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Abstract

Technological, methodological, and analytical advances
continue to improve the resolution of our view into the
cancer genome, even as we discover ways to carry out
analyses at greater distances from the primary tumor
sites. These advances are finally making the integration of
cancer genomic profiling into clinical practice feasible.
Formalin fixation and paraffin embedding, which has
long been the default pathological biopsy medium, is
now being supplemented with liquid biopsy as a means
to profile the cancer genomes of patients. At each stage
of the genomic data generation process—sample
collection, preservation, storage, extraction, library
construction, sequencing, and variant calling—there are
variables that impact the sensitivity and specificity of the
analytical result and the clinical utility of the test. These
variables include sample degradation, low yields of
nucleic acid, and low variant allele fractions (proportions
of assayed molecules carrying variant allele(s)). We review
here the most common pre-analytical and analytical
factors relating to routine cancer patient genome
profiling, some solutions to common challenges, and the
major sample preparation and sequencing technology
choices available today.
pact cancer genomics.
Background
Technologies that profile the cancer genome are power-
ful tools to elucidate molecular mechanisms that
contribute to the pathogenesis, progression, regression,
and resistance of neoplastic disease [1]. Over the past
5 years, our understanding of these mechanisms has
improved, in part due to projects such as The Cancer
Genome Atlas (TCGA) [2]. Accordingly, applications for
tumor molecular profiling have become increasingly
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translational. Genomic testing of patient tumors is now
used in diagnostics [3], precision therapy selection [4],
disease progression monitoring (mostly in a clinical re-
search setting) [5], and clinical trial enrolment [6]. How-
ever, mapping the cancer genome is not a simple task.
Each individual’s cancer genome contains a multitude of
alterations and alteration types (for example, single base
changes, structural variation, epigenetic changes) that
require specific wet lab and analytical approaches for op-
timal performance of genomic profiling.
Profiling the cancer genome of a patient sample is

complex and fraught with opportunities for technical ar-
tifacts, reduced sensitivity, false-positive findings, and
outright test failure. Annotation, interpretation, and
reporting of clinically relevant variants encompass the
process by which genomic data are translated into the
practice of medicine. At each of the steps to produce
genomic data—sample collection, nucleic acid extraction,
library preparation, sequencing, and variant calling—one
must consider how technical and methodological deci-
sions might impact the sensitivity and specificity of the
data that will be delivered to a clinician for the provision
of patient care. We present here a review of the major
technical considerations, test selection considerations, se-
quencing technologies, and analytical variables that im-
Pre-analytical considerations
Sample collection, preservation, and manipulation are
important pre-analytical factors to consider prior to gen-
omic data generation (Fig. 1). Traditional methods for
tumor biopsy include fine- or core-needle aspiration or
surgical resection. Formalin fixation and paraffin embed-
ding (FFPE) is most often used for sample preservation
though fresh frozen tissue or disaggregated cells are
sometimes used for specific downstream applications.
Recently, liquid biopsy has emerged as a potentially
powerful and minimally invasive alternative for routine
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Fig. 1 Overview of the most commonly used biopsy techniques, preservation methods, and genomic analytes. Traditional biopsy methods
include fine- or core-needle biopsy or surgical resection. These biopsies typically only access the primary tumor site. From traditional tissue biopsy the
most common pathological preservation path is through formalin fixation and paraffin embedding (FFPE), though fresh frozen tissue or disaggregated
cells are sometimes also available. From each of these material types, both DNA and RNA can be extracted. Liquid biopsy usually involves blood draw,
though some groups are now testing urine and other body fluids. Liquid biopsy can have representative somatic lesions from more than one tumor
site. Circulating tumor cells (CTCs), cell-free DNA (cfDNA), and exosomes or extracellular vesicles (EVs) are the most common components of liquid
biopsy that are isolated for somatic analysis. DNA and RNA can be isolated from CTCs, but only DNA is represented in the cfDNA extraction, and RNA
is most commonly targeted from EVs
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monitoring and characterization of cancer. Here we de-
scribe the most common sampling methods and their rela-
tive advantages and disadvantages for genomic profiling.

Formalin fixation and paraffin embedding
For a long time, FFPE has been used to preserve and so-
lidify tumor biopsies for morphological examination [7].
While visually examining patient slides under the micro-
scope, pathologists of the early 20th century could
hardly have imagined the additional information locked
inside the immobilized tissue sections before them. Fast-
forward to today, the methods for fixation might not
have changed much, but the methods for extracting and
utilizing molecular information about a patient’s cancer
have advanced to the point of clinical significance.
FFPE has proven utility for morphological and immu-

nohistochemical interrogation of cancerous cells; how-
ever, the use of FFPE poses several challenges to
molecular characterization of genomic material [4]. Cell
pellets and fresh frozen tissue routinely yield >10 μg
DNA; however, in our experience with several thousand
FFPE samples (as blocks, slides, or scrolls), they gener-
ally yield ≤1 μg DNA (unpublished data). Depending on
the intended use of the genomic material, the amount
of DNA yielded from FFPE samples might not be suffi-
cient to produce high complexity sequencing libraries,
which limits the sensitivity of variant calling. In addition
to yield, the quality of extracted material can vary widely
due to the interaction of formaldehyde with DNA. Several
studies have reported both decreased yield and quality
(measured by integrity and fragment length of extracted
DNA) of FFPE-derived DNA with increasing length of
storage [8, 9], though our experience is that even re-
cently fixed samples can vary in quality across different
submitting labs, suggesting that variation in processing
protocols or reagents is a factor (unpublished data).
Even seemingly good quality DNA extracted from FFPE
samples can have higher variant false-positive rates
compared to DNA from non-FFPE samples due to
artifactual base changes resulting from formalin cross-
linking of cytosine nucleotides [10].
In response to these issues, several methods have been

developed to assess quality and quantity of extracted
DNA (for example, using quantitative PCR to measure
ratios of amplicons of increasing lengths), which can
help to better triage incoming samples and, where ap-
propriate, modify laboratory protocols (for example, by
pooling of samples with similar quality scores together
or using DNA repair enzymes prior to library construc-
tion) to maximize data utility [11–13]. Similarly, several
sample preparation techniques have been developed to
specifically process FFPE-derived (or otherwise degraded
or low yielding) DNA samples, including some that
leverage both DNA repair steps and alternative, more ef-
ficient adapter ligation strategies [14], while others have
optimized automated library construction methods that
use high-efficiency enzymes and have produced accept-
able results for many FFPE samples [4]. Furthermore,
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downstream variant-calling pipelines can detect some of
the more common artifactual base changes through fil-
tering [15], which highlights the need to capture and
propagate sample type information to the analytical
pipeline for optimal performance.
Generation of high quality genome sequencing data

from FFPE-derived RNA is considerably more challenging
than from FFPE-derived DNA. RNA extraction yields are
generally higher than those of DNA (>10 μg; unpublished
data), but FFPE-derived RNA is often highly degraded. Re-
cently, methods for quality control of FFPE-derived RNA
have been reported [16] and targeted selection methods
have demonstrated utility in the generation of data to
analyze transcriptomes and druggable fusions [17, 18].
As molecular profiling becomes more routine in clinical

management, it remains to be seen if non-crosslinking
tissue preservatives (for example, Optimal Cutting
Temperature compound (OCT); PAXgene) might be used
more frequently, considering that the improved quality of
extracted nucleic acids can come at the expense of immu-
nohistochemical performance [19].

Fresh frozen tissue and cells
Many of the integrity and yield issues associated with
FFPE-derived material are avoided by the use of fresh
frozen tissues and bulk cell pellets. Nonetheless, artifacts
can still be introduced in the sample preparation process
that are exacerbated by contaminating reactive elements
in extraction buffers. Notably, high-energy acoustic
shearing can mediate transversion artifacts through nu-
cleic acid oxidation, which appear at low allele fractions
[20]. This highlights how care must be taken at each
step in the sequencing process, from nucleic acid extrac-
tion to sample preparation and detection, to avoid intro-
duction of artifacts and biases that ultimately impact the
sensitivity and specificity of clinical tests.
A specialized set of procedures is required to capture

and sequence single cells. A common pre-analytical
pipeline for single cell isolation is to disaggregate fresh
tumor biopsy material followed by fluorescence activated
cell sorting (FACS) prior to library preparation [21].
More efficient methods, such as micromanipulation (for
example, circulating tumor cell enrichment and isolation
from blood [22]), might be required for isolation of rare
cells. Microfluidic isolation based on cell size has also
been described [23].

Liquid biopsy
Genomic profiling from liquid biopsy is a rapidly grow-
ing area due to the relative ease of collection and lower
associated costs. The total cost to obtain a surgical bi-
opsy ranges from approximately $1000–4000 [24],
whereas to obtain and extract nucleic acids from a liquid
biopsy costs $100–200. Additionally, while tumor biopsy
is the standard of care for primary diagnosis, tissue biop-
sies are not generally taken to monitor disease progres-
sion or to test metastatic lesions.
Multiple forms of liquid biopsy, such as cell-free DNA

(cfDNA) [25], circulating tumor cells (CTCs) [26], and
extracellular vesicles (EVs) [27], can be isolated from
blood among other bodily fluids (see Fig. 1). Key consid-
erations for molecular profiling of genetic information
from lipid biopsies include special requirements for sam-
ple processing, low yield and purity of tumor-derived
nucleic acids, and the uncertain false-negative rate.
Liquid biopsies are particularly sensitive to how they

are handled, up to a certain point. For instance, blood
must be properly collected (for example, into specialized
blood collection tubes to minimize cellular DNA release
[28]), stabilized, and fractionated within hours to days to
mitigate degradation of cells or nucleic acids [29, 30].
Plasma fractionated from blood can be frozen for extrac-
tion of cfDNA or nucleic acids from EVs at a later date.
For analysis of CTCs, positive selection (isolation of a
target cell population by using an antibody that specific-
ally binds that population) or negative depletion (deple-
tion of all cell types except the cell type of interest) must
be performed on the buffy coat (the fraction of an
anticoagulated blood sample that contains most of the
white blood cells and platelets following density gradient
centrifugation) or whole blood prior to freezing an enriched
cell pellet [31] (or single CTCs, if further purified [22]).
Liquid biopsies usually yield picogram to nanogram

quantities of DNA or RNA, of which only a small frac-
tion is derived from tumors [32]. In most individuals,
peripheral blood mononuclear cells (PBMCs) and other
non-tumor cells constitute the predominant source of
cfDNA in blood [33]; similarly, methods to enrich for
CTCs often result in significant carryover of PBMCs. In
cancer patients, tumor purity in extracted cfDNA or
enriched CTC samples is usually <5 % [32] and it is
challenging to quantify tumor-derived EVs [22, 27]. If
the total yield of nucleic acids is too low, whole genome
amplification (WGA) or whole transcriptome amplifica-
tion (WTA) might be required but can distort the ori-
ginal template [34]. Furthermore, the sensitivity to
detect variants from low purity samples will be limited
by the total yield or genome equivalents of cfDNA that
are available for sequencing. Thus, the accurate profil-
ing of tumor DNA or RNA in a sample that contains
non-tumor DNA or RNA is challenging and requires
specialized methods, such as error-correcting with
molecular barcodes (tags of parsable (separable by
software) sequence that are used to label individual
starting molecules), also known as unique molecular
indexes (UMI) [35], high efficiency library preparation
kits for low input material [36, 37], or mutation
enrichment [38]).
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The false-negative rate in liquid biopsies is often diffi-
cult to determine. Tumor-derived cfDNA, EVs, or CTCs
are sometimes undetectable in blood owing to technical
or biological reasons. CTCs are not always enumerated
prior to sequencing and might vary in quality of nucleic
acids (for example, from apoptotic cells [39]) or might
not express the surface markers used for identification.
Similarly, detection methods for tumor-derived cfDNA
or EVs often require probing for a select set of alter-
ations and might not always include those present in a
patient’s cancer. Nucleosome positioning might also
have an effect on the false-negative rate of sequencing
cfDNA [33]. For these reasons, a negative result in a li-
quid biopsy assay might warrant follow-up testing from
a tissue biopsy. Table 1 provides a summary of common
pre-analytical issues, impacts, and contingencies associ-
ated with different sample types.

Matching the test to the intended use
Reduced costs in the generation of massively parallel se-
quence data and advances in wet lab and analytical tech-
niques have resulted in a wide variety of options for
tumor molecular profiling. Whole genome sequencing
(WGS) [40], whole exome sequencing (WES) [4], large
(300–600 gene) panels [3, 41, 42], small (<50 genes)
panels [43], and hotspots (specific mutations in somatic
genes) [44] have been used for somatic alteration profil-
ing (Table 2). Selection of a specific genomic profiling
test requires consideration of both pre-analytical (sample
source) and analytical factors. One very important factor
to consider is the intended use of the test.
Somatic variant calling from tumor genomic data is a

complex and highly context-specific activity. Generally,
Table 1 Common pre-analytical and sample preparation issues relat

Sample type Common issues Impact

Formalin-fixed, paraffin-
embedded (FFPE)

• Low yield of DNA
• DNA degradation
• DNA base modification
• RNA degradation

• Reduced comple
failure; decrease
• Reduced comple
decreased sensit
• Increased false p
• Library failure; h

Fresh frozen tissue
of bulk cells

• Buffer or process-induced
modification of DNA bases

• Increased false p

Single cells • Low DNA yield
•Whole genome amplification
(WGA) bias
• Low RNA yield

• Library failure
• Increased false p
negatives
• Library failure

Liquid biopsy • Low DNA yield of cfDNA
• Low purity of ctDNA in cfDNA
• Low DNA yield from CTCs
• Low RNA yield and quality
from CTCs
• Low RNA yield from EVs

• Library failure; re
• Reduced sensitiv
• Library failure; re
reduced specific
• Library failure
• Library failure
variant sensitivity is a function of the depth of unique,
high quality sequence reads at a site (read depth) and
the proportion of molecules in the sample that are de-
rived from the cancerous cells, known as the tumor al-
lele fraction (AF) [45]. Tumor allele fraction is impacted
by purity of the biopsy material, that is, how much “con-
tamination” of normal DNA exists from non-cancer
cells, and by the heterogeneity of the cancer itself. Tests
that seek to assay known cancer driver genes or hotspots
typically aim for high sensitivity to call these specific
variants and are less concerned with novel or false posi-
tive incidental events. To achieve acceptable sensitivity
(>99 %) for clinical use in solid tumor fresh frozen or
FFPE samples, tests are typically run on samples with
>20 % tumor purity (AF) and to high-read depths
(>500× mean coverage) [3]. For liquid biopsies, these
tests are commonly run at far greater read depths
(>5000× mean coverage) and require use of molecular
barcodes to achieve acceptable sensitivity and specificity
for samples with low (<5 %) tumor purity [5, 35].
Achieving high mean read depths with broader capture

methods such as WES or WGS is costly and inefficient
if the clinically reported regions are limited to known
hotspots or a selection of cancer driver genes; therefore,
WES and WGS are less suited to routine diagnostic ap-
plications. Additionally, achieving a sequencing library
with sufficient molecular complexity (number of unique
molecules) to drive a whole exome or genome target to
>500× coverage is challenging, particularly from FFPE-
derived materials. Many diagnostic services sequence
tumor material only, without matched normal germline
data from the same patient (for example, whole blood).
Analytically, this approach is more tractable if the area
ed to different sample types

Contingencies/solutions

xity libraries; library
d sensitivity
xity; library failure;
ivity
ositive rate
igh duplication

• DNA repair; pooling of indexed libraries prior to
capture (exomes or panels); specialized low input
library methods
• DNA repair; short amplicon amplification;
specialized library methods
• FFPE-aware filtering of variants; DNA repair
• Selection-based or targeted preparation instead
of polyA-based preparation

ositive rate • Chelation of oxidative species; oxidation aware
filtering

ositives and false
•WGA
• Optimized WGA
•Whole transcriptome amplification (WTA)

duced sensitivity
ity
duced sensitivity;
ity

• Optimized library preparation; specialized library
preparation
• High sequencing depth; molecular barcoding
(UMIs)
•WGA
•WTA; specialized library preparation.
•WTA; specialized library preparation.



Table 2 Common sequencing-based tests used in cancer genomics: their targeted regions, primary use cases, and limitations

Sequencing assay Targeted regions Primary use Limitations

Whole genome sequencing All genes, all exons,
all non-coding regions

Discovery Cost; depth; limited sensitivity
for low allele fraction

Whole exome sequencing All genes, all exons Clinical research; panel-negative diagnostic
testing; neo-epitope prediction

Cost; depth; moderate sensitivity
for low allele fraction

Large gene panel 300–600 genes Diagnostics; clinical trials; clinical research Breadth; neo-epitope prediction

Small gene panel <100 genes Diagnostics; disease progression monitoring Breadth; neo-epitope prediction

Hotspot panel Portions of 50–80 genes,
specific exons, variants

Diagnostics Breadth; neo-epitope prediction

Transcriptome mRNA Variant validation; neo-epitope expression;
fusion calling

Cost

Targeted RNA panel Fusion genes Fusion calling Breadth; variant validation capability
limited to targeted territory
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being interrogated is smaller than a whole exome or
genome.
However, in the immunotherapeutics field, WES might

be a more appropriate test than a gene panel for the pur-
poses of clinical management. Despite encouraging re-
cent successes in immunotherapeutics (for example, the
approval and use of checkpoint blockade inhibitors in a
range of cancers), the understanding of predictors of re-
sponse is incomplete [46]. Recent work has shown that
mutational load and neoantigen load might be more
useful biomarkers of response than specific driver gene
mutations [47]. Similarly, the determination of muta-
tional load and neoantigen expression is more predictive
when whole exome data are used compared to large or
small gene panels [48].
In cancer, WES is most commonly used in the clinical

research setting, though diagnostic applications have
been described [49]. One of the difficulties of WES for
researchers is the so-called “long tail” of cancer genes,
that is, the distribution of cancer-related genes with low
frequencies in particular tumor types [50]. To address
this phenomenon, research projects such as TCGA
performed WES on a broad range of tumor types in an
effort to better catalog the vast majority of these low
prevalence cancer genes [2]. Recent efforts suggest that
WES of liquid biopsies might be feasible to characterize
metastatic and refractory tumors that would otherwise
be challenging to biopsy [22, 51].
Single cell nucleic acid sequencing has been under

development using many technologies. Single cell tran-
scriptome profiling of tumor-derived cell populations is
a highly sensitive and powerful tool for characterization
of the tumor microenvironment and tumor heterogeneity
[52]. Recent work by Tirosh et al. [21] highlights how this
type of analysis could be leveraged in the future to profile
tumors for likely development of drug resistance or candi-
dacy for immune checkpoint blockade inhibitor treatment.
Similarly, Miyamoto et al. [53] examined resistance devel-
opment in prostate cancer using microfluidic enrichment
of circulating tumor cells. Methods have been described
for both RNA and DNA sequencing from single cells that
leverage molecular biology techniques such as template-
switching (Smart-seq) [54], incorporation of UMIs [55],
and single nucleus sequencing [56]. Other methods have
incorporated innovative technological platforms (nano-
drops) to isolate cells and perform library construction at
low cost, for example, Drop-seq [57] and the 10X genom-
ics (Pleasanton, CA, USA) platform.
Bulk transcriptome sequencing and targeted RNA

sequencing are now more widely adopted. Targeted
RNA sequencing assays are used to capture and identify
gene translocations in cancer samples [17]. Other
sequence-based tests have been launched commercially
that target common, potentially druggable oncogene
fusions in ALK, RET, and ROS1 in non-small cell lung
cancer (NSCLC), a test historically carried out by im-
munohistochemical assays such as fluorescence in situ
hybridization [58, 59]. Integrated analyses of exome
(or genome) plus transcriptome profiles from a single
tumor provide a more complete picture of the alter-
ation landscape. Expression signatures from RNA can
be used to determine if a driver gene candidate iden-
tified from DNA sequencing is actually expressed in
the tumor or if resistance mutation expression levels
change post-treatment [60].
Sequencing technology
Just as selection of the “test” is dictated by intended use,
the choice of sequencing technology (or platform) is also
an important consideration. Although there is less dimen-
sionality in the sequencing landscape today, with Illumina
(San Diego, CA, USA) capturing most of the application
space, the complexity, scale, cost, and required throughput
of the test are important factors in determining the opti-
mal platform.
The required read length and generation of paired end

reads are a primary consideration. Read length is an
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important factor that relates to the type of genomic
alteration events that might be queried and the overall
accuracy of the placement of sequence reads relative to
the target. In general, the most commonly used
massively parallel sequencing platforms today generate
short reads of a few hundred bases. This includes Illumina
platforms (MiniSeq 2 × 150 bases, MiSeq 2 × 300 bases,
NextSeq 2 × 150 bases, and HiSeq series 2 × 150 bases),
also the Thermo (Waltham, MA, USA) Ion Torrent
platform (Proton 1 × 200 bases), and the Qiagen
(Hilden, Germany) GeneReader (100 bases). The utility
of reads of this length is related to the type of assay
being performed. For example, for amplicon sequencing
(using “hotspot” panels), in general short read sequen-
cing matches the size of the amplicon, and the ampli-
cons can be designed such that the hotspot itself is
located at a position where high quality can be expected
(that is, not at the end of a read). Reads of a hundred or
so bases are also useful for short variant detection using
targeted sequencing of a gene panel or exome or in
WGS. Similarly, for FFPE or cfDNA-derived materials,
template lengths are generally shorter, so read lengths
in the low hundreds of bases are appropriate.
Paired-end sequencing, which refers to sequencing a

DNA fragment from both ends (the forward and
reverse reads may or may not overlap), increases the
utility of short reads in two ways. Some types of
structural variation can be detected when the pairs of
reads align to the genome in an unexpected way [61].
Sequencing both ends of fragments can also allow
“de-duplication” in deep sequencing, where the occur-
rence of fragments with the exact same ends can be
used to mask some reads as molecular duplicates,
thus not adding to library complexity (for example,
the MarkDuplicates tool in Picard [62]).
The main limitation of short reads (even if paired end)

is in the discovery of fusion events or structural vari-
ation. Detection of known fusion events can be enabled
by targeted assays that increase the utility of short reads
by requiring mapping to a small or predefined event.
Alternatively, specialized library construction methods
to create long insert mate-paired libraries have shown
some successes in structural variation detection [63].
For discovery of novel rearrangements, the most power-
ful approach involves long reads in which fusion or
rearrangement events are spanned within the read.
Options here include Pacific Bioscience (Menlo Park,
CA, USA) instruments that generate reads of thousands
of bases or the use of approaches such as the 10X
Genomics platform, which links together short reads using
a molecular barcoding approach. Another platform under
active development in the long read space is the
nanopore-based sequencing technology commercialized
by Oxford Nanopore (Oxford, UK).
Ideally, the generation of very long reads would cost
the same as an equal coverage of short reads, but this is
not the case. Most dramatic decreases in sequencing
cost have come from the platforms that generate short
reads. For example, release of the Illumina HiSeqX de-
creased cost by threefold compared to the HiSeq2500:
sequencing of a 30× human genome cost approximately
$1500 on the HiSeqX compared to $5000 on the
HiSeq2500. Sequencing the whole genome with long
reads on a platform such as Pac Bio is cost prohibitive in
most settings, at $20,000–80,000 per sample. In general,
long read sequencing is used to sequence smaller (such
as microbial) genomes or to target complex regions of
the human genome (such as human leukocyte antigen
genes) that are intractable for short read sequencing.
Short read sequencing costs vary considerably by plat-

form, based on the instrument yield. For example, the
lowest cost per Gb (billion bases) on a short read
sequencer is approximately $15/Gb on the HiSeqX
platform with an output of 1800 Gb bases per run. This
level of throughput is appropriate for WGS which re-
quires at least 100 Gb of data per sample, or consider-
ably higher for tumor sequencing. Lower throughput
platforms such as the MiSeq and HiSeq 2500 cost con-
siderably more per Gb ($200/Gb and $45/Gb, respect-
ively) but have an output per run (15 Gb for MiSeq,
1000–1500 Gb for HiSeq 2500) more appropriate for
smaller scale sequencing, such as the panel test. A panel
test of 100–200 genes might require 0.5–1 Gb per sam-
ple. Platform selection for this level of sequencing is a
balancing act between the competing pressures of cost
and turnaround time. To run most efficiently, multiple
samples would be indexed, pooled, and sequenced on
enough lanes to achieve the desired coverage. In prac-
tice, in the clinical testing world, the need for more
rapid turnaround times necessitates running incomplete,
and thus more expensive, batches. Technical features,
such as template preparation techniques, sequencing
chemistry, and error profiles are also important consid-
erations. A review of technical differentiators is pre-
sented by Goodwin et al. [64].

Analytical considerations
Identification of somatic mutations of different types re-
quires individually optimized approaches. There are
many commonly used somatic variant callers each with
varying performance attributes and optimizations [65].
In our own group, we are moving toward local re-
alignment-based approaches for calling point mutations,
insertions, and deletions (that is, Mutect 2, which uti-
lizes the Haplotype Caller module of GATK [66] to call
both single-nucleotide variants and indels). Fig. 2 pro-
vides an example of a best practice somatic calling work-
flow using GATK-Mutect. Considerations for single-



Fig. 2 Example of a best practices SNV calling workflow for somatic exome and genome data (reproduced with permission from [80]). Raw reads from
the sequencing instrument are aligned and duplicate reads are marked (using the Picard tool). Vendor-assigned base quality scores are recalibrated for
accuracy (based on position in read and other factors). Before running somatic analysis, both tumor and normal read groups are assessed for contamination,
such as sample swap, cross-contamination, and tumor contamination in the normal sample. Somatic variants are those passing filter variants that are present
in the tumor but not in the matched-normal sample. Several filters are used to control for technical noise in the system, which includes the variant allele
frequency and a panel of normals (for more details see Cibulskis et al. [45])
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nucleotide polymorphisms and InDel calling include
depth of coverage and base quality scores. Base quality
scores are often recalibrated from instrument-provided
scores to account for context-specific and systematic
variation in a process known as base quality score recali-
bration (BQSR). Somatic variant calling for very low al-
lele fraction events, such as those in cfDNA, requires
additional components. For example, these methods
often use UMIs to enable more precise de-duplication
and error correction of amplified libraries [35].
Structural variation (such as duplication, copy number

variation (CNV), inversions, and translocations) has
traditionally been difficult to call with standard short
read data. WGS is the most well characterized data type
for structural variation calling, particularly when supple-
mented by long linking information or long reads. Re-
cent technological advances that use droplet partitions
(emulsions) and unique molecular barcodes have made
this data type more tractable [67].
Some methods for variant calling rely on having a

matched normal sample from the same patient to filter
individual germline variants, which would otherwise be
considered false-positive somatic calls. Additionally, a
set of data created with non-cancer samples that uses
the exact same assay and sequencing technology, a so-
called “panel of normals” (PoN), is useful for removing
artifacts due to systematic process variation in the li-
brary preparation or sequence generation steps [45].
Specific PoNs are needed for each different process type,
for example, cfDNA low input library construction re-
quires its own PoN for filtration. Some groups do not
use matched normal material. In order to minimize
false-positive calls, these groups either focus on calling
previously characterized driver events in known onco-
genes (in the case of hotspot panels), or use advanced
filtering methods—unmatched normal, PoN, large germ-
line databases (for example, 1000 Genomes, ExAc)—to
remove non-somatic variants [48]. Specificity can be fur-
ther increased by review of candidate mutations by an
experienced molecular pathologist and cross-referencing
somatic mutation databases such as COSMIC for patho-
genicity information [48].
An area of particular interest at present is immunoin-

formatics, which refers to the analysis of patient genom-
ics data to profile their immune system, and in the case
of cancer patients, the tumor microenvironment, with
the aim of identifying biomarkers of response to im-
mune blockade inhibitors [47]. Software tools now exist
that use patient exome and transcriptome data to call
HLA types and predict T- and B-cell epitopes. For a re-
view of these methods, see Backert and Kohlbacher [68].
T-cell receptor (TCR) profiling through targeted amplifi-
cation and sequencing of the CDR3 region is another ap-
plication that has seen adoption for both diagnostics
[69] and clinical research [70].
Accurate analysis of CTC single-cell data is con-

founded by the errors imparted by the WGA process.
WGA introduces allelic distortion and polymerase errors
that result in exceedingly high false-negative and false-
positive rates, in contrast to bulk sequencing, and affect
our ability to confidently detect all classes of genomic al-
terations [34]. Strategies to overcome the error modes of
WGA include joint analysis together with bulk sequen-
cing of matched tumor tissue or other independently
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amplified single cells [22, 71]. These methods are reviewed
by Gawad et al. [72].
So far, we have discussed only the technical aspects of

analysis to identify somatic variation in the patient’s tumor.
Depending on the size of the territory interrogated, the
number of somatic variants found can range from a few (in
a hotspot panel) to a few hundred (in a whole exome). The
next step in the process prior to clinical decision-making is
the annotation of variants with functional information and
interpretation of the likely impact of the events in the con-
text of the patient’s disease. For germline diseases, molecular
geneticists routinely use large population variant frequency
databases, such as ExAc [73], to filter out events previously
found in the population. These same resources can be used
to filter germline events from somatic variation [48] but are
not useful for annotation or filtration of actual somatic
events. To annotate and filter somatic events, a large data-
base of somatic variation, COSMIC, is often used [74] and,
increasingly more clinically curated databases such as
ClinVar [75] are used to query the pathogenicity of specific
variants. Unfortunately, a lot of deep knowledge about spe-
cific tumor type variation still resides in proprietary data-
bases maintained by commercial diagnostic companies,
though efforts are underway to free or recreate these data-
sets and others as publically available resources [76–78]. Fi-
nally, given the complexity of the data types and the
number of variables that can impact the results, there is still
a need for expert human review in the field of clinical
genomics. Typical activities for molecular geneticists, pathol-
ogists, and in some cases molecular tumor boards (compris-
ing specialists who discuss the results of advanced genomic
diagnostic tests of cancer patients), range from variant re-
view and visualization, using tools such as the Integrated
Genome Viewer (IGV) [79], to prioritization of variants
based on clinical or professional experience and the context
of the patient’s disease.

Conclusions
Never before in the history of molecular oncologic path-
ology have we had the ability to examine a patient’s tumor
with the resolution or richness of information that it is
possible to generate today. With this increased resolution
comes a lot of additional considerations. In order for gen-
omic information to be useful in a clinical setting we need
the data produced to be accurate, actionable, and timely.
Advances in sequencing technologies have made the se-
quence data itself extremely accurate in most contexts,
such that the major sources of false positives and false
negatives today are caused by pre-analytical factors (such
as chemical or physical damage of DNA/RNA, limited
material, or inappropriate handling) and post-analytical
factors such as variant calling limitations. Upfront consid-
eration of intended use of genomic data and careful selec-
tion of both assay type (exome, transcriptome, targeted
panel) and bioinformatic analysis methodology are re-
quired for optimal utility. Future advances in solid tumor
clinical research will likely see more integrated analyses of
a tumor. That is, not just a targeted gene panel test, but a
targeted panel, plus a targeted fusion test, plus an immune
cell profile. A more expansive profiling, which offers the
ability to cross-validate findings and gain a more complete
molecular picture of a tumor, could incorporate a deep
whole genome (with linked reads for SV detection) plus a
transcriptome (for expression, fusions, and variant valid-
ation) plus an epigenetic test (for dysregulation). The
methods for such testing exist today but require continued
optimization to work with available sample types and
amounts and more integrated analytical platforms to bring
the multi-omic datasets together in a meaningful and
practically interpretable way.
Liquid biopsy represents an exciting new class of sam-

ple matrix that enables more frequent and facile moni-
toring of tumor burden and could allow for more rapid
treatment course correction. Further advances in liquid
biopsy methodology could enable not just post-
diagnostic sampling but also pre-diagnostic screening
for cancer risk, as has been shown with the application
of cfDNA in the non-invasive prenatal testing (NIPT)
field. With continued technological advances and in-
creasing availability of variant databases for annotation
and interpretation, the use of genomic testing in clinical
cancer management seems likely to continue to progress
toward standard of care, though non-trivial issues such
as access to testing, wide-spread physician education,
and adoption of testing, and reimbursement for testing
will likely be the rate limiting steps.
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