
Fouts et al. Journal of Translational Medicine 2012, 10:174
http://www.translational-medicine.com/content/10/1/174
RESEARCH Open Access
Integrated next-generation sequencing of 16S
rDNA and metaproteomics differentiate the
healthy urine microbiome from asymptomatic
bacteriuria in neuropathic bladder associated
with spinal cord injury
Derrick E Fouts1*, Rembert Pieper1, Sebastian Szpakowski1, Hans Pohl2, Susan Knoblach2, Moo-Jin Suh1,
Shih-Ting Huang1, Inger Ljungberg3, Bruce M Sprague2, Sarah K Lucas1, Manolito Torralba1, Karen E Nelson1

and Suzanne L Groah3,4
Abstract

Background: Clinical dogma is that healthy urine is sterile and the presence of bacteria with an inflammatory
response is indicative of urinary tract infection (UTI). Asymptomatic bacteriuria (ABU) represents the state in which
bacteria are present but the inflammatory response is negligible. Differentiating ABU from UTI is diagnostically
challenging, but critical because overtreatment of ABU can perpetuate antimicrobial resistance while
undertreatment of UTI can result in increased morbidity and mortality. In this study, we describe key characteristics
of the healthy and ABU urine microbiomes utilizing 16S rRNA gene (16S rDNA) sequencing and metaproteomics,
with the future goal of utilizing this information to personalize the treatment of UTI based on key individual
characteristics.

Methods: A cross-sectional study of 26 healthy controls and 27 healthy subjects at risk for ABU due to spinal cord
injury-related neuropathic bladder (NB) was conducted. Of the 27 subjects with NB, 8 voided normally, 8 utilized
intermittent catheterization, and 11 utilized indwelling Foley urethral catheterization for bladder drainage. Urine was
obtained by clean catch in voiders, or directly from the catheter in subjects utilizing catheters. Urinalysis, urine
culture and 16S rDNA sequencing were performed on all samples, with metaproteomic analysis performed on a
subsample.

Results: A total of 589454 quality-filtered 16S rDNA sequence reads were processed through a NextGen 16S rDNA
analysis pipeline. Urine microbiomes differ by normal bladder function vs. NB, gender, type of bladder catheter
utilized, and duration of NB. The top ten bacterial taxa showing the most relative abundance and change among
samples were Lactobacillales, Enterobacteriales, Actinomycetales, Bacillales, Clostridiales, Bacteroidales,
Burkholderiales, Pseudomonadales, Bifidobacteriales and Coriobacteriales. Metaproteomics confirmed the 16S rDNA
results, and functional human protein-pathogen interactions were noted in subjects where host defenses were
initiated.
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Conclusions: Counter to clinical belief, healthy urine is not sterile. The healthy urine microbiome is characterized by
a preponderance of Lactobacillales in women and Corynebacterium in men. The presence and duration of NB and
method of urinary catheterization alter the healthy urine microbiome. An integrated approach of 16S rDNA
sequencing with metaproteomics improves our understanding of healthy urine and facilitates a more personalized
approach to prevention and treatment of infection.

Keywords: Bacteriuria, Urine, Catheter, Neuropathic, Bladder, Microbiome, Metaproteome, Next-generation,
Personalized, rRNA
Background
Affecting nearly one half of all Americans over the
course of a lifetime [1] and with costs exceeding $1 bil-
lion annually [2], urinary tract infection (UTI) is a major
public health problem [3,4]. It is the most common uro-
logic disorder in the outpatient setting [3,4] and the
most common health care associated infection [3,5,6]. In
the health care setting alone, approximately 561777
UTIs occur annually, costing an estimated $1006 per in-
fection, totaling more than $500 million, and being re-
sponsible for 8205 deaths [5]. This does not include the
personal suffering or time lost from gainful employment.
Often considered an antecedent to UTI, asymptomatic

bacteriuria (ABU) represents an asymptomatic carrier
state recognized to have little impact on health or qual-
ity of life. This is in contrast to healthy urine, considered
to be sterile until reaching the urethra, which is colo-
nized by facultative anaerobic Gram-negative rods and
cocci. The most common risk factor for the develop-
ment of ABU and UTI is use of a urinary catheter [5-7],
as catheters provide a conduit for bacterial colonization
and symptomatic infection. Resolution of ABU typically
occurs with removal of the urinary catheter. This is not
possible in many cases, however, as the urinary catheter
facilitates function and emptying in cases of bladder
impairment.
The clinical distinction between symptomatic UTI and

ABU is not trivial since symptomatic UTI requires treat-
ment and perhaps further evaluation irrespective of the
circumstances in which the UTI occurred, while ABU
does not. Exceptions to this rule include the treatment
of ABU in select at-risk populations, such as pregnant
women, which has been shown to be associated with
improved outcomes [8]. Distinction between these states
is particularly relevant, as renewed urgency and heigh-
tened focus have been placed on UTI occurrence by na-
tional policy-makers and payers. The Centers for
Medicare & Medicaid Services (CMS) has identified
catheter-associated UTI, the most common hospital
acquired infection, as a “never event”. Effective in 2008,
this has resulted in non-reimbursement for catheter-
associated UTIs that were not present on admission to
acute care hospitals [9,10]. An unintended consequence
of designating catheter-associated UTI as a “never event”
is more aggressive screening for ABU and UTI upon ad-
mission of patients to hospitals, a strategy that may lead
to increased unnecessary antibiotic treatment and emer-
gence of antimicrobial resistance.
To achieve improved outcomes in the care of patients

with ABU and UTI, improved information distinguishing
states of urine in health and disease is needed. To this
end, we sought to first describe states of urinary health
utilizing a highly sensitive, culture independent approach
to determine whether the urine microbiome of healthy
people who are at risk for ABU because they utilize
urinary catheters differs from that of healthy controls,
and if so, to identify key factors or bacterial signatures
that might ultimately lead to UTI requiring antimicro-
bial treatment. Subjects with neuropathic bladder due to
spinal cord injury who are known to be at highest risk
for ABU and UTI due to their need for catheter-assisted
bladder management [4,11,12] were assessed and com-
pared with healthy controls to achieve our goal.

Methods
The study was approved by the MedStar Institutional
Review Board (IRB). All study personnel were certified
in and the study protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki as
reflected in approval by the MedStar IRB.

Sample acquisition and clinical urinalysis
Patients and healthy controls were recruited into this
IRB-approved study (NRH IRB# 2011–019) from the out-
patient clinic and inpatient ward at National Rehabilita-
tion Hospital (Washington, DC). Following written
consent, urine samples were obtained from 26 healthy,
non-SCI controls and 27 with neuropathic bladder (NB)
due to spinal cord injury (SCI). Patients provided urine
samples by sterile collection using the means by which
they customarily empty their bladder (i.e. midstream
collection during voiding, or sterile catheterization if un-
able to void). (Table 1) The samples were coded with an
anonymous research identification number and separated
into two aliquots: one, for standard urine analysis and
culture (Quest Diagnostics) and another for microbiome



Table 1 Patient demographics

Group Gender Age Race/Ethnicity Months with
NB

Urinanalysis Urine culture with >50000 cfu

Leukocyte
esterase

WBC
(no./hpf)

Healthy
controls

Female
(57.7%)

Mean
35.6

S01 Female 40 Asian n/a NEG 0 NEG

S02 Male 24 Asian n/a NEG 0 NEG

S03 Female 32 Caucasian n/a NEG 0 NEG

S04 Female 35 Caucasian n/a NEG 0 Streptococcus (beta-hemolytic)

S05 Male 32 Caucasian n/a NEG 0-1 NEG

S06 Female 57 Caucasian n/a NEG 0-1 NEG

S07 Male 35 Caucasian n/a NEG 0-1 NEG

S08 Female 43 African American n/a NEG 0-1 NEG

S09 Female 25 Caucasian n/a NEG 0-1 NEG

S10 Female 34 Caucasian n/a NEG 0-1 NEG

S11 Male 33 Caucasian n/a NEG 0-1 NEG

S12 Male 29 Asian n/a NEG 0-1 NEG

S13 Male 35 Caucasian n/a NEG 0-1 NEG

S14 Female 22 Caucasian n/a NEG 0-1 Staphylococcus

S15 Female 34 Asian n/a NEG 0-1 Lactobacillus

S16 Female 45 Caucasian n/a NEG 0-1 Lactobacillus

S17 Female 46 African American n/a TRA 0-1 Escherichia coli

S18 Female 51 Asian n/a NEG 1-2 Escherichia coli,
Staphylococcus aureus

S19 Female 40 Caucasian n/a NEG 1-2 Lactobacillus

S20 Male 50 Caucasian n/a NEG 1-2 NEG

S21 Male 25 Caucasian n/a NEG 5-9 NEG

S22 Male 29 Caucasian n/a 1+ 1-2 NEG

S23 Female 30 Caucasian n/a 1+ 3-4 NEG

S24 Male 39 Caucasian n/a 2+ 5-9 NEG

S25 Female 27 Asian n/a 2+ 100+ Escherichia coli

S26 Male 33 Asian n/a 3+ 30-49 NEG

NB - void Female
(37.5%)

Mean
37.3

Mean 41.5

S27 Male 20 African American 9 ND ND NEG

S28 Male 31 African American 157 ND ND NEG

S29 Male 19 Caucasian 3 NEG 1-2 Klebsiella pneumoniae

S30 Female 41 African American 1 NEG 1-2 Enterococcus faecalis

S31 Female 54 Caucasian 1 TRA 1-2 NEG

S32 Male 31 African American 158 TRA 3-4 Enterococcus faecalis

S33 Male 48 Hispanic 1 2+ 5-9 Escherichia coli,
Enterococcus faecalis

S34 Female 54 Caucasian 2 2+ 5-9 Klebsiella oxytoca

NB-IC Female
(50.0%)

Mean
44.1

Mean 140.1

S35 Male 40 African American 84 NEG 0 Escherichia coli

S36 Female 36 Caucasian 7 NEG 0-1 Escherichia coli

S37 Female 55 Caucasian 3 NEG 1-2 NEG

S38 Female 55 Caucasian 442 NEG 1-2 NEG
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Table 1 Patient demographics (Continued)

S39 Male 48 Native American 261 NEG 3-4 Klebsiella pneumoniae

S40 Male 48 Native American 260 1+ 3-4 NEG

S41 Female 50 Caucasian 2 2+ 3-4 NEG

S42 Male 21 African American 62 2+ 5-9 Proteus

NB-FC Female
(54.5%)

Mean
37.6

Mean 136

S43 Female 47 African American 79 ND ND NEG

S44 Female 47 African American 80 NEG 0 Enterococcus faecalis,
Gram Negative Rods

S45 Male 23 African American 20 NEG 0-1 Escherichia coli (ESBL),
Klebsiella pneumoniae,
Providencia stuartii,
Pseudomonas aeruginosa,
Enterococcus faecalis

S46 Female 40 African American 236 NEG 1-2 Escherichia coli, Citrobacter
koseri (diversus),
Enterococcus faecalis

S47 Female 40 African American 235 NEG 3-4 NEG

S48 Female 61 Caucasian 469 TRA 1-2 Escherichia coli

S49 Male 27 African American 92 1+ 3-4 Pseudomonas aeruginosa

S50 Female 40 African American 235 1+ 15-19 NEG

S51 Male 48 African American 18 2+ 5-9 Escherichia coli,
Escherichia coli (ESBL),
Pseudamonas aeruginosa,
Enterococcus faecalis

S52 Male 20 African American 25 2+ 10-14 NEG

S53 Male 21 African American 7 2+ 50+ NEG

No.= number, WBC = white blood cells, hpf = high power field, HC = healthy control, IC = intermittent catheter, FC = Foley catheter, NEG = negative, TRA = trace,
n/a = not applicable, ND = not determined, ESBL = Extended-Spectrum-Beta-Lactamases.
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analysis. Quest Diagnostics performed analysis of urine
samples for nitrite formation, leukocyte esterase, and
microscopic examination for the presence and quantity
of leukocytes and erythrocytes in each sample. Bacterial
cultures were performed by inoculation of blood agar
plates and incubation at 37°C for 48 hours.

Sample preparation and PCR
Thawed urine samples were clarified by low-speed centri-
fugation and bacterial genomic DNA was extracted from
urine pellets by enzymatic digestion using a final concen-
tration of 20 mg/ml Lysozyme (Invitrogen) followed by
physical lysis using Lysing Matrix B tubes (QBiogene). A
previous study comparing mechanical and enzymatic
methods for extracting microbial genomic DNA showed
that mechanical cell disruption by bead beating produced
the highest bacterial diversity [13]. The samples were vor-
texed at maximum speed for 45 seconds using a Fastprep
fp120 (MP Biomedicals) then cooled on ice. DNA was
extracted from the lysate using phenol chloroform isoamyl
alcohol extraction and ethanol precipitation. 16S rDNA
sequences were generated by amplifying the V1-V3 region
of the bacterial 16S rRNA gene using primers 27F
and 534R fused with 454 adaptors and barcodes for
multiplexing. Primers targeting V2 and V3 were shown to
perform as well as full-length 16S rDNA sequence for
community clustering and taxonomic assignments [14].
The amplicons were normalized and pooled prior to

emulsion PCR and 454 sequencing (Roche, Inc.) using
titanium chemistry.

DNA sequence processing
The 16S rDNA sequence-processing pipeline used for
this study is composed of a selection of bioinformatics
tools proven to be accurate, robust and fast.. A supple-
mentary archive contains the dot language representation
of a graph depicting the entire workflow executed, out-
lining the specific parameters used for each command.
Initially, the SFF file, output from the sequencer, was

converted into fasta and qual files using the sffinfo pro-
gram included as a part of 454/Roche software package.
Subsequently, the trim.seqs function in mothur [15]
(version v.1.22.2) was used to de-multiplex sequencer
reads. No barcode mismatches, and up to one primer mis-
match were allowed past this step. The de-multiplexed
reads were processed using LUCY [16-18] to filter out
reads with low quality segments. At this point, the sub.
sample function of mothur was used to select an equal
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number of reads per biological sample (n=3671 based on
the biological sample with the fewest number of reads).
Subsequent, the screen.seqs function of mothur was used
to remove sequences shorter than 220 bases [17]. Further-
more CD-HIT-454 [19,20] was used to collapse duplicate
reads, while retaining their count for subsequent enrich-
ment statistics, (analogous to the functionality of the
unique.seqs function of mothur, but orders of magnitude
faster and less demanding on the computer hardware).
The sequences were aligned against the SILVA database of
16S rDNA sequences [15,21] to verify 1) the orientation of
noise-filtered sequences; and 2) the correct positioning of
the reads with respect to the expectation of which variable
regions should have been amplified and sequenced. There-
after, the remaining sequences were subjected to mothur’s
implementation of chimera slayer [15,22] to filter out
chimeric reads. The processed 16S rDNA data from this
study can be obtained at NCBI under BioProject ID 97505.

Taxonomical classification of OTU representative reads
Taxonomical classification of the final set of 82160 oper-
ational taxonomic unit (OTU)-representative reads
down to the genus level was performed using mothur’s
version of the RDP Bayesian classifier using a normal-
ized RDP training dataset [23]. The final step of the
pipeline clustered the sequences based on their similarity
to produce OTUs. Customarily, a similarity threshold of
97% has been used to define OTUs at approximately the
species level [24]. A module of CD-HIT suite [19] called
CD-HIT-EST was employed to perform species-level
read-clustering for subsequent analyses.

Statistical analyses
The orchestration and automation of steps has been
achieved using a custom set of in-house utilities written in
python and R [25] programming languages. These utilities
are available online as a part of the YAP package on github
[26]. JCVI grid infrastructure based on the Oracle Grid
Engine (OGE) was used for all steps described. Relative
abundance and diversity statistics were calculated within
mothur [15]. Further statistical analyses were accom-
plished using R. Heat maps were generated using the
heatmap.2 function of the gplots package available on
CRAN [25]. OTU counts have been normalized to 100%
per individual, to facilitate comparability. Only taxa (order
or genus) with a standard deviation greater than 5% across
all 52 individuals were used to generate the heat maps.
Differences between subject OTU communities were
assessed using the Bray-Curtis beta diversity statistic
implemented in the vegdist function, a part of vegan R
package available on CRAN. Clustering was accomplished
using average-neighbor-joining method implemented in
hclust function in the default installation of R. PCA ana-
lysis was performed using ade4 [27]. P-values used to
determine statistical significance in relative OTU differ-
ence plots were established using the default installation
of R and kruskal.test functions implementing the Kruskal-
Wallis rank-sum statistic test [28].

Phylogenetic tree building
OTU-representative sequences classified as either Lacto-
bacillales or Enterobacteriales were aligned using tools
available from Release 10 of the RDP web site [29]. Specif-
ically, sequences from OTUs composed of reads from
more than one individual were aligned to the RDP refer-
ence 16S rRNA sequence, taking into account secondary
structure. At most one nearest neighbor sequence from
RDP was recruited into the alignment per input sequence.
The alignment was downloaded and trimmed to remove
columns whose gap fractions were greater than 50%, using
Belvu [30]. Based on the alignment, a bootstrapped
Neighbor-Joining (NJ) tree was subsequently inferred
using paupFasta, an in-house wrapper script around the
PAUP* program as described [31], and edited using
Fig Tree [32]. In combination with nearest neighbor
taxonomy, BLASTN was used against the NCBI reference
RNA database, which lacks uncultured organisms, to iden-
tify certain Lactobacillales OTU-representative branches
that lacked classified RDP top matches, to the species
level, using a cut-off of 97% identity.

Proteomics
A urinary pellet specimen equivalent to 5–10 ml voided
urine washed two times with ~10 ml ice-cold PBS was
re-suspended in 1 ml of 10 mM ammonium bicarbonate
containing 0.1% Triton-X100, 0.5% octylglucoside, 5 μg/ml
leupeptin, 10 mM EDTA and 2 mM benzamidine. The
suspension was heated to 85°C for 5 min followed by
sonication (amplitude 4, Misonex 3000 sonicator) in 30s
on/15s off cycles 10 times on ice. The suspension was
centrifuged for 15 min at 16,100 x g and the supernatant
recovered. Following protein quantity estimates based on
SDS-PAGE analysis, an aliquot with ~10 μg protein was
digested at a 1:50 ratio (trypsin/protein) using Filter-
Aided Sample Preparation (FASP) [33]. The digestion
mixture was reconstituted in 50 μl 0.1% formic acid. For
shotgun proteomic analysis, peptides in a 20 μl sample
aliquot were separated on a capillary C18 LC column in
122 min binary gradient runs from 97% solvent A (0.1%
formic acid) to 80% solvent B (0.1% formic acid, 90%
acetonitrile) at a flow rate of 350 nl/min. Nano-
electrospray into the source was followed by mass analysis
and spectral acquisition in automated MS/MS mode, with
the top five parent ions selected for fragmentation in scans
of the m/z range 350–2,000 and a dynamic exclusion
setting of 90 sec. The LC-MS/MS workflow using the
LTQ-XL ion trap system (Thermo Fisher Scientific) was
previously described in more detail [34]. The instrument
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was calibrated prior to performance of LC-MS/MS experi-
ments with 200 nmol human [Glu1]-fibrinopeptide B (M.
W. 1570.57), verifying that peaks representing ion counts
had widths at half-height of <0.25 min, signal/noise
ratios >200 and peak heights >107. The LTQ search para-
meters (+1 to +3 ions) included mass error tolerances of
± 1.4 Da for peptide precursor ions and ± 0.5 Da for pep-
tide fragment ions, selecting monoisotopic m/z values.
The search engine used to select these parameters and
identify peptides and proteins was Mascot v.2.3 (Matrix
Science). The protein sequence database was comprised of
19 bacterial genomes (details in Additional file 1) and
Uniref90’s human database subset [35]. We limited this
database to the human Uniref90 subset and 19 bacterial
genomes frequently associated with ABU and UTI, be-
cause significant computational challenges for peptide-
spectral match (PSM) assignments are encountered when
very large protein databases are used [36]. As described
in Additional file 1, we used stringent criteria for PSMs
(q-value <=0.01; PEP-value <=10-4) using the Mascot
Percolator algorithm that improves discrimination be-
tween correct and incorrect PSMs, particularly when the
searched sequence space in the database is large [37].

Results
Urine samples were obtained from 26 healthy, non-SCI
controls and 27 individuals with NB due to SCI at the
National Rehabilitation Hospital in Washington, DC.
Among those with SCI and NB, 8 voided spontaneously
without a catheter, 8 emptied by clean intermittent cathe-
terization (IC), and 11 used indwelling urethral Foley cathe-
terization (FC) (Table 1). Frozen, resuspended pellets from
the urine samples were analyzed with culture-independent
surveys of bacterial 16S rDNA and urinary proteins.
A total of 589454 quality-filtered 454 16S rDNA se-

quence reads were processed through a NextGen 16S
rDNA analysis pipeline [26] (Additional file 2) where
taxonomy of species-level operational taxonomic units
(OTUs) was determined using the RDP classifier [38].
Analysis of the bacterial community in these urine sam-
ples revealed between 5 and 236 species-level (97% iden-
tity) OTUs per individual (Additional file 3). Per sample
taxonomic profiles were generated, showing considerable
sample-to-sample variation (Additional file 4). To better
visualize sample-to-sample taxonomic profiles, a heat
map was generated, clustering the distribution of OTU
taxonomy at the level of bacterial order using the Bray-
Curtis index (Figure 1A). The top ten bacterial taxa
showing the most relative abundance and change among
samples were Lactobacillales, Enterobacteriales, Actino-
mycetales, Bacillales, Clostridiales, Bacteroidales, Bur-
kholderiales, Pseudomonadales, Bifidobacteriales and
Coriobacteriales (Figure 1A). The Lactobacillales and
Enterobacteriales were the two most relative abundant
and changing taxonomic groups.

Urinary microbiome differed by gender and bladder
function
To determine whether distinct microbial signatures were
associated with gender (male versus female) and/or blad-
der function (healthy control versus NB), samples were
grouped by these variables. Taxonomic counts were then
normalized by total number of OTUs per sample, and
visualized by a heatmap, clustering the distribution of
OTUs at the level of bacterial genus using the Bray-
Curtis index (Figure 1B). The samples were colored by
relative abundance (red/warm most abundant to blue/
cool least abundant). Six main taxonomic profile clusters
emerged with distinct patterns when grouped by gender
and bladder function. Cluster 1 was composed of almost
an equal proportion of healthy and NB samples, clusters
2 and 3 were dominated by healthy controls, whereas
clusters 4–6 were entirely composed of patients with NB
(Figure 1B). The 2 “healthy” clusters, (2 and 3) were dis-
tinguished by gender, with females in cluster 2 and males
in cluster 3, and by bacterial genus, Lactobacillus group-
ing with females in cluster 2 and completely absent in
the male-dominated cluster 3. Cluster 3 was composed
of different Gram-positive organisms. Cluster 1 had the
most diverse bacterial genus profile, composed largely of
Lactobacillus, but not as abundant as cluster 2 with ele-
ments of cluster 3 and a few potentially pathogenic gen-
era (Enterococcus, Salmonella, and Peptoniphilus).
Closer inspection of clusters 4–6 showed a very different
pattern of bacteria, with known UTI pathogens dominat-
ing the profiles (Figure 1B). Cluster 4 was primarily
composed of Enterococcus, Escherichia and Salmonella.
Cluster 5 was dominated by Klebsiella sp. and was the
only cluster comprised of all males. Cluster 6 had the
most Enterococcus counts of any cluster and also con-
tained Aerococcus and Proteus sp.
By taking the difference in normalized relative abundance

between controls and SCI groups, the most relative abun-
dant bacterial taxa per group as confirmed (Figure 1C).
Statistical significance was established using the Kruskal-
Wallis test. Significant differences (P < 0.05) between
the top relative OTU counts suggest that Lactobacillus,
Corynebacterium, Gardnerella, Prevotella and Enterococcus
define gender differences (“+” in Figure 1C). Lactobacillus,
Klebsiella, Corynebacterium, Staphylococcus, Streptococcus,
Gardnerella, Prevotella, Escherichia and Enterococcus
defined statistically significant differences between healthy
bladder controls and NB (“*” in Figure 1C).

Urinary microbiome differed with duration of NB
To further investigate the dynamics of the urinary micro-
biome in NB, the NB group was divided into bins based
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Figure 1 Differences in relative bacterial OTU counts between neuropathic and healthy bladder in males and females. For every
individual, the OTU counts were normalized to the individual's total OTU count. A heat map of the clustered distribution of OTU taxonomy at the
level of bacterial order (A) and genus (B) was constructed using the Bray-Curtis index. For panels A and B, only the taxa with a standard deviation
> 5% across all individuals are shown. Differences in the average OTU count between females and males are plotted in light and dark gray,
respectively (C). In panel (C), the top 15 (8%) most abundant bacterial OTUs are represented. The X-axis indicates the difference in relative OTU
counts per bacterial genus indicated on the Y-axis. Statistical significance was established using Kruskal-Wallis test. Significant differences
(P < 0.05) between the relative OTU counts are indicated by an asterisk (*) for bladder function, and a plus sign (+) for gender.
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on the time post SCI. The bins consisted of 0–2 months
(n=5), 3–12 months (n=5), 13–48 months (n=3), and 49+
months (n=14). Principal component analysis (PCA)
revealed that the healthy control group and the 0–2
month duration were very similar (Figure 2). Likewise,
the 13–48 and 49+ month groups were similar to each
other, while the 3–12 month group was too distorted
by one outlier to provide meaningful information.
Enterococcus and Escherichia emerged as major contribu-
tors to these profiles as illustrated in the vector diagram
(inset, Figure 2).

Urinary microbiome differed with bladder management
To get an overview of bacterial species variation within
the NB group, differences in microbiome taxonomic
profiles between males and females and among bladder



0 ~ 2

13 ~ 48
3 ~ 12

49 +
Healthy

 Corynebacterium

 Enterococcus 

 Escherichia 

 Lactobacillus
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Figure 2 OTU differences among individuals by duration of neuropathic bladder. A PCA analysis of the OTU counts of 52 individuals. The
points are circled and colored based on the duration (in months) of neuropathic bladder (see key). The inset depicts a vector plot indicating the
most influential principal component (bacterial genus).
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management groups were plotted (Figure 3). Lactobacil-
lus species were significant (P < 0.05) contributors to fe-
male healthy controls and the void NB groups, while
Corynebacterium sp. defined the healthy bladder male
urinary microbiome (Figure 3). The preponderance of
Enterococcus sp. in male NB observed in Figure 1C was
primarily within the patients with NB who emptied by
spontaneous voiding (Figure 3).

Phylogenetic tree of the urinary Lactobacillales revealed
potentially pathogenic species
A phylogenetic tree was constructed with OTU repre-
sentatives of all OTUs with matches to Lactobacillales
and nearest neighbors in the RDP database in order to
provide an environmental context and determine
species-level taxonomy (Figure 4). Labels of the tree
were colored based on NB composition. Red indicates
OTUs composed only of samples from NB, light red
indicates OTUs with a majority composition of NB sam-
ples, while dark blue denotes OTUs only solely of
healthy controls, and light blue illustrates OTUs with a
majority of reads from healthy controls. There is much
greater phylogenetic diversity among the Lactobacillus
and Streptococcus branches (green and gray shading, re-
spectively, Figure 4). Aerococcus and Enterococcus
branches are dominated by OTUs (red leaves) from
urine of NB patients, suggesting qualitatively that these
two genera may be important indicators of bacteriuria,
or of catheter usage. In contrast to these two branches,
the Lactobacillus and Streptococcus branches are largely
comprised of OTUs from healthy controls with a few
exceptions (red leaves). One such exception was Lacto-
bacillus iners (Figure 4), which was previously shown to
significantly contribute to UTI [39,40]. Another excep-
tion was determined to be Streptococcus salivarius, a lac-
tic acid-producing Gram-positive organism typically
found in the oral cavity, and an opportunistic pathogen
implicated in bacteremia [41-43] and septicemia [44].

Phylogenetic diversity of the urinary enterobacteriales
In contrast to the Lactobacillales, the Enterobacteriales
had no OTUs composed solely of healthy controls; indi-
cating this group of bacteria may be a potential indicator
of future UTI (Figure 5). Shaded regions of the tree
noted unambiguous genus taxonomy as follows: Escheri-
chia, Enterobacter, Klebsiella, Proteus, Morganella, and
Providencia. All of these genera have been associated
with UTI, and dominated the tree. Klebsiella stood out
from the others, having been divided into three distinct
branches. Top matches to N2-fixing, plant-associated
Klebsiella pneumoniae and K. variicola isolates rather
than known K. pneumoniae clinical strains suggests that
N2-fixing, plant-associated Klebsiella may exist in urine.
Further work is needed to confirm this result.
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Metaproteomics reveals anti-microbial and pro-
inflammatory responses in the absence of diagnosed UTI
Shotgun proteomic data for a subset of nine urinary
samples searching a protein sequence databases of 19
bacterial genomes were compared with the OTU ana-
lysis derived from 16S rDNA sequencing. In addition to
protein identifications targeting the 19 species frequently
associated with UTIs or urethra colonization, a non-
redundant human protein database was searched to as-
sess the detection of host responses towards bacterial
colonization. While proteomic analysis identified more
species than those diagnosed by culture methods, it did
not identify the fastidious anaerobic or microaerophilic
bacteria frequently assigned by the RDP classifier in the
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16S rDNA analysis with the exception of Lactobacillus.
We assume this to be due to species abundance issues.
Proteins encoded by Escherichia, Klebsiella and Entero-
bacter species were identified in half of the examined
samples, generally in agreement with 16S rDNA data
(Table 2). Metaproteomic profiles allowed preliminary
insights into the production of bacterial factors interact-
ing with the urinary tract environment. Identifications of
such proteins as limited to those urine donor samples
with evidence for the initiation of pro-inflammatory and
microbicidal host defenses (high spectral counts for cal-
protectin subunits; identification of lactotransferrin, mye-
loperoxidase and eosinophil peroxidase). We emphasize
that the sample sizes are too small to predict whether
these observations will be reproducible using larger-scale
proteomic surveys. Pseudomonas aeruginosa, Enterobac-
ter hormaechei and E. coli (known opportunistic patho-
gens in the urinary tract) produced proteins for iron/
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siderophore acquisition and high mobility (flagellins) in
subjects 36 and 51 (Table 3). Flagellins are important for
swarming and spread in the urogenital tract during infec-
tions [45]. The iron-sequestering protein lactotransferrin
may be expressed and released into the urinary tract by
neutrophils to sequester iron, which in turn, E. coli and
E. hormaechei may counteract by addition of copious
amounts of iron/siderophore receptors to the outer
membrane protein repertoire (Table 3). While the S100-
A8 and S100-A9 calprotectins appear to have numerous
physiological functions, one of them is to sequester zinc
in response to sensing the presence of bacterial patho-
gens. This sequestration can inactivate metalloprotei-
nases that the bacteria produce and secrete to invade the
host tissue [46]. Such proteases were not identified in
our datasets.
Several other proteins implicated in the innate im-
mune response were detected (Table 3). Calprotectin has
acute and chronic pro-inflammatory functions and
recruits immune cells to the site of inflammation [47].
Antimicrobial peroxidases, such as eosinophil and mye-
loperoxidase, produce reactive oxygen species during the
respiratory burst of neutrophils and are directly microbi-
cidal. Like calprotectin, annexin A1 is a calcium-binding
protein that was detected in high abundance primarily
in those donors where respiratory burst of neutrophils
did seem to be muted (subjects 1, 16, 31, 34, 37, 39).
These proteins are implicated in innate immunity, influ-
ence cell apoptosis and function as damage-associated
molecular patterns (DAMPs) [48,49]. For a complete list
of bacterial and human proteins profiled in this study,
see Additional file 1.



Table 2 Bacterial profiles of urinary samples

Urine
donor

Species
(proteome)

Species
(urine culture)

Species (16S
rRNA profile)*

Leukocyte
Esterase

WBC
(no./hpf)

1(HC) - - Lactobacillus NEG 0

16(HC) Lj Lactobacillus spp Lactobacillus NEG 0-1

31(void) Ec, Eh, Kp - Enterobacter, Enterococcus, Escherichia,
Klebsiella, Lactobacillus, Streptococcus

TRA 1-2

33(void) - Ec, Ef Enterobacter, Enterococcus,
Escherichia, Klebsiella

2+ 5-9

34(void) Ec, Eh, Kp Klebsiella oxytoca Enterobacter, Escherichia,
Lactobacillus, Streptococcus

2+ 5-9

36(IC) Ec, Eh Ec Enterobacter, Escherichia, Klebsiella,
Lactobacillus, Streptococcus

NEG 0-1

37(IC) - - Enterobacter, Enterococcus, Escherichia, Klebsiella,
Lactobacillus, Pseudomonas, Streptococcus

NEG 1-2

39(IC) Ec, Kp Kp Enterobacter, Klebsiella,
Lactobacillus, Streptococcus

NEG 3-4

45(FC) Eh, Kp, Pa, Pm# Ec, Ef, Kp, Pa, Ps Enterobacter, Enterococcus, Escherichia, Klebsiella,
Lactobacillus, Proteus, Pseudomonas, Streptococcus

NEG 0-1

51(FC) Ec, Eh, Pa, Sp Ec, Ef, Pa Enterobacter, Enterococcus, Escherichia, Klebsiella,
Pseudomonas, Streptococcus

2+ 5-9

*Not comprehensive. 16S rDNA data is at the genus level.
#The species for this sample were determined from urine cultures, but based on shotgun proteomic analysis after protein extraction from colonies.
Ec Escherichia coli, Eh Enterobacter hormaechei, Ef Enterococcus faecalis, Kp Klebsiella pneumoniae, Pa Pseudomonas aeruginosa, Pm Proteus mirabilis, Ps Providencia
stuartii, Sp Streptococcus pneumoniae.
WBC = white blood cells, HC = healthy control, IC = intermittent catheter, FC = Foley catheter, NEG = negative, TRA = trace.
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Discussion
In this study we describe the healthy urine microbiome
in a heterogeneous population of men and women with
and without NB, using both 16S rDNA sequencing and
metaproteomic analysis. Based on other reports [50-53]
and including our data, this is further confirmation that
the commonly held clinical belief that healthy urine
should be sterile is false. Specifically, our data indicate
that (1) when collected by the routine method of “clean,
midstream catch”, healthy urine is not aseptic; (2) the
healthy and NB urine microbiomes differs by gender; (3)
the asymptomatic bacteriuria urine microbiome of
people with NB differs from that of healthy controls;
and (4) the asymptomatic bacteriuria urine microbiome
of people with NB differs depending on duration of ex-
posure to and type of urinary catheter.
This is the first report comparing the healthy urine

microbiome in male and female subjects. Historically,
and based on cultivation results, clinicians have assumed
urine to be ‘sterile’. However, Wolfe et al. recently used
16S rDNA sequencing to identify uncultivated bacteria
in the urine of healthy women [53]. Our data confirm
these results in women, and further show that unculti-
vated bacteria are also present in the urine of healthy
men. Moreover, we demonstrate that the healthy urine
microbiome of males and females differs, with men hav-
ing significantly more relative abundance of Corynebac-
terium, a common component of the superficial skin
flora, and women having significantly greater relative
abundance of Lactobacillus. Critical to this discussion is
an understanding that because all samples from healthy
subjects and those of subjects with NB who voided were
collected by midstream clean catch, it is not possible to
distinguish whether the microbes identified originated in
the bladder, urethra, or both. Therefore, the possibility
exists that the identified urine microbiomes are popu-
lated by species that exist in the bladder, urethra, or
both.
Our finding of predominance of Corynebacterium in

healthy males suggests that this microbe may contribute
to the healthy urine microbiome. Not only was Coryne-
bacterium identified to a significantly greater degree in
healthy males compared to those with NB, males with NB
who voided and were sampled by clean catch had the low-
est abundance of this species. Dong et al. compared clean
catch urine and distal urethral swabs in healthy volunteers
and similarly found a predominance of Corynebacterium
in both types of sampling but in significantly greater
amounts in the clean catch urine samples [51]. Taken
together, the data suggest that Corynebacterium may
reside in the proximal urethra and/or bladder in addition
to the distal urethra, and may play a role in the healthy
urine microbiome.
While it is well established that in most healthy

women of childbearing age the vaginal tract is colonized
by Lactobacillus species [54-56], this has not been inves-
tigated in women with NB. We too found a clear pre-
ponderance of Lactobacillus in healthy control females;



Table 3 Human and bacterial proteins potentially contributing directly or indirectly to host-pathogen interactions in
the urinary tract

Human protein Gene name PSMs Functional role Urine donor

Protein S100-A9 Calprotectin L1H subunit S10A9 60 Pro-inflammatory, metal ion-chelating 1,16,33,36,51

Protein S100-A8, Calprotectin L1L subunit S10A8 10 Pro-inflammatory, metal ion-chelating 1,16,36,51

Protein S100-A12 S10AC 14 Pro-inflammatory 36

Myeloperoxidase PERM 13 Microbicidal 36,51

Eosinophil peroxidase PERE 4 Microbicidal 51

Lactotransferrin TRFL 6 Pro-inflammatory, iron-chelating 36

14-3-3 protein sigma SFN 5 DNA damage response, cell proliferation 16

SNC66 protein - 12 Secreted, Ig-like domain 51

Heat shock protein beta-1 HSPB1 20 Anti-inflammatory, cell proliferation 1

Annexin A2 ANXA2 8 Cell proliferation, cell adhesion 16

Uromodulin UMOD 78 Cell protection, inhibitor of Ca crystallization, 1,16,31,36,37,39,51

Cystatin-B CYTB 8 Immunomodulatory, cathepsin inhibitor 1,16

14-3-3 protein zeta/delta YWHAZ 2 Adaptor protein, tyrosine phosphorylation pathways 1,16

Serpin B3 SPB3 7 Immunomodulatory, serine protease inhibitor 16

Small proline-rich protein 3 SPRR3 7 Cell repair and proliferation 16

Annexin A1 ANXA1 28 Anti-apoptotic, T-cell differen-tiation, signaling pathways 1,16,31,34,37,39

Glutathione S-transferase P GSTP1 3 Anti-apoptotic, tyrosine phosphorylation pathways 1,16,31,34,37

Bacterial protein Species*

Colicin receptor CirA Ec 2 Iron/colicin-binding 36

OM heme/hemoglobin receptor ChuA Ec 12 Iron-binding 51

Putative pesticin receptor Psn Ec 23 Iron-binding 51

Ferrienterobactin receptor FepA Eh 9 Iron-binding 51

Putative fimbrillin MatB Ec 2 Adhesion 51

Flagellin protein type B FliC Pa 13 Mobility and adhesion 51

Flagellin protein FliC Eh 8 Mobility and adhesion 51

Flagellin Ec 7 Mobility and adhesion 51

Ferrienterobactin receptor FepA Ec 22 Iron-binding 36, 51

Section one of the table lists proteins with potential pro/anti-inflammatory, immune-modulatory and microbicidal activities. Section two lists identified bacterial
proteins implicated in virulence/survival or serving as a target for host defensive mechanisms.
PSMs: the highest number of peptide-spectral matches (PSMs) is provided for each listed protein * for species abbreviations, see Table 2 (minimal Mascot
Percolator PEP value: 10-4).
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however, in addition to the greatest relative abundance
of Lactobacillus in healthy control females, there was a
progressive reduction in abundance of Lactobacillus in
females with NB who void (clean catch sample) or who
use intermittent catheterization, and females with NB
who use indwelling (Foley) catheters (Figure 3 inset).
This may suggest that either increasing exposure to a
urinary catheter and/or increasing severity of NB can in-
fluence the ability of Lactobacillus to colonize the urinary
tract. Alternatively, Lactobacillus may merely be a con-
taminant of the external urethra that arises from proxim-
ity to the vaginal flora. However, this appears less likely
since Wolfe et al. showed the presence of Lactobacillus
in urine collected by transurethral catheters and supra-
pubic aspirate, which samples the bladder directly [53].
Because lactic acid-producing Lactobacillus species
contribute to controlling the growth of more virulent
bacteria that cannot survive in a more acidic environ-
ment, the presence of Lactobacillus within the urethra
and/or bladder may be protective. This has been
shown to be the case in infants [57] and may also be
true for males as Lactobacillus has been shown to be
present in clean catch urine samples of healthy males
by Dong et al. [51] and in our study. Our findings
suggest that Lactobacillus may be a commensal organism
present during states of health, more in females than in
males, and that the microbiome of at-risk populations
may be characterized by a distinct lack of Lactobacillus,
which perhaps creates a better environment for the
growth of pathogenic microorganisms. Together, these
findings suggest that the clinical objective of ‘sterile’,
microbe-free urine may not be optimal for the patient.
This is the first report of 16S rDNA sequencing of

urine in people with NB, providing much more detail
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about the ABU state than has previously been available
through cultivation-based evidence. Standard cultivation
diagnostics show populations vulnerable to bacteriuria
include nursing home residents utilizing long-term
indwelling catheterization [58], institutionalized Veter-
ans utilizing intermittent catheterization [59], and
patients with SCI who utilize urinary catheters [60-62].
Our analysis not only confirms the cultivation-based evi-
dence, but also shows that a significantly different
microbiome was present in the NB group, and that 16S
rDNA sequencing specifically identifies microorganisms,
such as Enterobacteriales, as potential major contribu-
tors to a pathogenic microbiome. These results supple-
ment those from Bank et al., where urine specimens of
142 consecutive patients with varied genitourinary path-
ology (kidney stones, indwelling catheters, or suspected
UTI) were analyzed with standard cultivation and
screened for Actinobaculum schaalii using PCR [50].
Those authors found that the most heavily colonized
patients were those who were older and who utilized
indwelling urinary catheters, while the younger patients
who typically use intermittent catheterization (and may
have utilized urinary catheters for a shorter amount of
time) were colonized with bacteria to a lesser degree.
The Enterobacteriaceae was most commonly isolated in
the catheterized specimens in that study. Significant
variance in medical comorbidities, underlying genitour-
inary pathology, and method of urine collection limit
any further comparisons to that study. Moreover, be-
cause our NB population was reportedly asymptomatic
(i.e. infection free), our findings demonstrate that in the
catheterized population, the microbiome is intrinsically
different than in controls, even in the absence of illness.
This distinction is important, since in the clinical setting
ABU is often inappropriately treated with antibiotics,
which may further disrupt the NB microbiome.
The present data also indicate that the urine micro-

biome of healthy subjects with NB became increasingly
abundant with Enterobacteriales with increasing dur-
ation of NB, whereas Lactobacillus decreased over time,
both in men and women. While the urinary microbiome
of men and women with NB remained similar to that of
healthy controls during the first several months after NB
diagnosis, by one year the urine microbiome was nearly
devoid of Lactobacillus and dominated by Enterococcus.
This further suggests a change in the microbiome with
duration of NB that may place patients at increased risk
of UTI.
Fundamental to these discoveries is the diverse sample

population and our novel analytic approach of utilizing a
combination of 16S rDNA sequencing in all subjects
and metaproteomics in a subsample. Clinical gold stand-
ard diagnostic testing when a patient presents with signs
and/or symptoms of UTI includes (1) urinalysis to
confirm urinary tract inflammation and (2) urine culture
to identify, quantify and predict antimicrobial resistance
to a given pathogen(s). We believe that 16S rDNA se-
quencing has the potential for translation to the clinic,
offering significant clinical advancement over diagnostic
urine culture because it provides a greater depth of
understanding and sensitivity pertaining to the compos-
ition of commensal and potentially pathogenic microbes
present in urine. Furthermore, prospective assessments
during varying periods of health and disease may allow
personalization of care that has not been possible to date
with our current diagnostic methods. Urinary metapro-
teomic profiles in parallel may contribute to the identifi-
cation of a host inflammatory response utilizing urinary
biomarkers with greater sensitivity and specificity for
UTI than traditional measures of urinary leukocyte es-
terase production or white blood cell count detected by
urinalysis. We hypothesize that protein profiles with
distinct abundance ratios of immunomodulatory versus
pro-inflammatory and microbiocidal molecules, are indi-
cative of either UTI or reflect asymptomatic colonization.
For instance, the presence of lactotransferrin in urine has
been used to support the notion of a “battle for iron”
being waged between the host and the pathogen, involv-
ing E. coli, particularly in the case of UTI by E. coli given
the abundance of its triad of iron acquisition receptors
[63]. While metaproteomics holds promise as a diagnos-
tic method to discriminate between symptomatic UTI
and ABU, more in-depth fractionation of samples is
needed to evaluate whether this method can reach the
sensitivity of 16S rDNA profiling methods. Larger patient
cohorts, including those diagnosed with UTI symptoms,
are required to assess if such ‘omics methods’ more ac-
curately differentiate UTI from ABU than current diag-
nostic standards. In addition, they suggest new
considerations that may impact preventive and treatment
options for people at-risk for UTI.
Several limitations of this study are to be considered

when interpreting the results. The major limiting factor
is that some subjects (healthy controls and NB subjects
who voided spontaneously) had urine collection via
midstream clean catch sampling while the subjects with
NB who managed their bladder with intermittent
catheterization or indwelling Foley (urethral) catheters
were sampled directly from the catheter. Therefore,
microbes identified in the former groups could be repre-
sentatives from the bladder, urethra, skin, or a combin-
ation of these microbiomes, whereas urine from subjects
in the latter groups represents bladder microbiota. This
distinction raises other questions, such as to what degree
do differing microbiomes in the urethra and bladder in-
fluence each other, and does a changing urethral micro-
biome represent a potential antecedent UTI state.
Further, given that clinical urine sampling is unlikely to
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become more invasive (via direct sampling from the
bladder), how do clinicians interpret the presence of bac-
teria in clean catch midstream urine samples that could
potentially originate from multiple anatomic locations?
Lastly, future studies will employ a larger sample size as
our results indicate that the urine microbiome differs by
a number of clinical factors requiring multiple stratifica-
tion points.

Conclusions
Contrary to clinical dogma that healthy urine is sterile;
these results suggest that the state of healthy urine is, in
fact, one of ‘asymptomatic bacteriuria’. Utilizing high
throughput sequencing and metaproteomics, we have
described the healthy urine microbiome of a number of
populations: male and female healthy controls and healthy
subjects with NB. Differing urinary microbiomes for males
and females were described. We have demonstrated that
NB and/or urinary catheterization impacts the healthy
urine microbiome in both genders and this varies by type
of bladder management and duration of NB. Furthermore,
the presence of a variety of urine microbiomes differing
on key, clinical characteristics suggests the benefit of a
more personalized approach to UTI care. Clearly, DNA
sequencing techniques allow for more specific assessment
of the contributing microorganisms than do current clin-
ical diagnostic standards, offering the potential for signifi-
cant clinical advancement of diagnostic methods for UTI,
which have otherwise remained relatively unchanged for
decades. Longitudinal differentiation of the urine micro-
biome at the time of, prior to, and after infection also will
be necessary to fully describe the course of disease and its
antecedents. These findings advance clinical translational
science toward improved diagnostics and more targeted
use of therapeutics.
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