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1 Introduction and review

The last decade has seen remarkable progress in our understanding of scattering amplitudes

in quantum field theory. In particular, Witten’s twistor string [1] has inspired a number of

novel methods for computing tree-level amplitudes, including the Cachazo-Svrcek-Witten

(CSW) rules [2] and the pioneering work of Britto, Cachazo, Feng, and Witten (BCFW) [3,
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4]. The crux of BCFW is that tree-level amplitudes are rational functions of the external

momenta — thus, by analytically continuing these momenta into the complex plane, one

turns an amplitude into a meromorphic function. Since a meromorphic function is uniquely

determined by its singularities, one can characterize all of the properties of the amplitude

by its poles and residues. The BCFW recursion relations exploit this feature in order to

write on-shell amplitudes as sums of products of lower-point on-shell amplitudes.

The validity of the BCFW recursion relations is predicated on the absence of a pole

at infinity. This fact has motivated the study of general properties of tree-level amplitudes

evaluated at large and complex momenta. Naively, one would expect that tree-level ampli-

tudes could scale with dangerously high powers of z, since individual Feynman diagrams

contain derivative couplings in both Yang-Mills and gravity. Remarkably, many ampli-

tudes behave better than expected, and certain amplitudes which naively blow up at large

z actually fall off. In [5], Arkani-Hamed and Kaplan categorized the helicity-dependent

behavior of gauge and gravity amplitudes at large z. By interpreting these processes as a

hard particle moving through a soft background, they were able to systematically derive

the large z behavior of general Yang-Mills and gravity scattering amplitudes.

Despite this progress, the applicability of these new methods to string theoretic am-

plitudes remains relatively unexplored territory. To our knowledge, only [6] discusses the

subject in any detail. The authors of [6] initiated the study of BCFW techniques in a stringy

context by verifying the absence of a pole at infinity for four-point open string gauge boson

amplitudes, and by conjecturing that the pole is also absent for higher point amplitudes

and for closed string graviton amplitudes. Since string amplitudes often have very good

behavior at large momenta, it is reasonable to believe this conjecture. A corollary is that

recursion relations along the lines of BCFW should then hold for string theory amplitudes.

In this work, we address this question in more detail. In particular, we show that

all tree-level string amplitudes1 lack a pole at infinity, and so there is a string analog of

the BCFW recursion relations. The most important element in our proof is the string

pomeron formalism of Brower, Polchinski, Strassler, and Tan [7]. Using their results, we

describe the general large complex momentum behavior of string amplitudes, and show

that one can always analytically continue into a region in which these amplitudes vanish at

infinity. Additionally, we present an example of stringy recursion relations in the context of

bosonic string amplitudes with only external tachyons. In particular, while string BCFW

recursion relations necessarily involve an infinite sum over intermediate states of arbitrarily

high spins, this sum can be re-expressed in such a way that a tachyon amplitude may be

recursively related to lower-point tachyon amplitudes alone.

It is interesting to compare the large z structure of string theory amplitudes with the

corresponding series expansion in field theory. For example, one can compare amplitudes

involving massless external string states to QFT amplitudes with the same external states.

However, we do not expect these series to be simply related because at large z in the

string calculation, there is nothing to suppress the effects of the infinite set of massive

particles present in string calculations; in other words, it is not clear that the small α′

1We only discuss tree-level amplitudes involving perturbative string states in this article.
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limit commutes with the large z limit. However, we identify a particular limit, which we

call the eikonal Regge limit, of type I string amplitudes. In this limit, massless string

amplitudes and their low energy QFT approximation have an identical large z structure.

This leads us to suspect that the amplitudes themselves must be related in this limit. We

demonstrate that MHV amplitudes in type I string theory and N = 4 super Yang-Mills

theory are in fact equal in our limit at four and five points, and provide evidence that a

similar simplification occurs at higher points. It is possible that this statement holds more

generally, for other string theories or NkMHV amplitudes, but we do not provide evidence

for a more general statement.

It has been observed that asymptotic graviton amplitudes in general relativity exhibit

the structure of two copies of gauge boson amplitudes in field theory. This fact is diffi-

cult to explain using purely field theoretic methods, as discussed in [5]. We find that four

and five graviton amplitudes in type II string theory are equivalent to general relativity

amplitudes in the eikonal Regge limit. If this behaviour continues to hold for an arbi-

trary number of external gravitons, then the manifest KLT relation in string theory would

explain this structure.

The outline of this paper is as follows. In section 2, we begin by reviewing the BCFW

recursion relations, with an emphasis on the relevance of the pole at infinity. We then use

the technology of [7] to characterize the behavior of stringy amplitudes at infinity and, in

particular, to prove that all string amplitudes at tree level can be computed by BCFW

recursion. We extend this technology in section 3 to compute subleading terms in the large

z expansion of string amplitudes, and unexpectedly discover a structural similarity between

the asymptotic expansion of string amplitudes with massless external states and certain

field theory amplitudes. In section 4 we discuss the relationship of string and field theory

amplitudes at large z and our conjecture relating massless string amplitudes to field theory

amplitudes in a new limit. We provide evidence that type I string theory and N = 4 super

Yang-Mills theory MHV amplitudes are equal in our limit, and show that a conjecture of

Berkovits and Maldacena [9] implies this correspondence. The subject of section 5 is how

the string theory pomeron expansion can reproduce the field theory asymptotic expansion

which was discussed using background field techniques in [5]. Section 6 focuses on the

recursive structure of poles contributing to tachyon amplitudes in bosonic string theory.

We conclude in section 7. Our appendices contain our conventions and some computational

details. In appendix A, we describe our spinor conventions and recall some useful formulae

for computing operator product expansions. In appendix B, we collect some pomeron

vertex operators for fermionic states. Finally, in appendix C, we describe some explicit

five-point computations.

Note added. As we completed this work we became aware of ref. [8]. This article has

some significant overlap with our work, and in particular also includes a proof of the validity

of the BCFW recursion relations in string theory.

2 Recursions relations in string theory

Let us begin with a review of some of the basic elements of the BCFW recursion relations,

so that we can describe how to extend this method to tree-level string theory amplitudes.

– 3 –
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Our main result will be that string theory amplitudes always vanish at large complex

momenta, provided that we work in an appropriate kinematic regime. This fact implies

that string amplitudes never have a pole at infinity, and thus obey a version of the BCFW

recursion relations. The primary tool we will use to prove this statement is the stringy

pomeron developed by Brower, Polchinski, Strassler, and Tan (BPST) [7].

2.1 A brief review of BCFW

The validity of the BCFW recursion relations [3, 4] can be understood directly in terms of

Feynman diagrams. In particular, since any tree-level amplitude is built out of propagators

and vertices, it must be a rational function of the external momenta. If one interprets

these external momenta as complex variables, then (like any meromorphic function) the

amplitude can be reconstructed from its complex singularities. A key insight provided

by BCFW is that the residues at these singularities are equal to products of lower point

on-shell amplitudes.

More concretely, BCFW considered on-shell tree amplitudes in Yang-Mills theory2 in

which the momenta of two external particles are shifted into a light-like complex direction

parametrized by a complex number z. More generally we can consider such a deformation

of an arbitrary amplitude in a quantum field theory. If we take the shifted particles to be

particles 1 and 2, this shift is given by

k1 → k̂1(z) = k1 + qz (2.1)

k2 → k̂2(z) = k2 − qz, (2.2)

where q satisfies q · q = 0, k1 · q = 0, and k2 · q = 0. These constraints are imposed so

that the deformed external momenta remain on shell, k̂2
1 = k2

1 and k̂2
2 = k2

2 . Note also that

complex momentum conservation is manifestly preserved.

One can now show that the deformed amplitude M is a complex meromorphic function

M(z) that contains only simple poles in z which occur when an intermediate state goes on

shell. Notice that we do not need to assume that the propagating particles are massless,

as discussed in [10]. It is well-known fact from complex analysis that any meromorphic

function which does not have a pole at z = ∞ is uniquely determined by its poles and

residues at finite z. Assuming M(z) satisfies this criterion, the amplitude can be written

as a sum over its poles at z = zk:

M(z) =
∑

k

ck
z − zk

. (2.3)

Because each pole in z corresponds to a complex factorization channel, the residues ck are

equal to products of lower point on-shell amplitudes separated by an intermediate on-shell

state. For Yang-Mills theory, the ck include a sum over the helicity of the intermediate

gluon, while more generally there is a sum over all allowed intermediate states. This con-

struction thus relates on-shell amplitudes to lower-point on-shell amplitudes in a systematic

fashion. The absence of a pole at z = ∞ is a necessary condition for the BCFW recursion

2In this paper we will always take vector boson amplitudes to be color-ordered.
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relations.3 Much work has been devoted to extending the original BCFW construction to

more general theories in which M(z) falls off appropriately at large z. There now exist

recursion relations for massive gauge theories [10], gravity [13, 14], supersymmetric [15],

and generic field theories [16].

This story translates easily to string theory. For a string amplitude, an intermediate

string propagator can be rewritten as a sum over a ladder of stringy excitations. From the

point of view of BCFW, this means that each propagator contributes a variety of simple

poles rather than just the gluon. Therefore, the BCFW recursion relations will also apply

to a given string amplitude provided that it falls off appropriately at z = ∞. In this

section we show that all string amplitudes enjoy a power-law falloff at large z within a

particular kinematic regime. This observation is directly related to the celebrated Regge

behavior of string amplitudes. Consequently, the BCFW recursion relations can applied

to such amplitudes. Furthermore, since this regime in phase space is an open set, we

can analytically continue the resulting recursion relations to string amplitudes at arbitrary

kinematic configurations.

2.2 BCFW and the pomeron vertex

To derive an analogue of the BCFW relations for strings, we first need to review some

technology. Our main tool is the pomeron vertex operator of Brower, Polchinski, Strassler,

and Tan (BPST) [7].

We begin with bosonic open string amplitudes before later generalizing. Up to an

overall normalization factor, the BCFW-deformed amplitudes of interest are given by

M(z) = |wN,1wN−1,1wN,N−1|
∫ (N−2∏

i=2

dwi

)
〈V1(k̂1, w1)V2(k̂2, w2)V3(k3, w3)· · ·VN (kN , wN )〉,

(2.4)

where wi,j = wi −wj and Vi(ki, wi) is the vertex operator for the ith particle with momen-

tum ki inserted at position wi on the worldsheet. Note that we have chosen to fix the SL(2,

R) invariance by fixing the locations of the vertex operators for particles 1, N − 1 and N .

We have deformed particles 1 and 2 and will be interested in the behavior of this amplitude

in the large z limit. We will work in Minkowski spacetime, in which case z must be complex.

We could equivalently work with real z in a spacetime with two timelike directions.

We now summarize the result of BPST, whose technology will play a central role in

our work. Consider the product of two open string tachyon vertex operators

∫
dw eik̂1·X(0)eik̂2·X(w) =

∫
dw w2α′k1·k2ei[k̂1·X(0)+k̂2·(X(0)+wẊ(0)+··· )] (2.5)

where on the right-hand side we have performed the OPE, applied a Maclaurin expansion

in w, and used k̂1 · k̂2 = k1 ·k2. The key insight of BPST is that when z is large, the integral

in eq. (2.5) is dominated by w ∼ 1/z. This is simply because of the large z in the exponent;

3In the case that there is a pole at infinity, eq. (2.3) still holds, but it must include the pole at infinity.

However, the residue at this pole does not have any physical interpretation in terms of on-shell amplitudes.

Methods for dealing with such a pole have been described in [11] and more recently in [12].
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unless w is small, large fluctuations in this exponent lead to a negligible contribution to

the integral. This small z region corresponds to the limit in which the vertex operators for

particles 1 and 2 are close together on the worldsheet.

An accounting of the z expansion shows that contractions of w k̂2 · Ẋ(0) into other

vertex operators in the string amplitude are of order 1 while the terms in the ellipsis in

eq. (2.5) are of order 1/z or higher, since they come with more powers of w. We may thus

truncate the expansion and perform the integral, obtaining
∫
dw eik̂1·X(0)eik̂2·X(w) ∼ Γ(−1 − α′s12)[−ik̂2 · Ẋ(0)]1+α′s12eik·X(0), (2.6)

which is the pomeron vertex operator for the tachyon. Here, we have rewritten k ≡ k̂1+k̂2 =

k1 + k2. Additionally, we define sij ≡ −(ki + kj)
2.

Had we started with external particles other than tachyons, we would have found a

generalized pomeron vertex operator
∫
dw V1(k̂1, 0)V2(k̂2, w) ∼ C12(z)Γ(−1 − α′s12)[−ik̂2 · Ẋ(0)]1+α′s12eik·X(0). (2.7)

where C12(z) is a rational function of z, and V1 and V2 are the vertex operators correspond-

ing to particles 1 and 2. In the case where 1 and 2 are tachyons, C12(z) = 1. Alternatively,

if these particles are gauge bosons, then C12(z) arises from contractions with polarization

vectors that come with the gauge boson vertex operators,

Vi(ki, wi) = ǫi · Ẋ(wi)e
iki·X(wi), (2.8)

where ǫi is the polarization vector of the gauge boson satisfying ǫi · ki = 0. In this case, a

simple computation shows that

C12(z) = −2α′(ǫ̂1 · ǫ̂2 − 2α′ ǫ̂1 · k ǫ̂2 · k), (2.9)

where ǫ̂1,2 are shifted polarizations satisfying ǫ̂i · k̂i = 0. The pomeron vertex operator has

the key property that it isolates the dependence of the amplitude on z in two terms: a ratio-

nal function C12(z), and the operator [−ik̂2 · Ẋ(0)]1+α′s12 . The power 1+α′s12 in eq. (2.7)

can be fixed by requiring that the pomeron vertex operator should have dimension one.

It is now straightforward to understand why the BCFW recursion relations can be

applied to open bosonic string amplitudes. From eq. (2.7) it is clear that the large z

dependence of any bosonic open string amplitude is

Mopen(z) ∼ zn+1+α′s12 (2.10)

where C12(z) grows like zn at large z. If we restrict to a kinematic regime in which

n + 1 + α′s12 < 0, then there can be no contribution to the amplitude from a pole at

infinity, and the BCFW recursion relations can be applied.

In contrast to the usual BCFW procedure, it may seem strange that we need to go

to a particular kinematic regime to get the good behavior we want, and then argue by

analytic continuation that the amplitude should behave nicely. However, this procedure is

– 6 –
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common in the context of string amplitudes. Even in the Veneziano amplitude, the integrals

one must compute only converge in an unphysical kinematic regime. We can consistently

analytically continue these expressions as long as our function is well-defined in a open set.

Since our kinematic region is indeed an open set, we may analytically continue without

any problems. The analytic continuation of the amplitude is unique, and so it determines

the function in a physical regime.

It is straightforward to generalize these results to the closed bosonic string. The

pomeron vertex operator for closed string states [7] is

∫
d2w V1(k̂1, 0)V2(k̂2, w) ∼ C12(z)Π(α′s12)e

ik·X(0)[p̂2 · ∂X(0)p̂2 · ∂̄X(0)]1+α′s12/4, (2.11)

where C12(z) is a rational function in z growing like zn at large z, and

Π(α′s12) = 2π
Γ(−1 − α′s12/4)

Γ(2 + α′s12/4)
e−iπ−iπα′s12/4. (2.12)

For more details on the derivation of eq. (2.11), see [7]. With this result in hand we can

immediately deduce the asymptotic behavior of closed string amplitudes as a function of z:

Mclosed(z) ∼ zn+2+α′s12/2. (2.13)

Therefore BCFW recursion relations hold for the closed string in the region n + 2 +

α′s12/2 < 0. Any amplitude can be computed recursively in this region and then ana-

lytically continued.

We can easily derive the pomeron vertex operators for superstrings as well. Superstring

vertex operators are necessarily written in different pictures, corresponding to whether or

not we integrate over their worldsheet superspace coordinates. NS sector operators can be

in either the -1 (not integrated) or 0 (integrated) picture, and R sector operators can be

in either the -1/2 or +1/2 pictures. As an example, the vertex operators for type I gauge

bosons are given by

V−1 = ǫµψ
µeik·Xe−φ, (2.14)

V0 =
(
2α′
)−1/2

ǫµ

(
iẊµ + 2α′k · ψ ψµ

)
eik·X (2.15)

in the −1 and 0 pictures respectively, where ψµ is a worldsheet fermion and φ is a bosonized

superconformal ghost. We have not written the gauge group generator, since we are sup-

pressing color structure. The type II graviton vertex operators can be read off from

eq. (2.15) essentially by taking one copy of the type I vertex operators on each side of

the string, and additionally taking α′ → α′/4. The heterotic vertex operators are the

same as the open string on one side of the string, but include a current jA on the non-

supersymmetric side.

In writing down our pomeron vertex operators, we need to choose the picture of the

vertex operators with shifted momenta. Although the eventual amplitude is the same

regardless of picture, a convenient choice will make some things easier for us to read off.

For the NS sector, the -1 picture is computationally mildly easier to deal with, since the

– 7 –
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vertex operator has only one term. However, in this section we will work in the 0 picture,

since it is in this picture that the physics is most manifest. We find that the relevant

pomeron vertex operators are

Type I : (ǫ̂1 · ǫ̂2)(1 + α′s12)Γ(−1 − α′s12)[−ik̂2 · Ẋ(0)]1+α′s12eik·X(0) (2.16a)

Heterotic : (ǫ̂1 · ǫ̂2)
(

1 +
α′s12

4

)
Π(α′s12)[k̂2 · ∂X(0)k̂2 · ∂̄X(0)]1+

α′s12
4 eik·X(0) (2.16b)

Type II : (ǫ̂1µν ǫ̂
µν
2 )

(
1 +

α′s12
4

)2
Π(α′s12)[k̂2 · ∂X(0)k̂2 · ∂̄X(0)]1+

α′s12
4 eik·X(0). (2.16c)

These are the pomerons for two gauge bosons in type I, two gauge bosons in heterotic,

and two gravitons in type II. The factor Π(α′s12) is defined in eq. (2.12).

The pomeron vertex operators in eq. (2.16) display several interesting features. First,

notice that they all have a power-law falloff in z, which comes from the exponentials

common to both the bosonic and supersymmetric string. This observation is sufficient to

prove that one can compute amplitudes involving these states by BCFW recursion. Also

note that the tachyon pole in the gamma and Π functions are removed by an appropriate

zero in the numerator. This cancellation would not have been manifest if had we put the

original vertex operators in the -1 picture, although it would be cured by vertex operators

in the rest of the amplitude.

Vertex operators and pomerons for fermionic external states work in just the same

manner as we discuss in appendix B. In particular, all such pomerons again exhibit a

power-law falloff in z so that one can compute stringy amplitudes with external fermions

using BCFW recursion.

3 Subleading terms in the large z expansion

In the previous section, we discussed a variety of pomeron vertex operators in various

string theories and showed that any tree-level string amplitude can be computed by BCFW

deformations. Our proof relied on an understanding of the leading term in the asymptotic

expansion of string amplitudes in z. It is straightforward to extend these techniques to

compute subleading terms in this asymptotic expansion. Understanding the details of this

asymptotic expansion is of some intrinsic interest, but we will also see that the asymptotic

expansion of certain stringy amplitudes is of a surprisingly similar form to certain field

theory amplitudes.

Let us begin in the context of open string theories. In these theories, the N point

amplitudes are given by an integral over the positions ofN−3 vertex operators. Specifically,

the BCFW-deformed amplitude M(z) is given by eq. (2.4), which we reproduce here for

convenience:

M(z) = |wN,1wN−1,1wN,N−1|
∫ (N−2∏

i=2

dwi

)
〈V1(k̂1, w1)V2(k̂2, w2)V3(k3, w3)· · ·VN (kN , wN )〉.

(3.1)

– 8 –
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We will be concerned with the behavior of amplitudes in string theory at large z so that

the quantities α′ŝ1j , α
′ŝ2j, are large for j ≥ 3. In this region, the w2 integral in eq. (3.1)

is dominated by w2 ∼ w1. Performing the (resummed) OPE of the vertex operators

V1V2 in this region generates exactly the pomeron vertex operator to leading order in z.

Therefore, as discussed in the previous section, we can understand the large z structure of

string amplitudes simply by contracting the relevant pomeron operator against the other

operators in the correlator. For example, using the pomeron given in eq. (2.16a), it is easy

to see that the leading term in the asymptotic expansion of any amplitude involving two

adjacent gauge bosons in type I string theory is given by

M(z) ∼ (ǫ̂1 · ǫ̂2)z1+α′s12c, (3.2)

where c is of order 1 + O(1/z).

It is just as straightforward to compute subleading terms in the large z expansion. For

this purpose, we need only compute the next to leading term in the resummed OPE of the

vertex operators for particles 1 and 2. The computation is most straightforward in the -1

picture. We find

V1(0)V2(w) ∼ ǫ̂1 · ǫ̂2
w2

(
1 +

i

2
w2k̂2 · Ẍ(0)

)
eik·X(0)+iwk̂2·Ẋ(0)w2α′k1·k2e−2φ(0)

(
1 − wφ̇(0)

)

− ǫ̂1 · ψ(0)ǫ̂2 · ψ(0)

w
eik·X(0)+iwk̂2·Ẋ(0)w2α′k1·k2e−2φ(0). (3.3)

We may now perform the w integral. The leading order term has the same z structure as

in eq. (2.16). There are three subleading operators, which are given by

N1 = −ǫ̂1 · ψ(0) ǫ̂2 · ψ(0)Γ(−α′s12)[−ik̂2 · Ẋ(0)]α
′s12eik·X(0)e−2φ(0), (3.4)

N2 =
i

2
(ǫ̂1 · ǫ̂2) k̂2 · Ẍ(0)Γ(1 − α′s12)[−ik̂2 · Ẋ(0)]−1+α′s12eik·X(0)e−2φ(0), (3.5)

N3 = −(ǫ̂1 · ǫ̂2)φ̇(0)Γ(−α′s12)[−ik̂2 · Ẋ(0)]α
′s12eik·X(0)e−2φ(0). (3.6)

Notice that the polarization vector structure of N2 and N3 is the same as the leading order

pomeron; thus, these operators contribute subleading terms in z to the coefficient c in

eq. (3.2). On the other hand, N1 has a different structure, as it is antisymmetric in the

polarization vectors. Thus, we find the first three terms in the asymptotic expansion of

the amplitude in large z are

Mµν(z) ∼ zα′s12

[
ηµν(c+ · · · )z +Aµν +Bµν 1

z
+ · · ·

]
, (3.7)

where Aµν is an antisymmetric tensor while Bµν is a generic tensor, and the ellipsis indi-

cates terms which are subdominant in z. The amplitude M is given by contracting the

polarization vectors for particles 1 and 2 into Mµν . It is interesting to note that the large

z structure of vector amplitudes in gauge theory is given [5] by

Mµν
Y M (z) ∼ ηµν(c′ + · · · )z +A′µν + · · · , (3.8)
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where A′µν is also an antisymmetric tensor.

As another example of the applications of the pomeron we can compute the large z

behavior of graviton amplitudes in type II string theory. Closed string amplitudes involve

integrating the position of vertex operators over the entire complex plane:

M(z) = |wN,1wN−1,1wN,N−1|2
∫ (N−2∏

i=2

d2wi

)
〈V1(k̂1, w1, w̄1)V2(k̂2, w2, w̄2)V3(k3, w3, w̄3)

· · · VN (kN , wN , w̄N )〉. (3.9)

At large z, the w2 integrals are again dominated by the region w2 ∼ 1/z. Thus, the

pomeron vertex operators capture exactly the leading behavior of these amplitudes in the

large z region, and subleading terms can be computed by calculating corrections to the

resummed OPE.

In the case at hand the work involved is simplified in the spirit of the KLT relations [17].

Because the Hilbert space of the closed string has the factorized form of two copies of the

open string Hilbert space, the graviton vertex operator is essentially two copies of the

gauge boson vertex operators shown in eq. (2.15). For example, in the (-1,-1) picture, the

graviton vertex operator in type II string theory is given by

V(−1,−1)(w, w̄) = ǫ1µνψ
µ(w)ψ̃ν(w̄)eik·X(w,w̄)e−φ(w)−φ̃(w̄). (3.10)

This observation leads to a simplification: in the computation of any pomeron vertex

operator, the contractions in the closed string case are naturally the product of two copies

of the contractions involved in an open string pomeron. Moreover, it is easy to isolate the

z dependence of a pomeron vertex operator by a simple change of variable. The Jacobian

in the closed string case is simply the square of the Jacobian in the corresponding open

string case. Thus the power of z present in the closed string case is twice the power in the

open string case, up to the usual replacement of α′
closed = α′

open/4. Finally, the integrals

over vertex operator positions in the closed and open string cases are different, but this

affects neither the powers of z nor the Lorentz structure of the polarization contractions.

Therefore, by simply squaring the type I vector result in eq. (3.7), we deduce that the

asymptotic series for all-graviton amplitudes in type II string theory is given by

Mµµ̃νν̃ = zα′s12/2
[
ηµνηµ̃ν̃(c+ · · · )z2 + (ηµνÃµ̃ν̃ +Aµνηµ̃ν̃)z

+(Aµνeµeν + ηµνB̃
eµeν +Bµνη

eµeν) + Cµνeµeν
1

z
+ · · ·

]
, (3.11)

where A and Ã are antisymmetric tensors while B and B̃ are generic tensors. We also find

that Cµνeµeν is the sum of terms which are antisymmetric in µν and in µ̃ν̃. It is remarkable

that the large z behavior of graviton amplitudes in general relativity is given by exactly

the same formula [5] without the overall factor of zα′s12/2, with exactly the same symmetry

properties of all the tensor coefficients.

Thus we see that there appears to be a structural similarity in the asymptotic expan-

sions of string and field theory amplitudes. This is unexpected because, of course, string
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theory at asymptotically large momenta is not expected to be related to field theory. In

the next section, we will describe why we believe this behavior should continue at all orders

in z in a particular limit, at least for type I string theory and N = 4 field theory.

4 A conjecture

In the last section, we observed several times that stringy asymptotic structures are similar

to field theory series with the same external states. It is natural to wonder if there is some

limit of a string amplitude at large momentum in which the large momentum field theory

limit is reproduced. Notice that this is not the usual α′ → 0 limit because we are interested

in the pomeron region of string amplitudes: therefore, we require that α′ŝij is large for any

deformed kinematic invariants ŝij. For the purposes of this article, we will focus on the

simple case of type I amplitudes with vector boson external states (and their superpartners).

As we will discuss in this section, we find evidence for the conjecture that there is a large-

momentum limit in which type I and N = 4 Yang-Mills MHV superamplitudes agree.

Let us now consider the kinematic region in which we can hope this new relationship

between string and field theory amplitudes can hold. Our use of the pomeron vertex

operator is justified when α′ŝij is large for all kinematic invariants ŝij which contain a z

dependence due to the BCFW deformation. Thus it is consistent to go to a region where

all other kinematic invariants are small. For example, we can take
√
α′pi ∼ O(ǫ) for all

i where ǫ ≪ 1 but
√
α′q ∼ O(ǫ−1) so that q · pi is of order 1. We will then take z to be

large. In this region, α′sij ≪ 1 while α′ŝij ∼ z so, for large z, the pomeron approximation

is valid. We will refer to this particular limit of parameter space as the eikonal Regge (ER)

region. Physically, this corresponds to a regime where one subset of momenta is much

greater than the string scale while another subset is negligible compared to the string scale.

Throughout this article we have considered only adjacent BCFW shifts. Correspondingly,

we can consider an adjacent ER region where neighbouring particles i, i + 1 carry large

momentum. We shall restrict our attention to this adjacent ER region from now on.

We conjecture that in the adjacent eikonal Regge regime, massless MHV superam-

plitudes in type I string theory and N = 4 super Yang-Mills theory are identical. In

particular, our conjecture is that if two adjacent momenta k1 and k2 are BCFW-deformed

so that ŝ1i and ŝ2j, are large for i, j ≥ 3 while all other kinematic invariants are small, then

the type I amplitudes reduce to field theory amplitudes. Our evidence for this conjecture,

in addition to the suggestions of the asymtotic series, is the following:

• Explicit proof for the four and five particle cases.

• Demonstration that two particle factorization channels have the property that in the

ER region all higher string states are suppressed for any number of particles.

• Finally, we will show that the Berkovits-Maldacena (BM) [9] prescription for comput-

ing string MHV superamplitudes implies our conjecture. However, the BM expression

has not yet been proven in the literature.

– 11 –



J
H
E
P
0
9
(
2
0
1
0
)
0
5
2

There may be a still stronger relation between string and field theory amplitudes — for

example, perhaps NkMHV string and field theory amplitudes agree in the ER region, or

perhaps the relationship holds for other string theory and field theory pairs. In this article,

we focus only on the type I / gauge theory case. However, we cannot resist remarking that

type II amplitudes with graviton external states reduce to field theory graviton amplitudes

in the ER region at four and five points. This is easily seen at four points using the KLT

relations; at five points it is convenient to use the BCJ [18] inspired string relationship

discovered by Bjerrum-Bohr, Damgaard and Vanhove [19] and by Stieberger [20].

On the surface of it, the equivalence between the string and field theory amplitudes in

the ER limit is quite surprising, since we are not simply taking the α′ → 0 limit. Indeed,

we are taking some momenta much larger than the string scale, so one would naively

expect contributions from massive internal string states. Neither is this some kind of soft

limit since the quantities α′ŝij are large rather than small. In other words, there is plenty

of energy to put more string states on-shell. Let us now discuss the evidence for our

conjecture.

4.1 Explicit demonstrations

Our conjecture is trivial at the level of the three point function, so we begin by examining

the four point amplitude in type I string theory. For ease of presentation we will express

amplitudes using the spinor-helicity formalism; this assumption can be justified by suppos-

ing that all particles are propagating in a four dimensional subspace with all polarization

vectors lying in the same subspace. For our conventions, see appendix A. In this notation,

the string theory four gauge boson amplitude is

A(1−2−3+4+) = i
〈12〉4

〈12〉〈23〉〈34〉〈41〉
Γ(1 − α′s12)Γ(1 − α′s23)

Γ(1 − α′s12 − α′s23)
. (4.1)

It is straightforward to see that the string theory form factor involving the Γ functions is

unity if we complex deform k1 and k2, since then α′s12 may be taken to be small while α′s23
is large. The remaining spinor helicity factor is exactly the gauge theory answer. Thus,

our conjecture passes its first non-trivial test. It is also straightforward to show that the

five particle amplitude has the desired properties using the explicit results for the MHV

five point amplitude obtained by Stieberger and Taylor [21]. We describe this calculation

in appendix C.

4.2 The two-particle factorization channel

One of the reasons for the simplicity of the MHV amplitudes in field theory is that there

are only two particle factorization channels present in the amplitude. In string theory, we

no longer expect this to be the case, since there are massive resonances. Nevertheless, two

particle factorization channels are straightforward to analyze. We will now consider the

two particle factorization channels of an n point gauge boson amplitude in type I string

theory and show that the higher string modes in these factorization channels have the

property that they are suppressed by a small factor in the ER region.
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To simplify the calculation, we will use the usual SUSY Ward identities. The identities

for N = 4 theory are expected to hold in the full type I string theory because they are

purely kinematical in nature; this was carefully checked in [22]. These identities imply the

well-known identity

An(1−, 2−, 3+, . . . , n+) =
〈12〉2
〈13〉2An(1−, 2̄0, 30, 4+, . . . , n+) (4.2)

where the states 2̄0, 30 are scalar antiparticles and particles. From the point of view of the

10 dimensional string theory, these scalar states are merely vectors polarized in the extra

six dimensions. Now we can straightforwardly compute the OPEs of the vertex operators

for these scalar states with the other particles, which are simple because many of the scalar

products vanish. We shall write the scalar vertex operators as

V−1(w) = e−φ(w)Ψ(w)eik·X(w), V0(w) =
1√
2α′

(
iŻ(w) + 2α′k · ψ(w)Ψ(w)

)
eik·X(w),

V̄−1(w) = e−φ(w)Ψ̄(w)eik·X(w), V̄0(w) =
1√
2α′

(
i ˙̄Z(w) + 2α′k · ψ(w)Ψ̄(w)

)
eik·X(w),

where the non-trivial OPEs of Ψ and Z are

Ψ(z)Ψ̄(0) ∼ 1

z
, Ż(z) ˙̄Z(0) ∼ −2α′

z2
. (4.3)

We shall take particles 1 and 2 to have the large momentum and consider the (23) factoriza-

tion channel. Notice that in this factorization channel a higher string state is kinematically

allowed. Choosing the vertex operators for particles 1 and 3 to be in the -1 picture, the

correlator of interest is

C = w2
∞〈[i ˙̄Z(0) + 2α′k̂2ψ̇(0)Ψ̄(0)]eik̂2·X(0)e−φ(w)Ψ(w)eik3·X(w)V0,4(w4)

· · ·V0,N (1)e−φ(w∞)ǫ̂1 · ψ(w∞)eik̂1·X(w∞)〉 (4.4)

where V0,i is a 0 picture vertex operator for the ith particle. We shall take w∞ → ∞ and

choose the gauge ǫi · k3 = 0 for i = 4, . . . , N . Then we find

C =
2α′w∞

w
〈k̂2 · ψ(0)eik̂2 ·X(0)eik3·X(w)V0,4(w4) · · · V0,N (1)ǫ̂1 · ψ(w∞)〉. (4.5)

We can now see the structure of the two particle factorization channel. The singularities

in this channel arise from the region where w is small. In this region, we can perform the

OPE of the operators at 0 and w; since this series organizes all the w dependence into

Wilson coefficients we can perform the w integral. The OPE is

1

w
eik̂2·X(0)eik3·X(w) = w2α′ k̂2·k3−1ei(k̂2+k3)·X(0)

(
1 + iwk3 · Ẋ(0) + O(w2)

)
(4.6)

Performing the w integral we see that the leading term in this OPE corresponds to a pole

1/k̂2 · k3 while the higher terms lead to the massive string poles. However, contracting the

operator Ẋ(0) into the other vertex operators leads to factors α′k3 · kj which are small.

(Notice that in the channel there are no factors 1/k3 ·kj because we have already factorized

the leg for particle 3). We conclude that in the ER region, the higher string poles in two

particle factorization channels are negligible.
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4.3 Relationship to a conjecture of Berkovits and Maldacena

In [9], Berkovits and Maldacena (BM) conjecture a general form for MHV type I string

amplitudes. In this section, we describe how our conjecture follows directly from theirs.

The BM conjecture is that the MHV type I superamplitude is given by

A(1 · · ·n) = δ4

(
∑

i

pi

)
δ8

(
∑

i

qi

)
Ã(1 · · · n) (4.7)

where pi is the momentum of the ith particle while qαA
i = λα

i η
A is the supermomentum of

the ith particle, defined in terms of four fermionic variables ηA, and

Ã(1 · · · n) =
1

〈12〉〈23〉〈31〉

〈(
3∏

i=1

eikiX(wi)

)


N∏

j=4

∫ w1

wj−1

dwj V0,j(wj)



〉
, (4.8)

where V0,j is the 0-picture vertex operator for the jth gauge boson, as given in eq. (2.15).

The first three wi are particular points, just as in any other disk amplitude. A convenient

choice is to take w1 → ∞, w2 = 0, w3 = 1. Additionally, we will perform our BCFW

shift on particles 1 and 2 as |1̂〉 = |1〉 + z|2〉, |2̂] = |2] − z|1]. Now, choosing the gauge

for all particles 4, . . . , N to be proportional to |2〉 we can compute the contractions of the

operators involving z to find

Ã(1 · · · n) =
1

〈12〉〈23〉〈31〉

〈
eik3X(1)




N∏

j=4

∫ ∞

wj−1

dwj w
2α′k2·ki

j V0,j(wj)



〉
. (4.9)

In this form we see that all dependence of the shift is in the simple factor
∏N

i=4 |wi|2α′k2·ki .

The calculation that verifies our conjecture is now very similar to the one carried out in

appendix A.3 of [9], in which BM show that the α′ → 0 limit of eq. (4.8) reproduces the

field theory answer. In fact, BM show that the amplitude localizes around w = 1, so the

shifted factor is unity and does not contribute. The rest of the calculation then proceeds

exactly as in BM, and we recover the N = 4 result.

5 The pomeron and the field theoretic large z expansion

Given our conjecture on the relationship between field and string theory amplitudes, it is

natural to investigate what the pomeron operators compute when the ER limit is taken.

Since we know there is some relationship between string and field theory amplitudes in the

ER region at four and five points, we can explore the interplay of the pomeron technique

and field theory results with confidence for these amplitudes. In this section, we will focus

on the simplest case of the four point amplitude, deferring our five point calculations to ap-

pendix C. We will begin with a brief review of [5] to understand the expansion of gauge the-

ory and gravity amplitudes at large z. Armed with this reminder of the field theory struc-

tures, we will show how the string pomeron and subleading operators map to field theory

objects in the ER region. We will then outline some explicit computations of terms in the

asymptotic stringy amplitude and take the ER limit to reproduce field theory expressions.
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5.1 Review of large z structures in field theory

Individual Feynman diagrams of tree-level gauge and gravity amplitudes naively grow with

energy because their associated interactions are derivatively coupled. Thus it is surprising

that summing these diagrams can yield an on-shell amplitude which actually vanishes at

large momenta. As we have discussed, this vanishing is crucial for the validity of the BCFW

recursion relations, which require the absence of a pole at z → ∞.

In [5], Arkani-Hamed and Kaplan provide a systematic description of this surpris-

ingly convergent behavior by considering gauge and gravity amplitudes at large complex

momenta. They show that the external legs which have been complex deformed can be

interpreted as a hard particle propagating through a soft background corresponding to the

remaining external legs. Thus, in the case of gauge theory, one can compute the large z

structure of amplitudes using the background field method. Expanding around a back-

ground gauge field configuration, they obtain the Lagrangian

L = −1

4
ηabDµaaD

µab +
i

2
Tr[aa, ab]F

ab (5.1)

where F ab is a background field containing the soft particles. Here the indices a, b are really

the same as the µ, ν Lorentz indices except they have been relabeled to emphasize what the

authors of [5] call a “spin” Lorentz symmetry. In particular, in the large z limit, the term

proportional to ηab dominates, and there is an enhanced Lorentz symmetry which acts on

the a, b indices alone. The background field strength Fab explicitly breaks this enhanced

symmetry at one lower order in z. Thus, gauge theory amplitudes at large z are of the form

ǫµi Aµνǫ
ν
j , (5.2)

where ǫi,j are the polarization vectors of the shifted particles i and j, and

Aµν = (cz + · · · )ηµν +Aµν +
1

z
Bµν . (5.3)

where Aµν and Bµν are functions of the background fields, with Aµν antisymmetric since

the background field is antisymmetric. Similarly, gravity amplitudes can be calculated

from a Lagrangian

L =
√−g

[
1

4
gµνηabηeaebDµhaeaDνhbeb

− 1

2
haeahbeb

Rabeaeb

]
, (5.4)

where Rabeaeb is the background curvature associated with the metric g containing the soft

particles and D is a covariant derivative acting on the vielbein indices of the fluctuation h.

At leading order in z there is an enhanced spin Lorentz symmetry on the vielbein indices

a, b and also separately on the vielbein indices ã, b̃. This symmetry is broken by the spin

connection and by the background curvature, leading to the asymptotic form

Mµµ̃νν̃ = cz2ηµνηµ̃ν̃ +z(ηµν Ãµ̃ν̃ +Aµνηµ̃ν̃)+Aµνeµeν +ηµνB̃
eµeν +Bµνη

eµeν +
1

z
Cµνµ̃ν̃ + · · · (5.5)

which is dotted into graviton polarizations in order to get the full amplitude. Note that Aµν

is again antisymmetric, and Aµνeµeν is antisymmetric under exchange of (µν) and (µ̃ν̃). Bµν
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has no particular symmetry properties. Meanwhile, C is a sum of terms antisymmetric in

(µν) and (µ̃ν̃). As noted in [5], this gravitational asymptotic expansion is structurally the

square of the field theory asymptotic expansion; the origin of this relationship is obscure

in the field theory presentation. In both the gravity and gauge theory amplitudes, the

polarizations may introduce extra powers of z, as we will see.

5.2 The pomeron and spin symmetry

As we have seen, field theory asymptotic series are controlled by sources of spin symmetry

violation by a background field. It is interesting to see how string theory computes the

same objects. In fact, at every order in z, we can correlate the string theory expressions

with their field theory counterparts. At leading order in large z, we have seen in the field

theory case that both gauge and gravity amplitudes display an enhanced spin symmetry.

In string theory, the leading order term in the z expansion is controlled by the pomerons,

given in type I for gauge amplitudes and in type II for graviton amplitudes by

ηµν(1 + α′s12)Γ(−1 − α′s12)[−ik̂2 · Ẋ(0)]1+α′s12eik·X(0)

ηµνηµ̃ν̃

(
1 +

α′s12
4

)
Π(α′s12)[k̂2 · ∂X(0)k̂2 · ∂̄X(0)]1+

α′s12
2 eik·X(0)

respectively. Note that these operators are proportional to exactly the correct metric

tensors to reproduce the enhanced spin symmetry of the field theory result. Thus, this

enhanced symmetry in string theory is simply a consequence of the fact that the leading

singularity in the OPEs of the vertex operators is proportional to ηµν .

Now let us examine these asymptotic expansions at subleading order. In the gauge

theory case, we encounter the antisymmetric background field F ab in addition to subleading

terms which preserve the spin symmetry. In type I string theory, various operators con-

tribute at next to leading order. These operators have two kinds of Lorentz structure: they

are either proportional to metric tensors (preserving the spin symmetry) or they involve an

antisymmetric tensor. For example, we have already seen the subleading operator which

violates the enhanced spin symmetry in the type I string (with ghost number -2); it is

ψµ(0)ψν(0)Γ(−α′s12)[−ik̂2 · Ẋ(0)]α
′s12eik·X(0)e−2φ(0).

Of course, this operator is antisymmetric on account of the anticommutativity of ψ.

The comparison between the gravity amplitude and the string result is completely

analogous. However, the string theoretic computation makes the KLT relation essentially

manifest. So it comes as no surprise in the string case that the graviton asymptotic series is

the square of the gauge boson series; this is very obscure in the field theoretic computation.

5.3 Computational examples

To demonstrate how this formalism works in simple examples, we will explore some four

point amplitudes in this section. Our aim is to illuminate the formal development, and also

to explore the relationship between the large z structure of string and field theoretic ampli-

tudes in the context of the pomeron expansion. For simplicity we will work in the context
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of bosonic string theory; as before, it is also convenient to work in four dimensions. The

advantage of working in four dimensions is the availability of the simple four dimensional

spinor-helicity method with its compact formulae. So we imagine that all of the polariza-

tion vectors and momenta of the particles scattering happen to lie in a four dimensional

subspace of a larger spacetime. Our spinor conventions are presented in appendix A.

We begin with an investigation of scattering amplitudes involving four gauge bosons. In

field theory, it is a well-known fact that the asymptotic behavior of the four particle Yang-

Mills amplitude depends on the the helicities of the particles which are shifted. Therefore

we will consider here the leading term in the asymptotic expansion for both a good and a

bad shift.4 In the case of a bad shift, we consider the amplitude A(1−2+3+4−), where the

superscript indicates the helicities of the gauge bosons. The shift of interest is

∣∣1̂
〉

= |1〉 + z|2〉, (5.6)
∣∣2̂
]

= |2] − z|1]. (5.7)

We choose gauges so that the polarization vectors are

ǫ̂−1 = − |2]
〈
1̂
∣∣

√
2[12]

, ǫ̂+2 =
|1〉
[
2̂
∣∣

√
2〈21〉

(5.8)

ǫ+3 =
|2〉
[
3̂
∣∣

√
2〈32〉

, ǫ−4 = − |2̂] 〈4|√
2[42̂]

. (5.9)

At leading order in the pomeron expansion, the computation reduces to calculating the

expectation value of the pomeron vertex operator and two gauge boson vertex operators.

Since there are no more worldsheet integrations to be performed the calculation is very

straightforward. We find that

A(1−2+3+4−) = (2α′)2z2Γ(−α′s12)[ǫ
+
3 · ǫ−4 + 2α′ǫ+3 · k ǫ−4 · p3](2α

′p̂2 · p3)
1+α′s12 . (5.10)

Now we can consider taking the eikonal Regge limit α′s12 → 0. In the ER region, the

leading term of the string amplitude eq. (5.10) is

A(1−2+3+4−) → −(2α′)2z2 2p̂2 · p3ǫ
+
3 · ǫ−4

s12
= (2α′)2z3 〈42〉3

〈12〉〈23〉〈34〉 . (5.11)

which agrees with the corresponding field theory amplitude when we correctly normalize

the string amplitude.

Another interesting example at four points is given by the good shift. In this case we

will consider the same amplitude A(1−2+3+4−), but with the shift

∣∣1̂
]

= |1] + z|2], (5.12)
∣∣2̂
〉

= |2〉 − z|1〉. (5.13)

4A good shift is one for which the amplitude vanishes at large z, whereas for a bad shift the amplitude

diverges.
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In terms of momenta, the shift is p̂1 = p1 + zq, p̂2 = p2 − zq where q = 1
2 |2] 〈1|. In this

case the large z behavior of the field theory amplitude is

Aft(1
−2−3+4+) = g2 〈41̂〉3

〈12〉〈23〉〈34〉 ∼ g2 〈14〉3
z〈12〉〈23〉〈34〉 . (5.14)

We would like to reproduce this behavior using our operator methods. One way to compute

the large z behavior of the string amplitude would be to directly compute out the various

operators contributing in the pomeron expansion at order 1/z and above. This would be a

tedious calculation since there must be a number of cancellations amongst these operators

so that the leading term in z is of order z−1+O(α′s12). A simpler way to do the calculation

is to follow the method described by Arkani-Hamed and Kaplan in [5]. We choose gauges

for the external particles so that

ǫ̂−1 = − |2]
〈
1̂
∣∣

√
2[12]

= ǫ−1 , ǫ̂+2 =
|1〉
[
2̂
∣∣

√
2〈21〉

= ǫ+2 , (5.15)

and notice that ǫ̂−1 = −
√

2q/[12]. Since we are labeling the polarization states of the

external massless bosons by polarization vectors, the Ward identity must hold to remove

the unphysical polarization states. Therefore the amplitude must vanish when we replace

the polarization vector of particle 1 by its momentum p̂1. It follows that

qµAµνǫ+2ν = −1

z
p1µAµνǫ+2ν . (5.16)

Furthermore, since p1 · ǫ+2 = 0 we see from inspecting the large z structure of the stringy

gauge boson amplitude given in eq. (3.7) that the leading term in the large z expansion

of the amplitude can be calculated simply from the antisymmetric subleading pomeron

operator which is explicitly given by

Nµν
1 = 2iα′[kµẊν(0) − kνẊµ(0)]eik·X(0)[−ip̂2 · Ẋ(0)]α

′s12Γ(−α′s12). (5.17)

Performing the contractions, we find that

Aµν = −(2α′)4Γ(2 − α′s12)(kµp3ν − kνp3µ)ǫ+3 · p̂2 ǫ
−
4 · p̂2(2α

′p̂2 · p3)
α′s12−2 (5.18)

where the polarization vectors of particles 1 and 2 are to be contracted into the µ and ν

indices. Once more, it is interesting to consider the small α′sij limit. The result is

Aµν = −(2α′)2(kµp3ν − kνp3µ)
ǫ+3 · p̂2 ǫ

−
4 · p̂2

(p̂2 · p3)2
. (5.19)

Contracting in the external polarization vectors and evaluating the scalar products we find

that

A(1−2+3+4−) = (2α′)2
〈14〉3

z〈12〉〈23〉〈34〉 , (5.20)

as expected.

We present another example of the use of pomeron technology at five point order in

appendix C.
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6 Internal recursion relations for tachyon amplitudes

We have now seen that the BCFW recursion relations hold in general for string amplitudes.

However, there is a disadvantage to computing string amplitudes via BCFW, which is that

the sum over intermediate states runs over an infinite set of poles. This occurs because

a string propagator describes the exchange of an infinite ladder of modes with different

masses and quantum numbers. Consequently, when BCFW is applied, for example, to

an amplitude with only tachyonic external legs, the resulting lower point amplitudes will

invariably include external states of higher spin.

In this section, we will explore this issue in the simplest laboratory setting: color-

ordered tachyon scattering amplitudes in open bosonic string theory. We will see that for

these amplitudes, the sum over intermediate states can be reexpressed using a simple new

recursive relationship. In fact, it is possible to write the tachyon scattering amplitudes as

a series of terms which are formed from purely tachyonic amplitudes. Said another way,

since the sum over the complete set of string theoretic states can be simply related to the

lowest lying state, one can derive a new set of recursion relations which relate higher point

tachyon amplitudes to lower point tachyon amplitudes. We will refer to these as internal

recursion relations.

Throughout this section, we will use the Koba-Nielsen formula [23, 24] for the n-particle

scattering amplitude of tachyons, which is given by

Mn =
1

vol SL(2,R)

∫
[dy]

∏

i>j

y
−(sij+2)
ij =

1

vol SL(2,R)

∫
[dy]

∏

i>j

y
−qij

ij (6.1)

where yij = yi − yj, [dy] =
∏N

i=1 dyi, and we have defined qij ≡ −2ki · kj = sij + 2. In

this section we work in units where α′ = 1. We have written the explicit division by the

volume of the Möbius group SL(2,R) to emphasize the symmetry of the amplitude.

6.1 Example: the five point tachyon amplitude

To preface a more general discussion, let us consider a simple example which illustrates

how higher point tachyon amplitudes may be related to lower point tachyon amplitudes

evaluated at shifted Mandelstam invariants. Our approach at five points will largely mirror

our proof of internal tachyon relations at n points, which will be provided later.

For the purposes of explicit computation, we first gauge fix the general amplitude

eq. (6.1) by fixing the positions of three vertex operators. As usual, we fix the locations

y1, y4 and y5. The amplitude is given by

M5 = |y14y15y45|
∫
dy2dy3

∏

i<j

|yij|−qij . (6.2)

Using Möbius transformations to set y1 = 0, y4 = 1, y5 = ∞, relabeling y2 ≡ x and y3 ≡ y,

the five point tachyon amplitude becomes

M5 =

∫ 1

0
dy

∫ y

0
dxx−q12(1 − x)−q24y−q13(1 − y)−q34(y − x)−q23 . (6.3)
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Next, we can show that this amplitude factors into a three point tachyon amplitude times a

four point tachyon amplitude, with the appropriate momentum in the intermediate channel.

We shift k1 → k̂1 ≡ k1 + zq and k5 → k̂5 ≡ k5 − zq. Following BCFW, we need only find

the poles in z; these can occur when the vertex operators for particles 1 and 2 become

close, or when the vertex operators for particles 1, 2 and 3 become close. For the purpose

of this discussion, we describe only the (1,2) channel; a similar analysis holds for the other

factorization channel. Singularities in the region near x = 0 result in poles in the s12
channel.5 Expanding around x = 0 the integrand becomes

∞∑

n,m=0

x−q12+n+m(1 − y)−q34y−q13−q23−m(−1)n+m

(−q24
n

)(−q23
m

)
. (6.4)

where we have performed a binomial expansion. It is now trivial to perform the x integral;

it is ∫ y

0
dxx−q12+n+m =

−1

q12 − n−m− 1
y−q12+n+m+1. (6.5)

However, we are only interested in the value of this integral at the pole in z (recall that q12
is a function of z.) This pole occurs when q12(z) − n −m − 1 = 0. Thus we may replace

the integral by
∫ y

0
dxx−q12+n+m → −1

q12 − n−m− 1
=

−1

s12 − n−m+ 1
. (6.6)

Finally, performing the dy integral, we find that

M5 =

∞∑

n,m=0

M3
cn,m

s12 − n−m+ 1
M4(q1+2,3 +m, q34) + · · · , (6.7)

where the ellipsis indicates that another term corresponding to the s45 factorization channel

must be added; q1+2,3 = q13 + q23 = −2(k1 + k2) · k3; the three point amplitude M3 = 1;

and M4 is the celebrated Veneziano amplitude, albeit evaluated at the indicated shifted

Mandelstam invariants. Furthermore, the numerator factor is

cn,m = (−1)n+m+1

(−q24
n

)(−q23
m

)
. (6.8)

6.2 Factorization channels

Having determined how internal recursion relations work at five points, let us now generalize

to N points. We start from the general tachyon amplitude eq. (6.1). Like before, we gauge

fix y1 = 0, yN−1 = 1, and yN = ∞.

In the previous section, we explicitly discussed the two particle factorization channel

in a five point example. A completely analogous statement can be made generally for the

k-particle factorization channel, which occurs when k points pinch off on the world-sheet.

To see this, let us partition the external particles into a “left” and a “right” group,

L = {1, . . . , k} (6.9)

R = {k + 1, . . . , N} (6.10)

5We suppress the hats of z dependent Mandelstam invariants in this section.
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and relabel the yi variables as li or ri, depending on whether i is in L or R. So in

other words,

yi =

{
li i ∈ L

ri i ∈ R
(6.11)

The li and ri variables will ultimately become the moduli integrals for left and right tachyon

amplitudes, ML and MR. Because of our gauge fixing y1 = 0 and yN = ∞, it is conve-

nient to define sets L′ = L \ {1} and R′ = R \ {N}. In this notation the Koba-Nielsen

formula becomes

MN =

∫
[dl][dr]



∏

i>j∈L

(li − lj)
−qij





∏

i>j∈R′

(ri − rj)
−qij






∏

i∈L,j∈R′

(rj − li)
−qij


 ,

where the measure
∫

[dl][dr] is shorthand for

∫
[dl][dr] =

∫ 1

0
drN−2

∫ rN−2

0
drN−3 · · ·

∫ rk+1

0
dlk · · ·

∫ l4

0
dl3

∫ l3

0
dl2 (6.12)

The k-particle factorization channel occurs when

s12...k = −
(

k∑

i=1

ki

)2

(6.13)

= −k +
∑

i>j

qij (6.14)

= −1 + n. (6.15)

We are now in a position to expose the corresponding singularity in the N tachyon am-

plitude. The k-particle factorization channel corresponds to the limit in which particles

1 through k coincide on the worldsheet. This occurs when lk → 0. In order to pa-

rameterize this limit, we wish to define lk ≡ C as the “pinch” variable, and rescale the

remaining variables

li → Cli, (6.16)

for all i ∈ L\{k}. Notice that while we are formally rescaling l1, this does nothing because

this variable has been gauge fixed to zero.

Now when we then take C → 0, the vertex operators corresponding to particles 1

through k collapse to a single point, yielding the k-particle factorization channel. Including

the resulting Jacobian, the amplitude becomes

MN =

∫
[dl][dr]dC Ck−2



∏

i>j∈L

[C(li − lj)]
−qij





∏

i>j∈R′

(ri − rj)
−qij




×




∏

i∈L,j∈R′

(rj −Cli)
−qij


 . (6.17)
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In the above expression, l1 = 0, rN−1 = 1 and rN = ∞ due to our original gauge fixing

of MN . Moreover, we can think of our rescaled “pinch” variable lk = C as having been

gauge fixed to one, lk = 1, and then multiplied by C. Setting lk to unity corresponds to

one of the gauge fixings of ML.

We can pull out a factor of

C−(
P

i,j∈L qij−k+2) = C−(s12...k+2) (6.18)

which yields the multi-particle singularity in the integration region where C is small. Now,

let us expand in small C, looking at only the relevant terms

∫
dC C−(s12...k+2)




∏

i∈L,j∈R′

(rj − Cli)
−qij




=

∫
dC C−(s12...k+2)




∏

i∈L′,j∈R′




∞∑

nij=0

(−1)nijCnij l
nij

i r
−(qij+nij)
j

(
−qij
nij

)





∏

j∈R′

r
−q1j

j


 .

(6.19)

Performing the C integral near the pole in s12...k(z), we may write the amplitude near the

k particle factorization channel as

MN ∼
∞∑

n=0

∫
[dl][dr]

−1

s12...k + 1 − n



∏

i>j∈L

l
−qij

ij





∏

i>j∈R′

r
−qij

ij






∏

j∈R′

r
−

P

i∈L qij

j






∏

i∈L′, j∈R′

∑

part

(−1)nij

(
−qij
nij

)
l
nij

i r
−nij

j


 (6.20)

where “part” denotes a sum over partitions of n into (N − 1)(N − k− 1) numbers nij such

that
∑
nij = n for i ∈ L′ and j ∈ R′. Note that these manipulations have factorized the

amplitude in terms of l and r worldsheet coordinates corresponding to the L and R groups

of particles separated by the factorization channel.

6.3 Recursion relation

We have systematically extracted the residue corresponding to the s12...k factorization

channel in which the amplitude is split into a L and R group. With this understanding of

the factorization properties of the tachyon amplitudes, and using the usual BCFW logic

which allows us to reconstuct the amplitude from these factorization channels, we can see

how to organize the tachyon amplitude to reveal a new recursion relation involving tachyon

amplitudes only. We can write the amplitude as

MN =
∑

k

∑

n

∑

part

(−1)1+n

s12...k + 1 − n

∏

ij

(
−qij
nij

)∫
[dl][dr]



∏

i>j∈L

l
−qij

ij



(
∏

i∈L′

l
P

j∈R′ nij

i

)



∏

i>j∈R′

r
−qij

ij





∏

j∈R′

r
−

P

i∈L qij

j





∏

j∈R′

r
−

P

i∈L′ nij

j


 . (6.21)
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The integrals over the li and rj are completely disentangled. To understand the structure

of these integrals, it is helpful to write the factor l
nij

i more suggestively as (li−0)nij = (li−
l1)

nij . Multiplication by all such factors is equivalent to shifting q1i → q̂1i = q1i−
∑

j∈R′ nij.

We define q̂ij = qij for i, j ∈ L′. Note that q̂1k = q1k since lk = 1. Then the integrals over

the li can be written as a shifted tachyon amplitude,

∫
[dl]



∏

i>j∈L

l
−q̂ij

ij


 = M̂L(q̂ij). (6.22)

Similarly, the integrals over the rj can be written as a right-hand tachyon amplitude at

shifted kinematics. To do so, it is helpful to introduce rL = 0 as the gauge-fixed position of

the intermediate leg as it enters the right-hand amplitude; this leg carries all the momentum

kL =
∑

i∈L ki flowing into the left-hand diagram. Then the factor r
−(qij+nij)
j may be written

more suggestively as (rj−rL)−(qij+nij). We define qLj =
∑

i∈L qij = −2kL ·kj . The variable

is the analogue of q1i in the left-hand amplitude. We further define q̂Lj = qLj +
∑

i∈L′ nij

and q̂ij = qij for i, j ∈ R. We can now evaluate the integrals over the rj as

∫
[dr]




∏

i>j∈R′∪{rL}

r
−q̂ij

ij


 = M̂R(q̂ij). (6.23)

Notice that, in effect, we have found that our left-hand amplitude is gauge-fixed with

particle 1 at position 0, particle k at position 1 and an intermediate particle gauge-fixed

at position ∞. In the right-hand amplitude we have found the intermediate particle to be

gauge-fixed at position 0 while particles N − 1 and N inherited their gauge fixing from the

original N point amplitude.

These manipulations yield our final recursion relation, which involves the usual BCFW

factorization of an amplitude into a left and right sub-amplitude, a sum over the mass level

n of the string, as well as a sum over partitions {nij} of n:

MN =
∑

L,R

∞∑

n=0

∑

{nij}

M̂L(q̂)
res({nij})

s12...k + 1 − n
M̂R(q̂) (6.24)

res({nij}) = (−1)n+1
∏

nij

(
−qij
nij

)
. (6.25)

Of course, M̂L(q̂) is a function of Mandelstam variables. For us, a convenient choice is to

pick qij with i < j ∈ L, and to omit q1k. Similarly, we choose M̂R(q̂) to be a function of

qij for i < j ∈ R, but omitting qiN . To include the kinematics of the intermediate state, we

additionally make MR a function of qLj for all j ∈ R except N and N−1. As stated above,

the M̂L and M̂R in appearing in eq. (6.24) are functions of integer shifted Mandelstam

variables. In particular, the necessary shifts are given by

q1i → q̂1i = q1i −
∑

j

nij, with i = 2, · · · , k − 1 and j = k + 1, · · · , N − 1 (6.26)

qLj → q̂Lj = qLj +
∑

i

nij,with i = 2, · · · , k and j = k + 1, · · · , N − 2. (6.27)
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This recursion relation is distinct from BCFW in the sense that there is no explicit sum over

intermediate states — the lower point amplitudes only involve tachyons as external states,

and they are evaluated at Mandelstam invariants which have been shifted by integer values.

From this point of view, the entire effect of the intermediate state sum is encapsulated by

the factor res({nij}).
The partition of n appearing in the recursion relation eq. (6.24) requires some expla-

nation. The binomial coefficients in res({nij}) come from expanding differences of vertex

operator positions when one vertex operator is on the left and the other is on the right.

However, if the vertex operator on the left has been fixed at zero, there will be no bi-

nomial expansion. Similarly, if the right vertex operator is at infinity, there will be no

expansion. Thus, for a k particle factorization channel in an N point amplitude, there are

(k − 1)(N − k − 1) binomial expansions. Consequently, at mass level n, the nij consist of

partitions of n into (k − 1)(N − k − 1) integers.

The simplification that has occurred in the sum over intermediate states can be un-

derstood in terms of the OPE of the tachyon vertex operators, which are simply given by

eik·X . This is most obvious for two particle factorization channels though the result is quite

general. Let us consider a singularity in the amplitude when particles 1 and 2 join. In this

region, the vertex operators for the particles are close together. The OPE is

eik1·X(0)eik2·X(w) = w2k1·k2eik1·X(0)+ik2·X(w)

= w−2−s12ei(k1+k2)·X(0)
(
1 + wk2 · Ẋ(0) + · · ·

)
. (6.28)

Now, performing the w integral, we obtain an infinite series of poles corresponding to the

various masses of string states. The residues of each of the poles are simply related because

of the structure of the OPE. More general amplitudes involve slightly more complicated

vertex operators, but the OPEs of these vertex operators are still relatively simple objects.

Therefore we expect these internal recursion relations to occur quite generally, albeit in a

more complicated form.

7 Conclusions

In this work we have shown that all tree-level perturbative string theory amplitudes can

be computed via BCFW recursion. Our proof relied on the pomeron vertex operator

technology developed in [7]. We explored string amplitudes with massless external states as

an asymptotic series in large z, and found remarkable structural similarities to amplitudes

in the corresponding quantum field theory. This led us to conjecture that massless type

I string amplitudes reduce to N = 4 super-Yang Mills not only in the small α′ limit, but

also in what we term the eikonal Regge limit. This limit corresponds to taking α′ŝij to be

large for kinematic invariants that receive an adjacent BCFW deformation while all other

independent α′skl are small. We have seen that our conjecture is true in several non-trivial

examples and provided evidence at all points.

Nevertheless, BCFW recursion techniques applied to string theoretic amplitudes suffer

from a disadvantage; in particular, since a string propagator describes an infinite ladder
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of states, the BCFW sum is necessarily infinite. Thus, to compute the four point tachyon

amplitude in bosonic string theory, i.e. the Veneziano amplitude, one must sum over an

infinite set of three point functions describing the interaction of two tachyons and an

arbitrary string state. However, an exploration of the structure of the sum appearing in

the n tachyon amplitude has revealed a new recursion relation which allows one to write

the amplitude in terms of on-shell lower point amplitudes with only tachyonic external

states. We believe that a similar structure exists in general for all string amplitudes.

Our work has lead to several new questions which we feel are worthy of further ex-

ploration. In particular, it would be interesting to explore the possibility of additional

internal recursion relations for other classes of string amplitudes beyond bosonic tachyon

amplitudes. It may be that there is a way of organizing this recursion relation which

makes clear that the object being summed over is the full string multiplet, analogous to

the integration over the full set of states in the N = 4 Yang-Mills theory. In particular, a

new level of insight into stringy amplitudes could be achieved if one can develop a method

of parameterizing the full superstring multiplet in ten dimensions. To make progress in

this direction it may first be necessary to understand on-shell superspace in 10 dimensions.

Progress on generalizing the four dimensional superspace methods has recently been made

in [25–27] so this may be an achievable first step.

Of course, it would be of great interest to understand more clearly the origin of the

structural similarity of the asymptotic expansions of string and field theoretic amplitudes.

In this vein, a deeper study of the conjecture we made relating string amplitudes in the

ER region to their effective field theory amplitude would be warranted. Since the four and

five point graviton amplitudes in type II string theory reduce to field theoretic graviton

amplitudes in the ER region, it may also be worth investigating the ER limit in type II

string theory more thoroughly, especially in light of the KLT-like structure we have found.

Finally, our focus in this work has been on scattering perturbative string states. As

observed by BPST [7], there is no obstruction to applying pomeron techniques to study

D-brane scattering processes. Therefore it seems likely that one can compute scattering

amplitudes for non-perturbative states using BCFW techniques, and this could lead to new

insights into the physics of these nonperturbative objects.
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A Conventions

In this section, we review our conventions, and also state a few formulae useful for re-

deriving our results.
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We work with the flat metric

ηµν = diag(−,+, · · · ,+). (A.1)

For σ matrices, we define

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

The associated tilde matrices are

σ̃0 = −
(

1 0

0 1

)
, σ̃1 =

(
0 1

1 0

)
, σ̃2 =

(
0 −i
i 0

)
, σ̃3 =

(
1 0

0 −1

)
. (A.3)

These satisfy the Clifford algebra

σµσ̃ν + σν σ̃µ = 2ηµν . (A.4)

As usual, we take the SU(2) indices of the σ matrices to be σµ
αα̇ and σ̃µα̇α. We define ǫ

matrices with upper and lower, dotted and undotted, indices,

ǫαβ =

(
0 −1

1 0

)
, ǫα̇β̇ =

(
0 1

−1 0

)
. (A.5)

These satisfy ǫα̇β̇ǫαβσµ

ββ̇
= σ̃µα̇α, as well as the usual Fierz relations

σµ
αα̇σµββ̇ = 2ǫαβǫα̇β̇. (A.6)

We take the relation between momenta and the corresponding spinors to be p · σαα̇ =

λαλ̃α̇, which means that pµ = 1
2λσ̃

µλ = 1
2λσ

µλ̃. Taking another momentum qµ = 1
2ζσ

µζ̃,

scalar products are given by

2p · q = 〈λζ〉[λ̃ζ̃], (A.7)

where the brackets are defined by:

〈λζ〉 = ǫαβλ
αζβ, [λ̃ζ̃] = ǫα̇β̇λ̃

α̇ζ̃ β̇. (A.8)

In this work, we define kinematic invariants sij ≡ −(pi + pj)
2. With this convention,

sij = 〈ij〉[ji]. (A.9)

For a particle of momentum p, we choose a reference momentum q so the positive and

negative helicity vectors are

ǫµ+ =
〈λ|σµ|ζ]√

2[λ̃ζ̃]
(A.10)

ǫµ− = − [λ̃|σ̃µ|ζ〉√
2〈λζ〉

. (A.11)
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These vectors satisfy ǫ+ · ǫ− = 1 with all other inner products vanishing.

Finally, we note for convenience the OPE

Xµ(w)Xν(z) ∼ −α
′

2
ηµν ln |w − z|2, (A.12)

which means that when we restrict to the boundary of the upper half plane

Xµ(y1)X
ν(y2) ∼ −2α′ηµν ln y12. (A.13)

Additionally, the worldsheet spinors ψµ satisfy

ψµ(w)ψν(z) ∼ ηµν

w − z
. (A.14)

B Gaugino vertex operators and pomerons

In this section, we record some pomeron vertex operations involving gauginos. In the type

I string, the gaugino vertex operator in the −1/2 picture is

V−1/2 = (α′)1/4 uαΘαe
ik·Xe−φ/2, (B.1)

where Θα is the spin field operator and uα is the polarization, while α is a ten-dimensional

Majorana-Weyl spinor index. Although any amplitude with an odd number of fermions will

vanish, there is a sensible pomeron for a gaugino and gauge boson. It is most convenient to

work in the -1/2 picture for the gaugino, and -1 picture for the gauge boson. Using the OPE

(
Θα(0)uαe

−φ(0)/2
)(

ǫµψ
µ(w)e−φ(w)

)
∼ 1

w
√

2
ǫµΓµ

αβuαΘβ(0)e−φ(0)/2−φ(w) (B.2)

we find that the pomeron for a gaugino and a gauge boson in type I is

uαΘβ(0)ǫµΓµ
βαe

−3φ(0)/2Γ(−α′s12)
(
−ik̂2 · Ẋ(0)

)α′s12

. (B.3)

We also list for reference the pomeron for two type I (same-helicity) gauginos with

polarizations uα, vα.

uα(CΓµ)αβvβe
−φ(0)ψµ(0)Γ(−α′s12)

(
−ik̂2 · Ẋ(0)

)α′s12

. (B.4)

These fermionic pomerons again exhibit a power-law falloff in z so that amplitudes involving

these external states can be computed using the BCFW recursion relations.

C Pomeron technology and five-point amplitudes

In this appendix, we do two calculations with five-point MHV amplitudes. First, we

demonstrate that our conjecture is valid for the type I five-point amplitude, using a re-

sult from [21]. Additionally, we check the leading behavior in z for the five-point bosonic

string amplitude.
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C.1 Type I at all orders in z

The five point function of gauge bosons in type I has been presented in the language of the

spinor-helicity formalism by [21]. The result is given by

A =
[
V (sij) + P (sij)α

′2ǫ(1, 2, 3, 4)
]
AYM, (C.1)

where AYM is the Yang-Mills amplitude, ǫ(1, 2, 3, 4) = ǫµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 , and

V ≡ s23s51f1 +
1

2
(s23s34 + s45s51 − s12s23 − s34s45 − s12s51)f2, P ≡ f2, (C.2)

where the functions f1 and f2 are given in terms of a hypergeometic function

F

[
n1, n2

n11, n12, n22

]
=

Γ(s23 + n1 − 2)Γ(s15 + n2 − 1)Γ(s34 + n11 + 1)Γ(s45 + n22 + 1)

Γ(s23 + s34 + n1 + n11 − 1)Γ(s51 + s45 + n2 + n22)

× 3F2

[
s23 + n1 − 2, s15 + n2 − 1,−s35 − n12

s23 + s34 + n1 + n11 − 1, s51 + s45 + n2 + n22
; 1

]
(C.3)

by

f1 = F

[
2, 1

0, 0, 0

]
and f2 = F

[
3, 2

0,−1, 0

]
. (C.4)

The functions V and P are cyclically symmetric in the particle number so without loss

of generality we can consider deforming the momenta of particles 1 and 2. In the region

s12 = s34 = s45 = s35 = 0 we find that V = 1 and

P =
ψ(α′ŝ23 + 1) − ψ(α′ŝ51 + 1)

α′(ŝ23 − ŝ51)
, (C.5)

where ψ(x) ≡ Γ′(x)/Γ(x) is the digamma function. Thus, the quantity Pα′2ǫ(1, 2, 3, 4) → 0

in the ER limit so that our conjecture holds at five points in type I string theory. It would,

of course, be of great interest to check the conjecture at higher points; however, beyond

five point order the amplitudes can no longer be expressed in terms of hypergeometric

functions so progress is more difficult.

C.2 The bosonic string at leading order in z

The details of this calculation are somewhat tedious, so here we summarize the basic

points. As in the four point amplitude, we use the pomeron vertex operator. In contrast

to the four-point calculation, however, we have one integral we need to evaluate. The full

expression is

∫
dw
(
−ik̂2 · Ẋ(0)

)1+α′s12

eik·X(0)ǫ3 · Ẋ(w)eik3·X(w)ǫ4 · Ẋ(w4)e
ik4·X(w4)ǫ5 · Ẋ(w5)e

ik5·X(w5),

(C.6)

where we have omitted a prefactor of C12(z)Γ(−1 − α′s12). It is convenient to fix w4 =

1, w5 → ∞. The various contractions of polarizations and momenta will then give different
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powers of w and (1 − w), some of which get contracted into part of the pomeron vertex

operator. Using the OPE

(
−ik̂2 · Ẋ(0)

)n
eipi·X(wi)eipj ·X(wj) ∼ (−2α′)n

[
k̂2 · pi

−wi
+
k̂2 · pj

−wj

]n

eipi·X(wi)eipj ·X(wj).

(C.7)

Since we take w5 → ∞, the only contractions that survive have powers of w and 1−w. In

general, then, the integrals we must do are of the form

I(p, q) ≡
∫
dw

(
k̂2 · k3

w
+ k̂2 · k4

)1+α′s12

wp(1 − w)qw2α′k3·k(1 − w)2α′k3·k4 , (C.8)

where the powers of p and q come from contractions with ǫ · Ẋ, and the wα′ki·kj come as

usual from contractions between the exponentials. The full answer is a sum of a number

of different terms involving different powers of p and q.

The terms in the five-point amplitude have coefficients of the form (ǫ ·k)3 or (ǫ ·ǫ)(ǫ ·k).
In the eikonal Regge limit, we need not worry about the former because they will always

be one power of α′ higher than the latter. We find that the final expression is

A(1−2+3+4+5−) ∼ P (z, α′)Q(α′, z), (C.9)

where

P (z, α′) ≡ iC12(z)Γ(−1 − α′s12)(2α
′)4+α′s12 (C.10)

and

Q(α′, z) ≡ (ǫ+3 · ǫ−5 )(ǫ+4 · k)I(0, 0) + (ǫ+3 · ǫ−5 )(ǫ+4 · k3)I(0,−1)

+ (ǫ+4 · ǫ−5 )(ǫ+3 · k)I(−1, 0) − (ǫ+4 · ǫ−5 )(ǫ+3 · k4)I(0,−1) (C.11)

We find that each of the integrals in eq. (C.11) is O(1/α′) as α′ → 0. As a result, the full

amplitude goes as α′2.

Since C12(z) ∼ z2 and Q(α′, z) ∼ z, we reproduce the z3 behavior of the bad shift.

This much was nearly automatic from the beginning and is no surprise. However, we find

precise agreement between the field theory amplitude and the small α′ behavior of the

string theory amplitude, as conjectured.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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[2] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory,

JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].

– 29 –

http://dx.doi.org/10.1007/s00220-004-1187-3
http://arxiv.org/abs/hep-th/0312171
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312171
http://dx.doi.org/10.1088/1126-6708/2004/09/006
http://arxiv.org/abs/hep-th/0403047
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403047


J
H
E
P
0
9
(
2
0
1
0
)
0
5
2

[3] R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons,

Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

[4] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation

In Yang-Mills Theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

[5] N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity,

JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].

[6] R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory

structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [SPIRES].

[7] R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and Gauge/String

Duality, JHEP 12 (2007) 005 [hep-th/0603115] [SPIRES].

[8] R.H. Boels, D. Marmiroli and N.A. Obers, On-shell Recursion in String Theory,

arXiv:1002.5029 [SPIRES].

[9] N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and

the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [SPIRES].

[10] S.D. Badger, E.W.N. Glover, V.V. Khoze and P. Svrček, Recursion Relations for Gauge

Theory Amplitudes with Massive Particles, JHEP 07 (2005) 025 [hep-th/0504159]

[SPIRES].

[11] P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles,

arXiv:0705.4305 [SPIRES].

[12] B. Feng, J. Wang, Y. Wang and Z. Zhang, BCFW Recursion Relation with Nonzero

Boundary Contribution, JHEP 01 (2010) 019 [arXiv:0911.0301] [SPIRES].
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