ϕ
(
w(xn,xm)

) ≤
m–∑
k=n

ϕ
(
w(xk ,xk+)

) ≤
m–∑
k=n

fw(xn )
p

qk–n

≤ fw(xn )
p( – q)

qn–n , ∀m > n≥ n. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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Given ε > , denote by δ the constant in (w) corresponding to ε. Assume that (.)
holds. It follows from ϕ(δ) >  and q ∈ (b, ) that there exists a positive integer N ≥ n
satisfying

fw(xn )
p( – q)

qn–n < ϕ(δ), ∀n≥N . (.)

Combining (.) and (.), we infer that

max
{
ϕ
(
w(xN ,xm)

)
,ϕ

(
w(xN ,xn)

)} ≤ fw(xn )
p( – q)

qn–n < ϕ(δ), ∀m > n≥N ,

which together with (.) guarantees that

max
{
w(xN ,xm),w(xN ,xn)

}
< δ, ∀m > n >N . (.)

It follows from (w) and (.) that

d(xm,xn)≤ ε, ∀m > n >N . (.)

It is clear that (.) yields that {xn}n∈N is a Cauchy sequence.
Assume that (.) holds. Since ϕ is strictly increasing, so does ϕ–. It follows from (.)

and q ∈ (b, ) that there exists a positive integer N ≥ n satisfying

ϕ–
(
fw(xn )
p( – q)

qn–n
)
< δ, ∀n≥N ,

which together with (.) and (.) means that

w(xn,xm) = ϕ–(ϕ(
w(xn,xm)

)) ≤ ϕ–
(
fw(xn )
p( – q)

qn–n
)
< δ, ∀m > n≥N ,

which ensures that (.) and (.) hold. Consequently, {xn}n∈N is a Cauchy sequence.
It follows fromcompleteness of (X,d) that there is someu ∈ X such that limn→∞ xn = u.
Secondly, we prove (a). Suppose that fw is T-orbitally lower semi-continuous at u. Let

{xn}n∈N be the orbit of T defined by (.) and satisfy (.). It follows from (.) that

 ≤ w
(
u,T(u)

)
= fw(u) ≤ lim inf

n→∞ fw(xn) = ,

which means that fw(u) = . Conversely, suppose that fw(u) =  for some u ∈ X. Let
{yn}n∈N be an arbitrary orbit of T in X with limn→∞ yn = u. It follows that

fw(u) =  ≤ lim inf
n→∞ fw(yn),

that is, fw is T-orbitally lower semi-continuous at u.
Thirdly, we prove (a). Note that T(u) is closed and

w(u,u) =  = fw(u) = w
(
u,T(u)

)
.

It follows from Lemma . that u ∈ T(u).

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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Finally, we prove (a). Assume that {xn}n∈N is the orbit of T defined by (.) and that it
satisfies (.), (.), (.) and limn→∞ xn = u ∈ X. Clearly, (.) and q ∈ (b, ) mean that

lim
n→∞ϕ

(
w(xn,xn+)

)
= . (.)

Now we claim that

lim
n→∞w(xn,u) = . (.)

In order to prove (.), we consider two possible cases as follows.
Case . Assume that (.) holds. Let ε >  be given. Notice that ϕ(ε) >  and q ∈ (b, ). It

follows that there exists a positive integer N > n satisfying

fw(xn )
p( – q)

qn–n < ϕ(ε), ∀n≥N ,

which together with (.) yields that

ϕ
(
w(xn,xm)

) ≤ fw(xn )
p( – q)

qn–n < ϕ(ε), ∀m > n ≥N .

Since ϕ is strictly inverse, it follows that

w(xn,xm) < ε, ∀m > n ≥N .

Letting m → ∞ in the above inequality and using (w), we get that

w(xn,u) ≤ lim inf
m→∞ w(xn,xm) ≤ ε, ∀n≥N ,

that is, (.) holds.
Case . Assume that (.) holds. It follows from (.) and (.) that

w(xn,xm) = ϕ–(ϕ(
w(xn,xm)

)) ≤ ϕ–
(
fw(xn )
p( – q)

qn–n
)
, ∀m > n≥ n,

which together with (w) and (.) ensures that

w(xn,u) ≤ lim inf
m→∞ w(xn,xm) ≤ ϕ–

(
fw(xn )
p( – q)

qn–n
)

→  as n→ ∞,

that is, (.) holds.
Suppose that u /∈ T(u). Let v = u and zn = xn for each n ∈N. Assume that (.) holds.

Making use of (.), (.) and (.), we conclude that

 < inf
{
w(xn,u) + ϕ

(
w(xn,xn+)

)
: n ∈N

}
= ,

which is a contradiction. Assume that (.) holds. By virtue of (.), (.) and (.), we
infer that

 < inf
{
w(xn,u) +w(xn,xn+) : n ∈N

}
= ,

which is also a contradiction. Consequently, u ∈ T(u). This completes the proof. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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Theorem . Let (X,d) be a complete metric space, w be a w-distance in X and T be a
multi-valued mapping from X into CL(X) such that (.) and one of (.) and (.) hold
and

for each x ∈ X, there exists y ∈ T(x) satisfying

α
(
w(x, y)

)
ϕ
(
w(x, y)

) ≤ fw(x) and fw(y) ≤ β
(
w(x, y)

)
ψ

(
w(x, y)

)
,

(.)

where

α and β are functions from Aw into (, ] and [, ), respectively, with

β() < α(), lim inf
r→+

α(r) >  and lim sup
r→t+

β(r)
α(r)

< , ∀t ∈ Aw

(.)

and

one of α and β is nondecreasing in Aw. (.)

Then (a)-(a) hold.

Proof Firstly, we prove (a). Let

γ (t) =
β(t)
α(t)

, ∀t ∈ Aw. (.)

Notice that the ranges of α and β , (.) and (.) ensure that

 ≤ γ (t) < , ∀t ∈ Aw. (.)

It follows from (.) that for each x ∈ X, there exists x ∈ T(x) satisfying

α
(
w(x,x)

)
ϕ
(
w(x,x)

) ≤ fw(x) and fw(x) ≤ β
(
w(x,x)

)
ψ

(
w(x,x)

)
,

which together with (.) and (.) means that

fw(x) ≤ β
(
w(x,x)

)
ψ

(
w(x,x)

) ≤ β
(
w(x,x)

)
ϕ
(
w(x,x)

)
≤ β

(
w(x,x)

) fw(x)
α(w(x,x))

= γ
(
w(x,x)

)
fw(x).

Continuing this process, we choose easily an orbit {xn}n∈N of T satisfying

xn+ ∈ T(xn), α
(
w(xn,xn+)

)
ϕ
(
w(xn,xn+)

) ≤ fw(xn) and

fw(xn+)≤ β
(
w(xn,xn+)

)
ψ

(
w(xn,xn+)

)
, ∀n ∈ N,

(.)

which together with (.) and (.) gives that

fw(xn+)≤ β
(
w(xn,xn+)

)
ψ

(
w(xn,xn+)

) ≤ β
(
w(xn,xn+)

)
ϕ
(
w(xn,xn+)

)
≤ β

(
w(xn,xn+)

) fw(xn)
α(w(xn,xn+))

= γ
(
w(xn,xn+)

)
fw(xn), ∀n ∈N (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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and

ϕ
(
w(xn+,xn+)

) ≤ fw(xn+)
α(w(xn+,xn+))

≤ β(w(xn,xn+))
α(w(xn+,xn+))

ψ
(
w(xn,xn+)

)
, ∀n ∈N. (.)

Now we claim that

w(xn+,xn+)≤ w(xn,xn+), ∀n ∈ N. (.)

Suppose that there exists n ∈N satisfying

w(xn+,xn+) > w(xn ,xn+). (.)

Let (.) hold. It follows from (.), (.), (.), (.) and (.) that

ϕ
(
w(xn+,xn+)

) ≤ β(w(xn ,xn+))
α(w(xn+,xn+))

ψ
(
w(xn ,xn+)

)
≤max

{
γ
(
w(xn ,xn+)

)
,γ

(
w(xn+,xn+)

)}
ϕ
(
w(xn ,xn+)

)
. (.)

If ϕ(w(xn ,xn+)) = , it follows from (.) that ϕ(w(xn+,xn+)) = . Thus (.) and
(.) guarantee that

 ≤ w(xn ,xn+) < w(xn+,xn+) = ,

which is a contradiction; if ϕ(w(xn ,xn+)) > , (.), (.), (.) and (.) yield that

ϕ
(
w(xn+,xn+)

) ≤max
{
γ
(
w(xn ,xn+)

)
,γ

(
w(xn+,xn+)

)}
ϕ
(
w(xn ,xn+)

)
< ϕ

(
w(xn ,xn+)

)
. (.)

Since ϕ is strictly inverse, it follows from (.) and (.) that

w(xn+,xn+) < w(xn ,xn+) < w(xn+,xn+),

which is impossible.
Let (.) hold. Notice that ϕ is strictly increasing. It follows from (.), (.), (.),

(.) and (.) that

ϕ
(
w(xn+,xn+)

) ≤ β(w(xn ,xn+))
α(w(xn+,xn+))

ψ
(
w(xn ,xn+)

)
≤max

{
γ
(
w(xn ,xn+)

)
,γ

(
w(xn+,xn+)

)}
ϕ
(
w(xn ,xn+)

)
≤ ϕ

(
w(xn ,xn+)

)
< ϕ

(
w(xn+,xn+)

)
,
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which is absurd. Hence (.) holds. That is, {w(xn,xn+)}n∈N is a nonincreasing and non-
negative sequence. It follows that limn→∞ w(xn,xn+) = d for some d ≥ .
Now we claim that (.) holds. Using (.) and (.), we conclude that {fw(xn)}n∈N

is a nonnegative and nonincreasing sequence. Consequently, (.) is satisfied for some
a ≥ . Suppose that a > . Using (.), (.), (.) and (.), we obtain that

a = lim sup
n→∞

fw(xn+) ≤ lim sup
n→∞

[
γ
(
w(xn,xn+)

)
fw(xn)

]
≤ lim sup

n→∞
γ
(
w(xn,xn+)

)
lim sup
n→∞

fw(xn)≤ a lim sup
t→d+

γ (t)

< a,

which is a contradiction. Thus a = , that is, (.) holds.
Next we claim that {xn}n∈N is a Cauchy sequence. Put

b = lim sup
n→∞

γ
(
w(xn,xn+)

)
and c = lim inf

n→∞ α
(
w(xn,xn+)

)
. (.)

It follows from (.), (.), (.) and (.) that (.) holds. Let p ∈ (, c) and q ∈ (b, ).
Because of (.) and (.), we deduce that there exists some n ∈N such that

γ
(
w(xn,xn+)

)
< q and α

(
w(xn,xn+)

)
> p, ∀n≥ n,

which together with (.) and (.) yields that

fw(xn+) ≤ qfw(xn) and ϕ
(
w(xn,xn+)

) ≤ fw(xn)
p

, ∀n≥ n.

The rest of the proof is similar to that of Theorem . and is omitted. This completes the
proof. �

3 Remarks and illustrative examples
In this section we construct two nontrivial examples to illustrate the results in Section .

Remark . Theorem . extends Theorem . in [], Theorem . in [], Theorem . in
[], Theorems . and . in [], Theorems . and . in [], and Theorems . and . in
[]. Example . below shows that Theorem . extends substantially Theorem . in []
and Theorem . in [] and differs from Theorems  and  in [] and Theorem . in [].

Example . LetX = [, ]∪{  } be endowedwith the Euclideanmetric d = | · | and u = .
Define w : X × X → R

+, T : X → CL(X), α : [,  ] → (, ], β : [,  ] → [, ) and ϕ,ψ :
[,  ]→ R

+ by

w(x, y) = y, ∀x, y ∈ X,

T(x) =

⎧⎨
⎩{ x }, ∀x ∈ [,  )∪ (  , ],

{ 
 ,


 }, ∀x ∈ {  ,  },

α(t) =
 + t


, β(t) =
 + t


, ∀t ∈
[
,




]
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and

ϕ(t) = t, ψ(t) =min
{
t, | – t|}, ∀t ∈

[
,




]
.

It is easy to see that Aw = [,  ], Bw = [,  ], (.), (.) and (.) hold and

fw(x) = w
(
x,T(x)

)
=

⎧⎨
⎩

x
 , ∀x ∈ [,  )∪ (  , ],

 , ∀x ∈ {  ,  },

is T-orbitally lower semi-continuous at u,

β() =


<


= α(), lim inf

r→+
α(r) =



> ,

lim sup
r→t+

β(r)
α(r)

= lim sup
r→t+

(
 + r


· 
 + r

)
=
 + t
 + t

< , ∀t ∈
[
,




]
.

For x ∈ [,  )∪ (  , ], there exists y =
x
 ∈ T(x) = { x } satisfying

α
(
fw(x)

)
ϕ
(
w(x, y)

)
=
 + x




· x


≤ x

= fw(x)

and

fw(y) =
x


≤  + x



·min

{
x

,  –

x


}
= β

(
fw(x)

)
ψ

(
w(x, y)

)
.

For x ∈ {  ,  }, there exists y = 
 ∈ T(x) = { 

 ,

 } satisfying

α
(
fw(x)

)
ϕ
(
w(x, y)

)
=
 + 




· 


≤ 


= fw(x)

and

fw(y) =



≤  + 



·min

{



,  –



}
= β

(
fw(x)

)
ψ

(
w(x, y)

)
.

Put v ∈ X \ {} and {zn}n∈N is an orbit of T in X. It is easy to verify that limn→∞ zn = u = 
and

inf
{
w(zn, v) + ϕ

(
w(zn, zn+)

)
: n ∈N

}
= inf{v + zn+ : n ∈N}
= v + u = v > .

Hence (.), (.) and (.) hold, that is, the conditions of Theorem . are fulfilled. Thus
Theorem . guarantees that (a)-(a) hold. Moreover, T has a fixed point u =  ∈ X.
Now we show that Theorem . in [] is unapplicable in proving the existence of fixed

points for the multi-valued mapping T . Otherwise there exists a function ϕ :R+ → [a, ),

http://www.fixedpointtheoryandapplications.com/content/2014/1/246
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 < a < , such that

lim sup
r→t+

ϕ(r) < , ∀t ∈R
+, (.)

and for any x ∈ X there is y ∈ T(x) satisfying

√
ϕ
(
f (x)

)
d(x, y)≤ f (x) (.)

and

f (y) ≤ ϕ
(
f (x)

)
d(x, y). (.)

Note that

f (x) = d
(
x,T(x)

)
=

⎧⎪⎪⎨
⎪⎪⎩


x, ∀x ∈ [,  )∪ (  , ],

 , x = 

 ,

 , x = 

 .

Put x = 
 . For y ∈ T(x) = { 

 ,

 }, we discuss two cases as follows.

Case . y = 
 . It follows from (.) and (.) that




√
ϕ

(



)
=

√
ϕ

(
f
(



))
d
(


,



)
=

√
ϕ
(
f (x)

)
d(x, y) ≤ f (x) = f

(



)
=




and




= f
(




)
= f (y) ≤ ϕ

(
f (x)

)
d(x, y) = ϕ

(
f
(



))
d
(


,



)
=




ϕ

(



)
,

which imply that

. =



≤ ϕ

(



)
≤ 


= .,

which is impossible.
Case . y = 

 . It follows from (.) that



= f

(



)
= f (y) ≤ ϕ

(
f (x)

)
d(x, y) = ϕ

(
f
(



))
d
(


,



)
=




ϕ

(



)
,

which together with ϕ(R+) ⊆ [a, ) yields that




≤ ϕ

(



)
< ,

which is absurd.
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Next we show that Theorem  in [] is useless in proving the existence of fixed points
for the multi-valued mapping T . Otherwise there exists a function ϕ : R+ → [, ) such
that (.) holds, and for any x ∈ X there is y ∈ T(x) satisfying

d(x, y) ≤ (
 – ϕ

(
d(x, y)

))
f (x) (.)

and

f (y) ≤ ϕ
(
d(x, y)

)
d(x, y). (.)

Put x = 
 . For y ∈ T(x) = { 

 ,

 }, we discuss two cases as follows.

Case . y = 
 . It follows from (.) that




= d
(


,



)
= d(x, y) ≤ (

 – ϕ
(
d(x, y)

))
f (x) =

(
 – ϕ

(



))



,

which together with ϕ(R+) ⊆ [, ) yields that

 ≤ ϕ

(



)
≤ –



< ,

which is a contradiction.
Case . y = 

 . It follows from (.) that



= f

(



)
= f (y) ≤ ϕ

(
d(x, y)

)
d(x, y) = ϕ

(
d
(


,



))
d
(


,



)
=




ϕ

(



)
,

which together with ϕ(R+) ⊆ [, ) gives that




≤ ϕ

(



)
< ,

which is impossible.
Finally we show that Theorem  in [] is futile in proving the existence of fixed points

for the multi-valued mapping T . Otherwise there exist functions ϕ :R+ → (, ), b :R+ →
[b, ), b >  such that

ϕ(t) < b(t), lim sup
r→t+

ϕ(r) < lim sup
r→t+

b(r), ∀t ∈R
+, (.)

and for any x ∈ X, there is y ∈ T(x) satisfying (.) and

b
(
d(x, y)

)
d(x, y) ≤ f (x). (.)

Put x = 
 . For y ∈ T(x) = { 

 ,

 }, we discuss two cases as follows.

Case . y = 
 . It follows from (.) and (.) that




b
(




)
= b

(
d
(


,



))
d
(


,



)
= b

(
d(x, y)

)
d(x, y)≤ f (x) = f

(



)
=
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and




= f
(




)
= f (y) ≤ ϕ

(
d(x, y)

)
d(x, y) =




ϕ

(



)
,

which together with (.) means that

b
(




)
≤ 


<



≤ ϕ

(



)
< b

(



)
,

which is absurd.
Case . y = 

 . It follows from (.) that



= f

(



)
= f (y) ≤ ϕ

(
d(x, y)

)
d(x, y) = ϕ

(
d
(


,



))
d
(


,



)
=




ϕ

(



)
,

which together with ϕ(R+) ⊆ [, ) gives that




≤ ϕ

(



)
< ,

which is impossible.
Observe that Theorem in [] extends Theorem . in [], Theorem . in [] andTheo-

rem . in []. It follows that Theorem . in [], Theorem . in [] and Theorem . in []
are not applicable in proving the existence of fixed points for themulti-valuedmapping T .

Remark . Theorem . extends, improves and unifies Theorem . in [], Theorem .
in [], Theorem . in [], Theorem . in [], Theorems . and . in [], Theorem 
in [], and Theorems . and . in []. The following example reveals that Theorem .
generalizes indeed the corresponding results in [, , , ].

Example . Let X = [,∞) be endowed with the Euclidean metric d = | · | and p ≥  be
a constant. Put u = . Define w : X × X → R

+, T : X → CL(X), α : [,∞) → (, ] and
ϕ,ψ : [,∞)→R

+ by β : [,∞) → [, ) by

w(x, y) = yp, ∀x, y ∈ X,

T(x) =

⎧⎨
⎩[ x ,

x
 ], ∀x ∈ [, ),

[  ,

 ], ∀x ∈ [,∞),

α(t) =
 + t


p


, β(t) =

 + t

p


, ∀t ∈ [,∞)

and

ϕ(t) = t, ∀t ∈ [,∞), ψ(t) =

⎧⎨
⎩t, ∀t ∈ [, ),


 , ∀t ∈ [,∞).
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It is easy to see that Aw = [,∞), (.), (.) and (.) hold, w is a w-distance in X and

fw(x) = w
(
x,T(x)

)
=

⎧⎨
⎩( x )

p, ∀x ∈ [, ),

p , ∀x ∈ [,∞)

is T-orbitally lower semi-continuous in X, α and β are nondecreasing,

β() =



<


= α(), lim inf

r→+
α(r) =



> 

and

lim sup
r→t+

β(r)
α(r)

=
 + t


p

 + t

p
< , ∀t ∈ Aw.

Put x ∈ [, ) and y = x
 ∈ T(x). Note that

 + y ≤  and
(
y


)p

≤ 
p

≤  + y


imply that

α
(
w(x, y)

)
ϕ
(
w(x, y)

)
=
 + y


· yp ≤ yp = fw(x)

and

fw(y) =
(
y



)p

≤  + y


· yp = β
(
w(x, y)

)
ψ

(
w(x, y)

)
.

Put x ∈ [,∞) and y = 
 ∈ T(x) = [  ,


 ]. It follows that

α
(
w(x, y)

)
ϕ
(
w(x, y)

)
=
 + 




· 
p

≤ 
p

= fw(x)

and

fw(y) =


p
≤  + 




· 
p

= β
(
w(x, y)

)
ψ

(
w(x, y)

)
.

Let v ∈ X \ {} and {zn}n∈N be an orbit of T . It is easy to verify that limn→∞ zn =  and

inf
{
w(zn, v) + ϕ

(
w(zn, zn+)

)
: n ∈N

}
= inf

{
vp + zpn+ : n ∈N

}
= vp > .

That is, (.) and (.)-(.) hold. Thus the conditions of Theorem . are satisfied.
Consequently, Theorem . ensures that (a)-(a) hold and u =  is a fixed point of the
multi-valued mapping T in X.
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Notice that

f (x) = d
(
x,T(x)

)
=

⎧⎨
⎩

x
 , ∀x ∈ [, ),

x – 
 , ∀x ∈ [,∞)

and

lim inf
x→

f (x) =


<


= f (),

which implies that f is not lower semi-continuous at . Thus Theorem . in [], Theo-
rem . in [], Theorem . in [] and Theorem  in [] could not be used to judge the
existence of fixed points of the multi-valued mapping T in X.
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