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Abstract The proton polarizability effect in the muonic-
hydrogen Lamb shift comes out as a prediction of baryon
chiral perturbation theory at leading order and our calcu-
lation yields �E (pol)(2P − 2S) = 8+3

−1 µeV. This result is
consistent with most of evaluations based on dispersive sum
rules, but it is about a factor of 2 smaller than the recent result
obtained in heavy-baryon chiral perturbation theory. We also
find that the effect of �(1232)-resonance excitation on the
Lamb shift is suppressed, as is the entire contribution of the
magnetic polarizability; the electric polarizability dominates.
Our results reaffirm the point of view that the proton structure
effects, beyond the charge radius, are too small to resolve the
‘proton radius puzzle’.

1 Introduction

The eight standard-deviation (7.9σ ) discrepancy in the value
of proton’s charge radius obtained from elastic electron–
proton scattering [1] and hydrogen spectroscopy [2] on one
hand and from the muonic-hydrogen (µH) spectroscopy
[3,4] on the other, a.k.a. the proton charge radius puzzle [5,6],
is yet to meet its fully agreeable solution. One way to solve
it is to find an effect that would raise the µH Lamb shift by
about 310 µeV, and it has been suggested that proton struc-
ture could produce such an effect at O(α5

em), e.g. [7,8]. Most
of the studies, however, derive an order of magnitude smaller
effect of proton structure beyond the charge radius [9–15].

The O(α5
em) effects of proton structure in the Lamb shift

are usually divided into the effect of (i) the 3rd Zemach
moment, (ii) finite-size recoil, and (iii) polarizabilities. The
first two are sometimes combined into (i′) the ‘elastic’ 2γ

contribution, while the polarizability effect is often split
between (ii′) the ‘inelastic’ 2γ and (iii′) a ‘subtraction’ term,

a e-mail: alarcon@kph.uni-mainz.de

cf. Table 1. The ‘elastic’ and ‘inelastic’ 2γ contributions are
well constrained by the available empirical information on,
respectively, the proton form factors and unpolarized struc-
ture functions. The ‘subtraction’ contribution must be mod-
eled, and in principle one can make up a model where the
effect is large enough to resolve the puzzle [8].

In this work we observe that chiral perturbation theory
(χPT) contains definitive predictions for all of the above
mentioned O(α5

em) proton structure effects, hence no model-
ing is needed, assuming of course thatχPT is an adequate the-
ory of the low-energy nucleon structure. Some of the effects
were already assessed in the heavy-baryon variant of the the-
ory (HBχPT), namely: Nevado and Pineda [11] computed the
polarizability effect to leading order (LO) [i.e., O(p3)], while
Birse and McGovern [13] computed the ‘subtraction’ term
in O(p4) HBχPT (with the caveat explained in the end of
Sect. 4). Here, on the other hand, we work in the framework of
a manifestly Lorentz-invariant variant of χPT in the baryon
sector, referred to as BχPT [16–19]. At least the LO results
for nucleon polarizabilities are known to be very different
in the two variants of the theory, e.g., the proton magnetic
polarizability is (in units of 10−4 fm3): 1.2 in HBχPT [20]
vs. −1.8 in BχPT [21–23]. Thus, the LO effect of the pion
cloud is paramagnetic in one case and diamagnetic in the
other (see [24,25] for more on HBχPT vs. BχPT). Due to
these qualitative and quantitative differences it is interesting
to examine the BχPT predictions for the 2γ contributions to
the Lamb shift. Here we compute the polarizability effect at
LO BχPT and indeed find it significantly different from the
LO HBχPT results of Nevado and Pineda [11]; see Table 1.

Our result for the ‘subtraction’ and ‘inelastic’ contribu-
tions differ from most of the previous works because we have
neglected the effect of the nucleon transition into its lowest
excited state—the �(1232). We argue, however (in Sect. 3),
that the latter effect cancels out of the polarizability contri-
bution. Thus, even though the ‘subtraction’ and ‘inelastic’
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Table 1 Summary of available calculations of the ‘subtraction’ (second row), ‘inelastic’ (third row), and their sum—polarizability (last row) effects
on the 2S level of µH. The last column represents the χPT predictions obtained in this work; here the omitted effect of the �(1232)-resonance
excitation is missing in the first two (‘subtraction’ and ‘inelastic’) numbers, but it does not affect the total polarizability contribution where it is to
cancel out

(µeV) Pachucki [9] Martynenko [10] Nevado and
Pineda [11]

Carlson and
Vanderhaeghen [12]

Birse and
McGovern [13]

Gorchtein
et al. [14]

LO-BχPT
[this work]

�E (subt)
2S 1.8 2.3 – 5.3 (1.9) 4.2 (1.0) −2.3 (4.6)a −3.0

�E (inel)
2S −13.9 −13.8 – −12.7 (5) −12.7 (5)b −13.0 (6) −5.2

�E (pol)
2S −12 (2) −11.5 −18.5 −7.4 (2.4) −8.5 (1.1) −15.3 (5.6) −8.2(+1.2

−2.5)

a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the ‘elastic’ and ‘polarizability’ contributions
b Taken from Ref. [12]

values appear to be very different from the empirical values
due to neglect of the �(1232) excitation, the polarizability
contribution is not affected by this neglect.

The details of our calculation and main results are pre-
sented in the following section. Remarks on the role of the
�(1232) excitation are given in Sect. 3. The heavy-baryon
expansion of our results is discussed in Sect. 4. An “effective-
ness” criterion is applied to the HBχPT and BχPT results in
Sect. 5. The conclusions are given in Sect. 6. Expressions for
the LO χPT forward doubly virtual proton Compton scat-
tering (VVCS) amplitude and pion electroproduction cross
sections are given in Appendices A and B, respectively.

2 Outline of the calculation and results

We begin with the leading order chiral Lagrangian for the
pion and nucleon fields, as well as the minimally coupled
photons; see e.g. [16]. After a chiral rotation of the nucleon
field the Lagrangian resembles that of the chiral soliton
model; see [26] for details. As the result, the pseudovec-
tor π N N interaction transforms into the pseudoscalar one,
while a new scalar–isoscalar ππ N N interaction is generated.
The original and the redefined pion–nucleon Lagrangians,
expanded up to the second order in the pion field, take the
form

L(1)
π N = N

(
i /∂ − MN + gA

2 fπ
τ a /∂ πaγ5

− 1

4 f 2
π

τ aεabcπb /∂ πc
)

N + O(π3), (1a)

L′(1)
π N = N

(
i /∂ − MN − i

gA

fπ
MN τ aπaγ5

+ g2
A

2 f 2
π

MN π2 + (g2
A − 1)

4 f 2
π

τ aεabcπb /∂ πc

)
N + O(π3),

(1b)

where N (x) and MN is the nucleon field and mass, respec-
tively, πa(x) is the pion field; gA � 1.27, fπ � 92.4 MeV.

Upon the minimal inclusion of the electromagnetic field,
the two Lagrangians give identical results for the O(p3)

Compton scattering amplitude and the isovector term pro-
portional to (g2

A − 1) does not contribute. Working with the
second Lagrangian, however, simplifies a lot the evaluation
of the two-loop graphs needed for the Lamb-shift calcula-
tion. The resulting Feynman diagrams, omitting crossed and
time-reversed ones, are shown in Fig. 1.

These graphs represent an O(α2
em) correction to the

Coulomb potential and can be treated in stationary pertur-
bation theory. Since the Coulomb wave function is O(α

3/2
em ),

the first-order contribution of these graphs to the energy shift
is O(α5

em) as requested. As any energy transfer in the atomic
system brings in extra powers of αem, we neglect it, and hence
consider strictly the zero-energy forward kinematics. In this
case the Feynman amplitude M is a number in momentum
space, corresponding to a potential equal to M δ(�r). Because
of the δ-function only the S-levels are shifted:

�EnS = φ2
n M, (2)

where φ2
n = m3

r α
3
em/(πn3) is the hydrogen wave function at

the origin, for mr = m Mp/(m + Mp) the reduced mass
of the lepton–proton system, and m, Mp = MN the corre-
sponding masses of the constituents.

It is customary for the 2γ contributions to be split into
leptonic and hadronic parts, i.e.,

M = e2

2m

∫
d4q

i(2π)4

1

q4 Lμν(, q) T μν(P, q), (3)

where e2 = 4παem is the lepton charge squared, and

Lμν = 1
1
4 q4 − ( · q)2

[q2μν − (qμν + qνμ)  · q

+gμν( · q)2] (4)

is the leptonic tensor, with  and q the 4-momenta of the
lepton and the photons, respectively; gμν = diag(1,−1,−1,

−1) is the Minkowski metric tensor. The tensor T μν is the
unpolarized VVCS amplitude, which can be written in terms
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Fig. 1 The two-photon
exchange diagrams of elastic
lepton–nucleon scattering
calculated in this work in the
zero-energy (threshold)
kinematics. Diagrams obtained
from these by crossing and
time-reversal symmetry are
included but not drawn

(b) (c)(a)

(d) (e) (f)

(g) (h) (j)

of two scalar amplitudes:

T μν(P, q) = −gμν T1(ν
2, Q2) + Pμ Pν

M2
p

T2(ν
2, Q2), (5)

with P the proton 4-momentum, ν = P ·q/Mp, Q2 = −q2,
P2 = M2

p. Note that the scalar amplitudes T1,2 are even
functions of both the photon energy ν and the virtuality Q.
Terms proportional to qμ or qν are omitted because they
vanish upon contraction with the lepton tensor.

Going back to the energy shift one obtains [12]:

�EnS = αem φ2
n

4π3m

1

i

∫
d3q

∞∫
0

dν

× (Q2 − 2ν2) T1(ν
2, Q2) − (Q2 + ν2) T2(ν

2, Q2)

Q4[(Q4/4m2
) − ν2] . (6)

In this work we calculate the functions T1 and T2 by
extending the BχPT calculation of real Compton scatter-
ing [26] to the case of virtual photons. We then split the
amplitudes into the Born (B) and non-Born (NB) pieces:

Ti = T (B)
i + T (NB)

i . (7)

The Born part is defined in terms of the elastic nucleon form
factors as in, e.g. [13,27]:

T (B)
1 = 4παem

Mp

[
Q4(FD(Q2)+FP (Q2))2

Q4−4M2
pν

2 −F2
D(Q2)

]
, (8a)

T (B)
2 = 16παem Mp Q2

Q4 − 4M2
pν

2

[
F2

D(Q2)+ Q2

4M2
p

F2
P (Q2)

]
. (8b)

In our calculation the Born part was separated by subtract-
ing the on-shell γ N N pion loop vertex in the one-particle-
reducible VVCS graphs; see diagrams (b) and (c) in Fig. 1.

Focusing on the O(p3) corrections (i.e., the VVCS amplitude
corresponding to the graphs in Fig. 1) we have explicitly ver-
ified that the resulting NB amplitudes satisfy the dispersive
sum rules [28]:

T (NB)
1 (ν2, Q2)

= T (NB)
1 (0, Q2) + 2ν2

π

∞∫
ν0

dν′ σT (ν′, Q2)

ν′2 − ν2 , (9a)

T (NB)
2 (ν2, Q2)

= 2

π

∞∫
ν0

dν′ ν′ 2 Q2

ν′2 + Q2

σT (ν′, Q2) + σL(ν′, Q2)

ν′2 − ν2 , (9b)

with ν0 = mπ + (m2
π + Q2)/(2Mp) the pion-production

threshold, mπ the pion mass, and σT (L) the tree-level cross
section of pion production off the proton induced by trans-
verse (longitudinal) virtual photons, cf. Appendix B. We
hence establish that one is to calculate the ‘elastic’ con-
tribution from the Born part of the VVCS amplitudes and
the ‘polarizability’ contribution from the non-Born part,
in accordance with the procedure advocated by Birse and
McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (6) we
obtain the following value for the polarizability correction:

�E (pol)
2S = −8.16 µeV. (10)

This is quite different from the corresponding HBχPT result
for this effect obtained by Nevado and Pineda [11]:

�E (pol)
2S (LO-HBχPT) = −18.45 µeV. (11)

We postpone a detailed discussion of this difference till
Sect. 4.
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It is useful to observe that a much simpler formulas can be
obtained upon making the low-energy expansion (LEX) of
the VVCS amplitude, assuming that the photon energy in the
atomic system is small compared to all other scales. To lead-
ing order in LEX, we may neglect the ν dependence in the
numerator of Eq. (6) and, after Wick-rotating q to Euclidean
hyperspherical coordinates [i.e., setting ν = i Q cos χ, �q =
(Q sin χ sin θ cos ϕ, Q sin χ sin θ sin ϕ, Q sin χ cos θ)] and
angular integrations, find the following expression:

�E (pol)
nS =αem

π
φ2

n

∞∫
0

dQ

Q2 w(τ)

× [T (NB)
1 (0, Q2) − T (NB)

2 (0, Q2)], (12)

with the weighting function w(τ) shown in Fig. 2 and given
by

w(τ) = √
1 + τ − √

τ, τ = Q2

4m2


. (13)

Plugging in here the LO BχPT expressions for T (NB)
i given

in Appendix A, we obtain

�E (pol)
2S = −8.20 µeV, (14)

i.e., nearly the same as before the LEX, cf. Eq. (10). This
comparison shows that the LEX is applicable in this case,
i.e.: in the energy-shift formula of Eq. (6) the ν-dependence
of the numerator can to an extremely good approxima-
tion be neglected. As shown in Sect. 4, this approxima-
tion works well in the case of the HBχPT calculation
too.

To estimate the uncertainty of the LO result, we first
observe that for low Q the VVCS amplitudes go as

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Q2 (GeV2)

Fig. 2 Plot of the Q2 behavior of the weighting function depending
on the lepton mass. The blue dashed line is for the case of the electron,
w(τe), whereas the solid purple line is for the muon, w(τμ)

T (NB)
1 (0, Q2) � 4π Q2βM1, (15a)

T (NB)
2 (0, Q2) � 4π Q2(αE1 + βM1), (15b)

where αE1 and βM1 are the electric and magnetic dipole
polarizabilities of the proton (hence the name “polarizabil-
ity contribution”). Given the shape of the weighting func-
tion plotted in Fig. 2, the main contribution to the integral
in Eq. (12) comes from low Q’s, and therefore βM1 can-
cels out. The dominant polarizability effect in the Lamb shift
thus comes from the electric polarizability αE1. The BχPT
physics of αE1 is such that to obtain the empirical number
of about 11 (in units of 10−4 fm3), 7 comes from LO (π N
loops) and 4 from NLO (π� loops), with uncertainty of about
±1 from the O(p4) low-energy constant [26]. Since in the
present calculation we include only the LO π N loops, we
expect our value to increase in magnitude when going to
the next order (i.e., including the π� loops). As the result,
we replace the usual uncertainty of 15 % (� mπ/GeV )
due to the higher-order effects by an uncertainty of 30 %
[� (M� − Mp)/GeV] toward the magnitude increase, antic-
ipating in this way the effect of the π� loops. The 15 %
uncertainty remains toward the magnitude decrease. With
the uncertainty thus defined, our result is

�E (pol)
2S (LO-BχPT) = −8.2+1.2

−2.5 µeV. (16)

This is the number given in the third row of the last column in
Table 1, where it can be compared to some previous results.
Most of them agree on the polarizability contribution. As for
the ‘inelastic’ and ‘subtraction’ contributions, their meaning-
ful comparison can only be made together with discussing
the role of the �(1232)-resonance excitation.

3 Remarks on the �(1232) contribution
and ‘subtraction’

Presently the most common approach to calculate the polar-
izability effect relies on obtaining the VVCS amplitude from
the sum rules of (9). Unfortunately, even a perfect knowledge
of the inclusive cross sections (or, equivalently, the unpolar-
ized structure functions) determines the VVCS amplitude
only up to the subtraction function T (NB)

1 (0, Q2). The total
result is therefore divided into the ‘inelastic’ part which is
determined by empirical cross sections, and the ‘subtrac-
tion’ term which stands for the contribution of the subtraction
function.

We can also perform such a division and based on the
low-energy version of the sum rules [i.e., Eq. (12)] obtain

�E (subt)
nS = αem

π
φ2

n

∞∫
0

dQ

Q2 w(τ) T (NB)
1 (0, Q2)

n=2= −3.0 µeV,

(17a)
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Fig. 3 The �(1232)-excitation mechanism. Double line represents the
propagator of the �

�E (inel)
nS = −αem

π
φ2

n

∞∫
0

dQ

Q2 w(τ) T (NB)
2 (0, Q2)

n=2= −5.2 µeV.

(17b)

This looks very different from the dispersive calculation,
cf. Table 1. The main reason for this is the �(1232)-
resonance excitation mechanism shown by the graph in
Fig. 3.

We have checked that the dominant, magnetic-dipole
(M1), part of electromagnetic nucleon-to-� transition is
strongly suppressed here, as is the entire magnetic polar-
izability (βM1) contribution, cf. discussion below Eq. (15). It
is not suppressed in the ‘inelastic’ and ‘subtraction’ contri-
bution separately, but it cancels out in the total. Thus, even
though it is well justified to neglect the graph in Fig. 3 at
the current level of precision, the split into ‘inelastic’ and
‘subtraction’ looks unfair without it.

In most of the dispersive calculations the cancelation of
the � excitation, as well as of the entire contribution of
βM1, occurs too, because the subtraction function is at low
Q expressed though the empirical value for βM1. Even the
HBχPT-inspired calculation of the subtraction function [13],
which does not include the �(1232) explicitly, is not an
exception, as a low-energy constant from O(p4) is cho-
sen to achieve the empirical value for βM1. Even at O(p3)

HBχPT, the chiral-loop contribution to βM1 is—somewhat
counterintuitively—paramagnetic and not too far from the
empirical value, leading to a reasonable result for the ‘sub-
traction’ contribution. We take a closer look at the HBχPT
prediction for the various Lamb-shift contributions in the fol-
lowing section.

The central value for the ‘subtraction’ contribution obtained
by Gorchtein et al. [14] is negative, even though the �-
excitation is included in their ‘inelastic’ piece. The quoted
uncertainty of their subtraction value, however, is too large
to point out any contradiction of this result with the other
studies.

4 Heavy-baryon expansion

The heavy-baryon expansion, or HBχPT [20,29], was called
to salvage “consistent power counting” which seemed to be
lost in BχPT, i.e. the straightforward, manifestly Lorentz-

invariant formulation of χPT in the baryon sector [16]. How-
ever, as pointed out by Gegelia et al. [30,31], the “power-
counting violating terms” are renormalization scheme depen-
dent and as such do not alter physical quantities. Furthermore,
in HBχPT they are absent only in dimensional regularization.
If a cutoff regularization is used the terms which superficially
violate power counting arise in HBχPT as well, and must be
handled in the same way as they are handled nowadays in
BχPT—by renormalization.

In this work for example, all such (superficially power-
counting-violating) terms, together with ultraviolet divergen-
cies, are removed in the course of renormalization of the pro-
ton field, charge, anomalous magnetic moment, and mass.
We use the physical values for these parameters and hence
the on-mass-shell (OMS) scheme. This is different from the
extended on-mass-shell scheme (EOMS) [17], where one
starts with the parameters in the chiral limit. The physical
observables, such as the Lamb shift in this case, would of
course come out exactly the same in both schemes, pro-
vided the parameters in the EOMS calculation are cho-
sen to yield the physical proton mass at the physical pion
mass.

Coming back to HBχPT. Despite the above-mentioned
developments the HBχPT is still often in use. The two EFT
studies of proton structure corrections done until now [11,13]
are done in fact within HBχPT. We next examine these results
from the BχPT perspective.

One of the advantages of having worked out a BχPT result
is that the one of HBχPT can easily be recovered. We do it by
expanding the expressions of Appendix A in μ = mπ/MN ,
while keeping the ratio of light scales τπ = Q2/4m2

π fixed.
For the leading term the Feynman-parameter integrations are
elementary and we thus obtain the following heavy-baryon
expressions:

T (NB)
1 (0, Q2)

HB= αemg2
A

4 f 2
π

mπ

(
1− 1√

τπ

arctan
√

τπ

)
,

(18a)

T (NB)
2 (0, Q2)

HB=−αemg2
A

4 f 2
π

mπ

(
1 − 1 + 4τπ√

τπ

arctan
√

τπ

)
.

(18b)

The first expression reproduces the result of Birse and

McGovern (cf. T
(3)

1 in the appendix of [13]1). We have
also verified that these amplitudes correspond to the ones

1 At subleading order in the heavy-baryon expansion, we obtain

T
NB (4)

1
HB= αem g2

A
12π f 2

π MN
m2

π

{
3 − 50τπ + 48τπ (1+τπ )−3√

τπ (1+τπ )
arcsinh

√
τπ

+18τπ

[
7 + 4 log

(
mπ

MN

)]}
.

This expression reproduces the g2
A terms of T

(4)

1 in the appendix of
Ref. [13], apart from the terms inside the square brackets. These terms
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

�E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

�E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

�E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τμ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

�E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mμ

mπ

(1−10G+6 log 2)=−16.1 µeV, (21a)

�E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mμ

mπ

(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

�E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mμ

mπ

(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G � 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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Fig. 4 The polarizability effect on the 2S-level shift in µH computed
in HBχPT and BχPT as a function of the ultraviolet cutoff Qmax. The
arrows on the right indicate the asymptotic (Qmax → ∞) values

tative statement. In the present HBχPT calculation the contri-
bution from Q > mρ is at least 25 % of the total result, hence
exceeding the natural expectation of uncertainty of such cal-
culations. In the BχPT case, the contribution from momenta
above mρ is less than 15 %, well within the expected uncer-
tainty.

6 Conclusion and outlook

Is the proton polarizability effect different in muonic versus
electronic hydrogen so as to affect the charge radius extrac-
tion? The answer is ‘yes’. From the LEX formula in Eq. (12),
one sees that the polarizability contribution not only affects
the charge radius extraction from the Lamb shift but also that
this effect is about mμ/me ≈ 200 times stronger in µH than
in eH. Indeed, the weighting function plotted in Fig. 2 for
the two cases is much larger in the muon case. The lepton
mass acts, in fact, as a cutoff scale. Nonetheless, the BχPT
result obtained hereby demonstrates that the magnitude of
this effect is not nearly enough to explain the ‘proton radius
puzzle’, which amounts to a discrepancy of about 300 µeV.

As seen from Table 1, our BχPT result for the polariz-
ability effect agrees with the previous evaluations based on
dispersive sum rules, but it is substantially smaller in magni-
tude than the HBχPT result of Nevado and Pineda [11]. This
is of course not the first case when the BχPT and HBχPT
results differ significantly—the polarizabilities themselves
provide such an example.

The differences between HBχPT and BχPT results are
often interpreted as the uncertainty of χPT calculations. This
interpretation is too naive as there are physical effects that
distinguish the two. For example, the BχPT calculations
obey analyticity exactly while the HBχPT ones only approx-
imately. Furthermore, we have checked that in HBχPT the
contribution from momenta beyond the χPT applicability
domain is somewhat bigger than the expected uncertainty of

the calculation. The BχPT result is more “effective” in this
respect, as the high-momentum contribution therein is well
within the expected uncertainty.

Within the BχPT calculation, we have verified the dis-
persive sum rules given in (9) and confirmed the statement
of Ref. [13] that the split between the ‘elastic’ and ‘inelas-
tic’ 2γ contributions corresponds unambiguously to the split
between the Born and non-Born parts of the VVCS ampli-
tude, rather than between the pole and non-pole parts.

We have observed that the �(1232)-excitation mechanism
shown in Fig. 3 does not impact the Lamb shift in a significant
way because the dominant magnetic-dipole (M1) transition
is suppressed, as is the entire magnetic polarizability effect.
The �(1232)-excitation effect is, however, important for the
dispersive calculation because it is prominent in the proton
structure functions and hence must be included in the ‘sub-
traction’ contribution to achieve a consistent cancelation of
the M1 �(1232) excitation. In most of the models this is
roughly achieved by using an empirical value for the mag-
netic polarizability which includes the large paramagnetic
effect of the M1 �(1232) excitation. In the HBχPT-inspired
calculation of the ‘subtraction’ term [13] the �-excitation
is not included; however, the situation is ameliorated by
the low-energy constant from O(p4), which is chosen to
reproduce the empirical value of the magnetic polarizabil-
ity.

Naive dimensional analysis shows that χPT at leading
order is capable of yielding predictions for the entire two-
photon correction to the Lamb shift. The polarizability part
of that correction has been considered in this work. The last
row of the last column of Table 1 contains the O(p3) BχPT
prediction for the proton polarizability effect on the 2S-level
of µH. One needs to add to it the ‘elastic’ contribution (or,
alternatively, the third Zemach moment together with ‘finite-
size recoil’), to obtain the full O(α5

em) effect of the proton
structure in µH Lamb shift. Using an empirical value for the
‘elastic’ contribution from Ref. [13] [i.e., −24.7(1.6) µeV],
our result for the full 2γ contribution to the 2P – 2S Lamb
shift is in nearly perfect agreement with the presently favored
value [5,13] of 33(2) µeV.

While the leading-order χPT calculation gives a reliable
prediction for the polarizability contribution, the splitting of
it into ‘inelastic’ and ‘subtraction’ works less well, because of
the missing �(1232)-excitation effect, which will only enter
at the (future) next-to-leading order calculation. Indeed, χPT
is capable of providing results for the Lamb-shift contribu-
tion beyond O(p3). The main difficulty then is to include all
the appropriate operators from the effective lepton–nucleon
Lagrangian, with corresponding low-energy constants fixed
to the two-photon exchange component of the low-energy
lepton–nucleon scattering. It will therefore be interesting but
very difficult to carry out any beyond-the-leading-order cal-
culation in a systematic way.

123



2852 Page 8 of 10 Eur. Phys. J. C (2014) 74:2852

Acknowledgments It is a pleasure to thank M. Birse, C. E. Carl-
son, M. Gorchtein, R. J. Hill, S. Karshenboim, N. Kivel, J. McGovern,
G. A. Miller, A. Pineda, M. Vanderhaeghen, and T. Walcher for insight-
ful, often inspiring, discussions and communications. We furthermore
thank A. Antognini, M. Birse, C. E. Carlson, M. Gorchtein, J. McGov-
ern, R. Pohl, M. Vanderhaeghen for helpful remarks on the manuscript.
This work was partially supported by the Deutsche Forschungsgemein-
schaft (DFG) through the Collaborative Research Center “The Low-
Energy Frontier of the Standard Model” (SFB 1044), by the Cluster of
Excellence “Precision Physics, Fundamental Interactions and Structure
of Matter” (PRISMA), and by the UK Science and Technology Facil-
ities Council through the grant ST/J000159/1. V. L. thanks the Institut
für Kernphysik at the Johannes-Gutenberg-Universität Mainz for their
kind hospitality.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

Appendix A: Non-Born amplitudes of zero-energy VVCS

Here we specify the VVCS amplitudes at ν = 0. The expres-
sions are given in terms of dimensionless variables: the pion–
proton mass ratio μ = mπ/Mp and the momentum-transfer
Q expressed in the proton mass units. The pre-factor con-
tains the fine-structure constant αem � 1/137.036, the pro-
ton mass Mp � 938.3 MeV, the nucleon axial coupling
gA � 1.27 and the pion decay constant fπ � 92.4 MeV. We
neglect the isospin breaking effects, such as differences in the
nucleon or pion masses. For the latter we assume mπ � 139
MeV.

The O(p3) BχPT expressions are given by

T (NB)
1 (0, Q2) = − αem g2

A Mp

2π f 2
π

1∫
0

dx

×
1∫

0

dy

⎧⎨
⎩
√

4μ2

Q2 + 1 log

(√
(4μ2/Q2) + 1 + 1√
(4μ2/Q2) + 1 − 1

)

+ 3(x − 1)

Q2 [log(Q2(−(x − 1))x + μ2x + (x − 1)2)

− log(x2 + (μ2 − 2)x + 1)]

− 2(x − 1)2x[(x − 1)2(Q2 y2 − 1) − μ2x]
[(x − 1)2(Q2(y − 1)y − 1) − μ2x][(x − 1)(Q2(x−1)y2+Q2 y−x+1)−μ2x]

+ (x − 1)2(y − 1)[(x − 1)(Q2(x − 1)y2 − Q2(x − 2)y+x − 1) − μ2x2]
[(x−1)(Q2(x−1)y2+Q2 y − x+1) − μ2x]2

− 4x2(x − 1)(y − 1)

x2(Q2 y2 − 1) − x(μ2 + Q2 y − 2) − 1

− 4x(x − 1)2

x2[Q2(y − 1)y − 1] − (μ2 − 2)x − 1

+ 2x(x − 1)

x2 + (
μ2 − 2

)
x + 1

− 2

⎫⎬
⎭ , (22)

T (NB)
2 (0, Q2)=−αem g2

A Mp

π f 2
π

1∫
0

dx

1∫
0

dy

×
{

(x − 1)2x(y − 1)[(x − 1)(−Q2 y + 2x − 2) + μ2x]
[(x − 1)(Q2(x − 1)y2 + Q2 y − x + 1) − μ2x]2

+ 4(x − 1)x2 y[x2(Q2(y − 1)y + 1) − (μ2 + 2)x + 1]
[x(−μ2+x(Q2(y−1)y−1)+2) − 1][x2(Q2 y2−1) − x(μ2+Q2 y−2) − 1]

+ 4x

Q2 [log(Q2xy(1 − xy) + μ2x + (x − 1)2)

− log(x(μ2 + x(1 − Q2(y − 1)y) − 2)+1)]

+ 4(x − 1)x3(y − 1)[Q2 y(xy − 1) − μ2]
[x(μ2 + Q2(−x)y2 + Q2 y + x − 2) + 1]2

+ 2(x − 1)

Q2

[
(x − 1)2(Q2(y − 1)y + 1)

[(x − 1)2(Q2(y − 1)y − 1) − μ2x]

− (x − 1)2(Q2(y − 1)y + 1)

[(x − 1)(Q2(x − 1)y2 + Q2 y − x + 1) − μ2x]
− log[Q2(1 − x)y((x − 1)y + 1) + μ2x + (x − 1)2]

+ log[μ2x − (x − 1)2(Q2(y − 1)y − 1)]
]

− 3

Q4

[
− 2Q2x(x − 1)2

x(μ2 + x − 2) + 1

− [(Q2 − 2)x + 2] log[x(μ2 + x − 2) + 1]

+[(Q2 − 2)x + 2] log[x(μ2 + Q2(1 − x) + x − 2) + 1]
]}

. (23)

Appendix B: Tree-level electroproduction cross sections

Here we present our results for the electroproduction cross
sections corresponding to diagrams in Fig. 5. We give them
in terms of the following dimensionless variables:

αγ = (E N
i )cm/

√
s = s + M2

p + Q2

2s
, (24a)

απ = (E N
f )cm/

√
s = s + M2

p − m2
π

2s
, (24b)

βγ = Eγ
cm/

√
s = s − M2

p − Q2

2s
, (24c)

βπ = Eπ
cm/

√
s = s − M2

p + m2
π

2s
, (24d)

λγ = |�qi |cm/
√

s =
√

(s − M2
p − Q2)2 + 4s Q2

2s
, (24e)

λπ = |�q f |cm/
√

s =
√

(s − M2
p + m2

π )2 − 4sm2
π

2s
, (24f)

where (E N
i )cm is the energy of the incoming nucleon,

(E N
f )cm is the energy of the outgoing nucleon, Eγ

cm the energy
of the incoming photon, Eπ

cm the energy of the outgoing pion,
|�qi |cm the relative three-momentum of the incoming particles
and |�q f |cm the relative three-momentum of the outgoing par-
ticles, all in the center-of-mass frame (CM).

We show below the results obtained for the pion electro-
production cross sections for the different channels. They
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(1) (2)
1

(3)

Fig. 5 Graphs for pion electroproduction amplitude at leading order. The π N N couplings are pseudoscalar as derived from the transformed
Lagrangian Eq. (1b)

have been calculated by using the energy of the incoming
virtual photons in the laboratory frame as the flux factor of
the incoming particles. We have checked that they reproduce
the result at the real photon point shown in Refs. [26]. As
in Appendix A, Q and s are in the units of proton mass. We
have

σ
(π+n)
T = αemg2

Aλπ

4 f 2
π s2(s − 1 + Q2)λ3

γ

{
2sλγ

(s − 1)2 [2μ2((s − 1)2

−Q2sλ2
γ ) + (1 − s)(Q4 + 2Q2sβγ βπ

+2s(1 − s + 2sβγ βπ)λ2
γ )]

+ 1

(s − 1)λπ

[2μ2(1 − s)(Q2 + 2sβγ βπ)

+ Q2((Q2 + 2sβγ βπ)2

−4s2λ2
πλ2

γ )] arctanh

[
2sλπλγ

Q2 + 2sβγ βπ

]}
, (25)

σ
(π0 p)
T = αemg2

Aλπ

2 f 2
π (s − 1 + Q2)(s − 1)2

×
{

1

−2s(1 + s(−1 + 2βγ βπ))2λ2
γ + 8s3λ2

πλ4
γ

× [(1 − s)(Q2(s − 1 − 2sβγ βπ)

− 2s(s − 1 + 2sβγ βπ)λ2
γ )((1 + s(−1 + 2βγ βπ))2

− 4s2λ2
πλ2

γ ) + 2μ2(−(s − 1)2(1

+ s(−1 + 2βγ βπ))2 + 2s(Q2(1 + 2s(−1 + βγ βπ)

+ s2(1 + 2βγ βπ(−1 + βγ βπ))) + 2(s − 1)2sλ2
π )λ2

γ

− 4Q2s3λ2
πλ4

γ )] + 1

4s2λπλ3
γ

(1 − s)

× [−((2μ2 + Q2)(1 − s)

+ 2Q2sβγ βπ)(1 + s(−1 + 2βγ βπ))

+ 2s(1 − 2s + s2 + 2Q2(μ2 + sλ2
π ))λ2

γ ]

× arctanh

[
2sλπλγ

1 + s(−1 + 2βγ βπ)

]}
, (26)

σ
(π+n)
L = αemg2

Aλπ

2 f 2
π Q2 (s − 1 + Q2)(s − 1)2λ3

γ

×
{

1

(Q2 + 2sβγ βπ)2 − 4s2λ2
πλ2

γ

× [2λγ (−Q2(1 − s)(β2
γ (Q2

+ 2sβγ βπ) + (1 + s(−1 + 2βγ (−1 + 2απ + βπ)))λ2
γ )

× ((Q2 + 2sβγ βπ)2 − 4s2λ2
πλ2

γ ) + μ2(−2(s − 1)2

× β2
γ (Q2 + 2sβγ βπ)2 + (Q8 + 4Q6sβγ βπ

− 4Q2(1 − s)sβγ ((1 − s)(−1 + απ) + 4sβγ βπ)

+ 4Q4sβγ (s − 1 + sβγ β2
π )

+ 4s2(s − 1)β2
γ (2βπ((1 − s)(−1 + απ)

+ 2sβγ βπ) + (s − 1)λ2
π ))λ2

γ

− 4s2((1 + s2)(απ − 1)2 + (Q2 + 2sβγ βπ)2

+ (Q4 + 4s2βγ )λ2
π − 2s((απ − 1)2 + 2βγ λ2

π ))λ4
γ

+ 16s4λ2
πλ6

γ ))] + 1 − s

sλπ

[βγ (Q2 + 2sβγ βπ)

+ 2s(απ − 1)λ2
π ][βγ (Q4 + 2μ2(1 − s) + 2Q2sβγ βπ)

+2s(2μ2 + Q2απ)λ2
γ ] arctanh

[
2sλπλγ

Q2 + 2sβγ βπ

]}
,

(27)

σ
(π0 p)
L = αemg2

Aλπ

4 f 2
π Q2 (s − 1 + Q2)(s − 1)2λ3

γ

×
{

1

(1 + s(−1 + 2βγ βπ ))2 − 4s2λ2
πλ2

γ

[4μ2λγ (−(1 − s)2

× β2
γ (1 + s(−1 + 2βγ βπ ))2 + (−2s(1 + απ)βγ

+ (Q4 + 2s2βγ (3 + 3απ − 4βγ βπ − 2απβγ βπ + βγ λ2
π ))

+ s2(Q4(1 + 2βγ βπ (−1 + βγ βπ )) + 2s2βγ (απ − 2απβγ βπ

+ (1 − 2βγ βπ)2 + βγ λ2
π )) − 2s(Q4(1 − βγ βπ )

+ s2βγ (3 + απ(3 − 4βγ βπ) + 2βγ (2βπ(βγ βπ − 2)

+ λ2
π ))))λ2

γ − 2s2((1 + α2
π ) + Q4λ2

π − 2s(1 + α2
π

− 2βγ βπ + 2βγ λ2
π ) + s2(α2

π + (1 − 2βγ βπ )2 + 4βγ λ2
π ))λ4

γ

+ 8s4λ2
πλ6

γ ) − 2Q2(1 − s)λγ (sβ2
γ (−1 + 2βγ βπ )

+ s(1 + 2βγ (−2 + 2απ + βπ))λ2
γ + β2

γ − λ2
γ )

× (1 + s(−1 + 2βγ βπ − 2λπλγ ))

× (1 + s(−1 + 2βγ βπ + 2λπλγ ))]
+ 1 − s

sλπ

[2μ2(−Q4λ2
γ + ((1 − s)βγ + 2sλ2

γ )(βγ + sβγ

× (−1 + 2βγ βπ ) + 2sαπλ2
γ )) + Q2((βγ − λγ )

+ s(βγ (−1 + 2βγ βπ ) + λγ + 2(απ − 1)λ2
γ ))((βγ + λγ )
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+ s(βγ (−1 + 2βγ βπ ) + λγ (−1 + 2(απ − 1)λγ )))]

× arctanh

[
2sλπλγ

1 + s(−1 + 2βγ βπ)

]}
. (28)
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