
Takemura et al. Boundary Value Problems 2012, 2012:95
http://www.boundaryvalueproblems.com/content/2012/1/95

RESEARCH Open Access

Sobolev type inequalities of time-periodic
boundary value problems for Heaviside and
Thomson cables
Kazuo Takemura1*, Yoshinori Kametaka2, Kohtaro Watanabe3, Atsushi Nagai1 and Hiroyuki Yamagishi4

*Correspondence:
takemura.kazuo@nihon-u.ac.jp
1Liberal Arts and Basic Sciences,
College of Industrial Technology,
Nihon University, 2-11-1 Shinei,
Narashino, 275-8576, Japan
Full list of author information is
available at the end of the article

Abstract
We consider a time-periodic boundary value problem of nth order ordinary
differential operator which appears typically in Heaviside cable and Thomson cable
theory. We calculate the best constant and a family of the best functions for a Sobolev
type inequality by using the Green function and apply its results to the cable theory.
Physical meaning of a Sobolev type inequality is that we can estimate the square of
maximum of the absolute value of AC output voltage from above by the power of
input voltage.
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1 Introduction
For n = , , , . . . , we consider the following boundary value problem for an nth order
ordinary differential operator P(d/dt)

BVP(n)⎧⎪⎪⎨⎪⎪⎩
P(d/dt)u = f (t) ( < t < ),

u(i)() – u(i)() =  ( ≤ i≤ n – ),

u(i) ∈ L(, ) ( ≤ i≤ n).

(.)

The characteristic polynomial with real coefficients

P(z) =
n–∏
j=

(z + aj) =
n∑
j=

pjzn–j (p = )

is assumed to be a Hurwitz polynomial with real characteristic roots –a, –a, . . . , –an–.
For the sake of simplicity, we impose the following assumption.

Assumption

a ≤ a ≤ · · · ≤ an–, aj �=  (j = , , . . . ,n – ).
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We introduce a function G(t) defined by

G(t) =
∑
k∈Z

Ĝ(k)ϕ(k, t), ϕ(k, t) = exp(
√
–ωkt),ωk = πk (t ∈R,k ∈ Z),

where

Ĝ(k) =


P(
√
–ωk)

(k ∈ Z).

It is shown later in Section  that the function G(t – s) is the Green function of BVP(n).
The conclusion of this paper is as follows.

Theorem . For any function u(t) satisfying u(i)(t) ∈ L(, ) ( ≤ i ≤ n) and u(i)() –
u(i)() =  ( ≤ i ≤ n – ), there exists a positive constant C which is independent of u(t)
such that the following Sobolev type inequality holds:

(
sup
≤s≤

∣∣u(s)∣∣) ≤ C
∫ 



∣∣P(d/dt)u(t)∣∣ dt. (.)

Among such C, the best constant C(n;a) is equal to the square of L-norm of the Green
function, and it can be expressed as

C(n;a) = C(n;a, . . . ,an–) = ‖G‖ =
∫ 



∣∣G(t)∣∣ dt.
Let u(t) =U(t) be a solution of BVP(n) for f (t) =G(–t) ( < t < ). Then, if we replace C by
C(n;a) in (.), the equality holds for

u(t) = cU(t – t) ( < t < ),

where t is a real number satisfying  ≤ t ≤ , c is an arbitrary complex number and U(t)
is given by

U(t) =
∫ 


G(t – s)G(–s)ds ( < t < ).

The results [] and [] are prior works related to the subject of the present paper. In [] in
particular, we considered the boundary value problem of a similar nth linear ordinary dif-
ferential operator P(d/dt) and computed the best constant and best function of a Sobolev
type inequality by using the Green function. Moreover, the result [] relates the best con-
stant of the Sobolev inequality to a nth order Hurwitz differential operator. In this pa-
per, we consider a problem similar to that of [] with different boundary condition (time-
periodic boundary condition).
This paper is organized as follows. First, we construct the Green function using Fourier

series expansion in Sections  and  and derive a Sobolev type inequality from a solution
formula to the time-periodic boundary value problem in Section . Using the solution
formula, we compute the best constant and best function of the Sobolev type inequality
as in []. The best constant is expressed as a function of a,a, . . . ,an–. Several concrete
forms of the best constant and best function are presented in Section . Section  presents
an interesting application of results for an analog electric circuit. At this point, the physical
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meaning of a Sobolev type inequality becomes that the square ofmaximumof the absolute
value of AC output voltage is estimated above by the constant multiple of the power of
input voltage.

2 Fourier series expansion
As a preparation, we explain briefly Fourier series expansion. For u(t) ∈ L(, ), we have

u(t) =
∑
k∈Z

û(k)ϕ(k, t),

where the linear transformation̂ is defined by

u(t) –̂→ û(k) =
∫ 


u(t)ϕ(k, t)dt.

Note that, for u(i)(t) ∈ L(, ) (≤ i≤ n) and u(i)() – u(i)() =  (≤ i≤ n – ), we have

u(i)(t) –̂→ (
√
–ωk)îu(k).

Let us first introduce the trigger function {t} = t – [t], where [t] is the integral part of t.
Note that {t} is a periodic function of t with period .We enumerate important properties
of the Fourier transform on L(, ).

Proposition .

() Gj(t) =


 – e–aj
e–aj{t} –̂→ Ĝj(k) =

√
–ωk + aj

(t ∈ R, ≤ j ≤ n – ,k ∈ Z).

() Hj(t) =

aj

(
Gj(t) +Gj(–t)

)
=
cosh(aj({t} – /))
aj sinh(aj/)

–̂→ Ĥj(k) =

aj

(
Ĝj(k) + Ĝj(–k)

)
=


ω
k + aj

(t ∈R,  ≤ j ≤ n – ,k ∈ Z).

Proof of Proposition . () is obtained as follows by a straightforward calculation.

Ĝj(k) =
∫ 


Gj(t)ϕ(k, t)dt =

∫ 




 – e–aj

e–(
√
–ωk+aj)t dt

=


 – e–aj

[
–

√
–ωk + aj

e–(
√
–ωk+aj)t

]


=


 – e–aj

·  – e–(
√
–ωk+aj)

√
–ωk + aj

=
√

–ωk + aj
.

Next we show (). Paying attention to {–t} = –t – [–t] =  – t ( < t < ), we have

Hj(t) =

aj

(
Gj(t) +Gj(–t)

)
=


aj

· 
 – e–aj

(
e–ajt + e–aj(–t)

)
=


aj

· 
eaj/ – e–aj/

(
eaj(t–/) + e–aj(t–/)

)
=
cosh(aj(t – /))
aj sinh(aj/)

.
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Using the relation Ĝj(–k) = /(–
√
–ωk + aj), we have

Ĥj(k) =

aj

(
Ĝj(k) + Ĝj(–k)

)
=


aj

(
√

–ωk + aj
+


–
√
–ωk + aj

)
=


ω
k + aj

.

This completes the proof of Proposition .. �

3 Green function
In this section, we will obtain a concrete expression of the Green function G(t). Con-
cerning the uniqueness and existence of the solution to BVP(n), we have the following
theorem.

Theorem. For any function f (t) ∈ L(, ), BVP(n) has a unique solution u(t) expressed
as

u(t) =
∫ 


G(t – s)f (s)ds ( < t < ). (.)

By using the functions

Gj(t) =


 – e–aj
e–aj{t} (t ∈ R, ≤ j ≤ n – ),

the Green function G(t) can be expressed as

G(t) = (G ∗ · · · ∗Gn–)(t) (t ∈R). (.)

If all aj’s are distinct, G(t) is also rewritten as

G(t) =
n–∑
j=

∏n–
k=,k �=j(–aj + ak)

Gj(t) = (–)n+

∣∣∣∣∣∣∣∣∣
aij

Gj(t)

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣ (t ∈R). (.)

In the above determinants, the exponent i and the index j are such that  ≤ i ≤ n –  and
 ≤ j ≤ n –  in the numerator, and ≤ i, j ≤ n –  in the denominator.

Remark . In the case of multiple roots, we can also have the Green function by taking
a suitable limit in (.). For example, in the case n = , we have

G(t, s) =G(t – s) =

⎧⎨⎩ ea(–(t–s))
(ea–) ( + (ea – )(t – s)) ( < s≤ t < ),
e–a(t–s)
(ea–) (e

a + (ea – )(t – s)) ( < t < s < )

by taking the limit a → a in (.).

In order to prove Theorem ., we transform the expansion of /P(z) to a partial fraction.
For the partial fraction expansion,


P(z)

=
n–∑
j=

bj(z + aj)–, bj =


P′(–aj)
=

∏n–
k=,k �=j(–aj + ak)

,

http://www.boundaryvalueproblems.com/content/2012/1/95
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using the well-known facts (see reference [] p. ())

⎛⎜⎝ bi

⎞⎟⎠ =

⎛⎜⎝ (–aj)i

⎞⎟⎠
– ⎛⎜⎜⎝

...



⎞⎟⎟⎠
and

taA–b = –

∣∣∣∣∣∣∣∣
A b

ta 

∣∣∣∣∣∣∣∣
/∣∣∣ A

∣∣∣,
where A is any n × n regular matrix, a and b are n ×  matrices, we have the following
partial fraction expansion:


P(z)

=
n–∑
j=

bj(z + aj)– = (–)n+

∣∣∣∣∣∣∣∣∣
aij

(z + aj)–

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣ . (.)

The abovemethod is a well-known technique of Heaviside calculus (see reference [] A.§,
., for example).

Proof of Theorem . Taking the Fourier series expansion on both sides of (.), we have

∑
k∈Z

f̂ (k)ϕ(k, t) = f (t) = P(d/dt)u(t) =
∑
k∈Z

P(
√
–ωk )̂u(k)ϕ(k, t),

and hence

û(k) = Ĝ(k)̂f (k), Ĝ(k) =


P(
√
–ωk)

=
n–∑
j=

bjĜj(k) (k ∈ Z),

where Ĝj(k) = /(
√
–ωk +aj) (≤ j ≤ n–). The one and only one solution of BVP is given

by

u(t) =
∫ 


G(t, s)f (s)ds =

∫ 


G(t – s)f (s)ds ( < t < ),

where G(t, s) =G(t – s) is the Green function. For Ĝ(k), using Proposition .() and (.),
we have (). () follows immediately from

Ĝ(k) =
n–∏
j=

Ĝj(k) (k ∈ Z),

which completes the proof of Theorem .. �
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4 Sobolev type inequality
In this section, we give a proof of Theorem ..

Proof of Theorem . For any function u(t) satisfying u(i)(t) ∈ L(, ) ( ≤ i ≤ n) and
u(i)() – u(i)() =  ( ≤ i≤ n – ), we define f (t) ∈ L(, ) by the following relation:

f (t) = P(d/dt)u(t) ( < t < ).

The inequality

∣∣u(s)∣∣ ≤
∫ 



∣∣G(s – t)
∣∣ dt ∫ 



∣∣f (t)∣∣ dt (.)

is obtained by applying the Schwarz inequality to the solution formula (.). The following
equality holds from the periodicity of the Green function:

∫ 



∣∣G(s – t)
∣∣ dt = ∫ 



∣∣G(t)∣∣ dt = ‖G‖.

Hence the right-hand side of (.) does not depend on s, so we have the following Sobolev
type inequality:

(
sup
≤s≤

∣∣u(s)∣∣) ≤ ‖G‖
∫ 



∣∣f (t)∣∣ dt = ‖G‖
∫ 



∣∣P(d/dt)u(t)∣∣ dt.
Taking a solution u(t) = U(t) of BVP(n) for a particular function f (t) = G(–t) ( < t < ),
we have the following relation:

U(s) =
∫ 


G(s – t)G(–t)dt ( < s < ). (.)

In particular, we have

U() =
∫ 



∣∣G(–t)∣∣ dt = ‖G‖ (.)

by putting s =  in (.). We also have

‖G‖ = (
U()

) ≤
(
sup
≤s≤

∣∣U(s)
∣∣) ≤ ‖G‖

∫ 



∣∣P(d/dt)U(t)
∣∣ dt

= ‖G‖
∫ 



∣∣G(–t)∣∣ dt = ‖G‖

from (.) and (.). This means

(
sup
≤s≤

∣∣U(s)
∣∣)

= ‖G‖
∫ 



∣∣P(d/dt)U(t)
∣∣ dt,

which completes the proof of Theorem .. �
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5 The best constant and best function
The concrete form of the best function U(t) which appeared in Theorem ., is given by
the following lemma.

Lemma . The best function

U(t) =
∫ 


G(t – s)G(–s)ds ( < t < ) (.)

is expressed as

U(t) = (H ∗ · · · ∗Hn–)(t) ( < t < ). (.)

If all aj’s are distinct, U(t) is also rewritten as

U(t) =
n–∑
j=

∏n–
k=,k �=j(–aj + ak)

Hj(t)

= (–)n+

∣∣∣∣∣∣∣∣∣
aij

Hj(t)

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣ ( < t < ). (.)

Here Hj(t) is defined as

Hj(t) =
cosh(aj({t} – /))
aj sinh(aj/)

(t ∈R,  ≤ j ≤ n – ).

In the above determinants, the exponent i and the index j are such that  ≤ i ≤ n –  and
 ≤ j ≤ n –  in the numerator, and ≤ i, j ≤ n –  in the denominator.

Proof of Lemma . Wefirst prove (.). Taking the Fourier series expansion on both sides
to the best function, we have

∑
k∈Z

Û(k)ϕ(k, t) = U(t) =
∫ 


G(t – s)G(–s)ds

=
∫ 



∑
k∈Z

Ĝ(k)ϕ(k, t – s)
∑
l∈Z

Ĝ(l)ϕ(l, –s)ds

=
∑
k,l∈Z

Ĝ(k)Ĝ(l)
∫ 


ϕ(k, t – s)ϕ(l, –s)ds

=
∑
k,l∈Z

Ĝ(k)Ĝ(l)ϕ(k, t)δk,–l

=
∑
k∈Z

Ĝ(k)Ĝ(–k)ϕ(k, t).

http://www.boundaryvalueproblems.com/content/2012/1/95


Takemura et al. Boundary Value Problems 2012, 2012:95 Page 8 of 15
http://www.boundaryvalueproblems.com/content/2012/1/95

Here we introduce a new function

R(z) =
n–∏
k=

(
z + ak

)
.

Using this expression, we have

Û(k) = Ĝ(k)Ĝ(–k) =
n–∏
j=


ω
k + aj

=


R(ω
k )

=
n–∑
j=


R′(–aj )

Ĥj(k)

=
n–∑
j=

∏n–
k=,k �=j(–aj + ak)

Ĥj(k).

Using (.) and Proposition .(), we have (.). Since

Û(k) =


R(ω
k )

=
n–∏
j=

Ĥj(k),

we have (.). This completes the proof of Lemma .. �

Theorem . For n = , , , . . . , the best constant C(n;a) is expressed by the following con-
crete forms:

C(;a) =


a tanh(a/)
.

For n ≥ , we have the following expression:

C(n;a) =



n–∑
j=


aj tanh

aj


∏n–
k=,k �=j(–aj + ak)

=
(–)n+

a · · ·an–

∣∣∣∣∣∣∣∣∣
ai+j

(tanh(aj/))–

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣ .

In the above determinants, the exponent i and the index j are such that  ≤ i ≤ n –  and
 ≤ j ≤ n –  in the numerator, and ≤ i, j ≤ n –  in the denominator.

Proof of Theorem . Putting t =  into (.), we have

U() =
∫ 



∣∣G(–s)∣∣ ds = ‖G‖.

Using this relation, we are easily able to calculate the best constant of the Sobolev type
inequality as follows. If n = , we have

C(;a) = ‖G‖ =U() =H() =


a tanh(a/)
.

http://www.boundaryvalueproblems.com/content/2012/1/95
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If n≥ , we have from Lemma .,

C(n;a) = ‖G‖ =U() =
n–∑
j=

∏n–
k=,k �=j(–aj + ak)

Hj()

=



n–∑
j=


aj tanh

aj


∏n–
k=,k �=j(–aj + ak)

.

This is also rewritten as

C(n;a) = ‖G‖ = U() = (–)n+

∣∣∣∣∣∣∣∣∣
aij

Hj()

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣

= (–)n+

∣∣∣∣∣∣∣∣∣
aij

(aj tanh(aj/))–

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣

=
(–)n+

a · · ·an–

∣∣∣∣∣∣∣∣∣
ai+j

(tanh(aj/))–

∣∣∣∣∣∣∣∣∣
/ ∣∣∣ aij

∣∣∣ .
�

6 Heaviside cable and Thomson cable
This section presents an interesting application of the results obtained in the previous sec-
tions to engineering fields. We consider the following n-cascaded LRCG units (Figure ).
Li, Ri, Ci,Gi are inductance, resistance, capacitance and conductance respectively. They

are nonnegative constants and not all of them are zero. ui– = ui–(t) and ui = ui(t) are input
and output voltage respectively. vi = vi(t) is current. Output end is open, vn+ = . Input
voltage u(t) is a given function of t. We investigate the relation between output voltage
u(t) = un(t) and input voltage u(t).

Figure 1 n-cascaded LRCG units.
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We treat two cases,

HC (Heaviside cable): Li,Ri,Ci,Gi >  ( ≤ i≤ n)

and

TC (Thomson cable): Li =Gi = , Ri,Ci >  ( ≤ i≤ n).

Heaviside cable is a discrete model of the transmission line treated by Oliver Heaviside
(see references [, ] for example).
In this section, we adopt the following abbreviation:

D = d/dt.

From the Kirchhoff law, we have the following set of differential equations, in which we
suppose the time periodicity concerning voltages and currents.

⎧⎪⎪⎨⎪⎪⎩
(LiD + Ri)vi = ui– – ui,

(CiD +Gi)ui = vi – vi+ ( ≤ i≤ n,  < t < ),

vi() – vi() = , ui() – ui() =  ( ≤ i≤ n).

We introduce vectors

u = t(u, . . . ,un), v = t(v, . . . , vn)

and n× nmatrices

L =
(

Liδij
)
, R =

(
Riδij

)
, C =

(
Ciδij

)
, G =

(
Giδij

)
,

I =
(

δij

)
, N =

⎛⎜⎜⎜⎝
 


. . .
. . . 



⎞⎟⎟⎟⎠ .

These set of differential equations can be expressed in a vector form.We treat the following
boundary value problems:

BVP(n)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(LD + R)v + (I – tN)u = u(t)t(, , . . . , ),

(CD +G)u – (I –N)v = ,

v() – v() = , u() – u() = ,

u,Du,v,Dv ∈ L(, ).

http://www.boundaryvalueproblems.com/content/2012/1/95
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In the case of Thomson cable, we do not requireDv ∈ L(, ). By eliminating v, the above
equation is rewritten as

⎧⎨⎩(LD + R)(I –N)–(CD +G)u + (I – tN)u = u(t)t(, , . . . , ) ( < t < ),

u() – u() = .

From now on, we put

u(t) =

⎧⎨⎩(
∏n

i=(LiCi))f (t) (HC),

(
∏n

i=(RiCi))f (t) (TC).

By Fourier transform, we have the following matrix equation:

BVP (̂n)⎧⎨⎩(Lz + R)̂v + (I – tN)̂u = û(k)t(, , . . . , ),

(Cz +G)̂u – (I –N)̂v =  (k ∈ Z).

We use the abbreviation z =
√
–ωk . The above equation is rewritten as

BVP (̂n)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lz + R 
Lz + R – 

. . . . . . . . .
Lnz + Rn – 

–  Cz +G

–
. . . Cz +G
. . . 

. . .
– Cnz +Gn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v̂
v̂
...
v̂n
û
û
...
ûn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= û(k)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝



...




...


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (.)

http://www.boundaryvalueproblems.com/content/2012/1/95
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By induction, it is easy to see that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lz + R  

Lz + R –
. . . 

. . . . . . 
...

Lnz + Rn – 
–  Cz +G 

–
. . . . . . 
. . .  Cn–z +Gn–

...
–  

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 

holds. The characteristic polynomial is given by

P(z)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lz + R 

Lz + R – 
. . . . . . . . .

Lnz + Rn – 

–  Cz +G

–
. . . Cz +G

. . . 
. . .

– Cnz +Gn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣/∏n
i=(LiCi) (HC),∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R 

R – 
. . . . . . . . .

Rn – 

–  Cz

–
. . . Cz
. . . 

. . .

– Cnz

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

/∏n
i=(RiCi) (TC).

Solving the linear equation (.) with respect to ûn(k) applying Cramer’s formula, we have

ûn(k) = P(z)–̂f (k) (k ∈ Z).

This means that

P(d/dt)un = f (t) ( < t < ).

http://www.boundaryvalueproblems.com/content/2012/1/95
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In our previous work [], we found that these polynomials (HC) and (TC) are Hurwitz
polynomials, in which all roots have positive real parts.

7 Examples
Physical meaning of the Sobolev type inequality is that we can estimate the square of max-
imumof the absolute value of AC output voltage from above by the power of input voltage.
The authors believe that this is a new point of view compared with classical theory which
mainly considers input-output gain.
In this section, let us calculate the best constants of the Sobolev type inequality for spe-

cific cases.
( unit Heaviside cable)
The circuit parameters are considered as L = L, R = R, C = C, and G = G. The char-

acteristic polynomial is calculated as

P(z) =

∣∣∣∣∣ Lz + R 
– Cz +G

∣∣∣∣∣/(LC) = pz + pz + p,

where

p = , p =
LG + RC

LC
, p =

RG + 
LC

.

We impose the constraint p > √p to have real eigenvalues. Constants a and a are
expressed by circuit constants as

a =
p


–

√
p


– p

=
LG + RC
LC

–

√



(
LG + RC

LC

)

–
RC + 
LC

,

a =
p


+

√
p


– p

=
LG + RC
LC

+

√



(
LG + RC

LC

)

–
RC + 
LC

.

(-cascaded Thomson cable)

P(z) =

∣∣∣∣∣∣∣∣∣
R   
 R – 
–  Cz 
 –  Cz

∣∣∣∣∣∣∣∣∣
/
(RRCC) = pz + pz + p,

where

p = , p =


RC
+


RC

+


RC
, p =


RRCC

.

http://www.boundaryvalueproblems.com/content/2012/1/95
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We impose the constraint p > √p to have real eigenvalues. Constants a and a are
expressed by circuit constants as

a =
p


–

√
p


– p

=



(


RC
+


RC

+


RC

)
–

√



(


RC
+


RC

+


RC

)

–


RRCC
,

a =
p


+

√
p


– p

=



(


RC
+


RC

+


RC

)
+

√



(


RC
+


RC

+


RC

)

–


RRCC
.

For the above two cases, constants a and a satisfy the assumption a < a. In both
cases, the best constant and best function are computed as

C(;a,a) =
a tanh(a/) – a tanh(a/)

aa(a – a) tanh(a/) tanh(a/)
, (.)

U(t) =
a sinh(a/) cosh(a(t – /)) – a cosh(a(t – /)) sinh(a/)

aa(a – a) sinh(a/) sinh(a/)

( < t < ).
(.)

Next we consider the case p = √p, where we havemultiple root (a general case is shown
in the same way). Taking the limit as a → a in (.) and (.), we have

lim
a→a

C(;a,a) =
a + sinha

a sinh
(a/)

,

lim
a→a

U(t) =
sinh(a( – t)) + sinh(at) + a(t cosh(a( – t)) + ( – t) cosh(at))

a(cosha – )

( < t < ).
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