View metadata, citation and similar papers at core.ac.uk

J Math Imaging Vis
DOI 10.1007/s10851-016-0692-2

-

brought to you by .. CORE

provided by Springer - Publisher Connector

CrossMark

Acceleration of the PDHGM on Partially Strongly Convex

Functions

Tuomo Valkonen!'2® - Thomas Pock34

Received: 19 April 2016 / Accepted: 23 November 2016

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We propose several variants of the primal-dual
method due to Chambolle and Pock. Without requiring full
strong convexity of the objective functions, our methods
are accelerated on subspaces with strong convexity. This
yields mixed rates, O (1/N?) with respect to initialisation and
O(1/N) with respect to the dual sequence, and the residual
part of the primal sequence. We demonstrate the efficacy of
the proposed methods on image processing problems lacking
strong convexity, such as total generalised variation denois-
ing and total variation deblurring.

Keywords Primal—dual - Accelerated - Subspace - Total
generalised variation

Mathematics Subject Classification 90C25 - 49M29 -
94A08

B Tuomo Valkonen
tuomo.valkonen @iki.fi

Thomas Pock
pock@icg.tugraz.at

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, UK

Department of Mathematical Sciences,
University of Liverpool, Liverpool, UK

Institute for Computer Graphics and Vision,
Graz University of Technology, 8010 Graz, Austria

Digital Safety and Security Department,
AIT Austrian Institute of Technology GmbH,
1220 Vienna, Austria

Published online: 15 December 2016

1 Introduction

LetG: X — Rand F : Y — R be convex, proper, and
lower semicontinuous functionals on Hilbert spaces X and
Y, possibly infinite dimensional. Also let K € £(X; Y) be a
bounded linear operator. We then wish to solve the problem

min G(x) + F(Kx).
xeX

This can under mild conditions on F (see, for example, [1,2])
also be written with the help of the convex conjugate F* in
the minimax form

minmax G(x) + (Kx,y) — F*(y).
xeX yeY

One possibility for the numerical solution of the latter form
is the primal-dual algorithm of Chambolle and Pock [3], a
type of proximal point or extragradient method, also classi-
fied as the ‘modified primal-dual hybrid gradient method’
or PDHGM by Esser et al. [4]. If either G or F* is strongly
convex, the method can be accelerated to O (1/N?) conver-
gence rates of the iterates and an ergodic duality gap [3]. But
what if we have only partial strong convexity? For example,
what if

G(x) = Go(Px)

for a projection operator P to a subspace Xo C X, and
strongly convex Gg : Xo — R? This kind of structure is
common in many applications in image processing and data
science, as we will more closely review in Sect. 5. Under
such partial strong convexity, can we obtain a method that
would give an accelerated rate of convergence at least for
Px?
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We provide a partially positive answer: we can obtain
mixed rates, O(1/N 2y with respect to initialisation, and
O (1/N) with respect to bounds on the ‘residual variables’ y
and (I — P)x. In this respect, our results are similar to the
‘optimal” algorithm of Chen et al. [5]. Instead of strong con-
vexity, they assume smoothness of G to derive a primal—dual
algorithm based on backward—forward steps, instead of the
backward—backward steps of [3].

The derivation of our algorithms is based, firstly, on replac-
ing simple step length parameters by a variety of abstract
step length operators and, secondly, a type of abstract partial
strong monotonicity property

(G () — G (x), T~ '(x' — x))
2

= ”X/ - x”f—l,*l—w

— penalty_term, (D

the full details of which we provide in Sect. 2. Here T is an
auxiliary step length operator. Our factor of strong convexity
is a positive semidefinite operator I' > 0; however, to make
our algorithms work, we need to introduce additional artifi-
cial strong convexity through another operator I'/, which may
not satisfy 0 < I'" < I'. This introduces the penalty term in
(1). The exact procedure can be seen as a type of smooth-
ing, famously studied by Nesterov [6], and more recently,
for instance, by Beck and Teboulle [7]. In these approaches,
one computes a priori a level of smoothing—comparable to
["—needed to achieve prescribed solution quality. One then
solves a smoothed problem, which can be done at O (1/N?)
rate. However, to obtain a solution with higher quality than
the a priori prescribed one, one needs to solve a new prob-
lem from scratch, as the smoothing alters the problem being
solved. One can also employ restarting strategies, to take
some advantage of the previous solution, see, for exam-
ple, [8]. Our approach does not depend on restarting and
a priori chosen solution qualities: the method will converge
to an optimal solution to the original non-smooth problem.
Indeed, the introduced additional strong convexity I'’ is con-
trolled automatically.

The ‘fast dual proximal gradient method’, or FDPG
[9], also possesses different type of mixed rates, O(1/N)
for the primal, and O(1/N 2) for the dual. This is, how-
ever, under standard strong convexity assumptions. Other
than that, our work is related to various further develop-
ments from the PDHGM, such as variants for nonlinear K
[10,11] and non-convex G [12]. The PDHGM has been the
basis for inertial methods for monotone inclusions [13] and
primal—dual stochastic coordinate descent methods without
separability requirements [14]. Finally, the FISTA [15,16]
can be seen as a primal-only relative of the PDHGM. Not
attempting to do full justice here to the large family of
closely related methods, we point to [4,17,18] for further
references.
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The contributions of our paper are twofold: firstly, to paint
a bigger picture of what is possible, we derive a very gen-
eral version of the PDHGM. This algorithm, useful as a basis
for deriving other new algorithms besides ours, is the con-
tent of Sect. 2. In this section, we provide an abstract bound
on the iterates of the algorithm, later used to derive conver-
gence rates. In Sect. 3, we extend the bound to include an
ergodic duality gap under stricter conditions on the accel-
eration scheme and the step length operators. A by-product
of this work is the shortest convergence rate proof for the
accelerated PDHGM known to us. Afterwards, in Sect. 4, we
derive from the general algorithm two efficient mixed-rate
algorithms for problems exhibiting strong convexity only on
subspaces. The first one employs the penalty or smoothing v
on both the primal and the dual. The second one only employs
the penalty on the dual. We finish the study with numerical
experiments in Sect. 5. The main results of interest for read-
ers wishing to apply our work are Algorithms 3 and 4 along
with the respective convergence results, Theorems 4.1 and
4.2.

2 A General Primal-Dual Method
2.1 Notation

To make the notation definite, we denote by L£(X;Y) the
space of bounded linear operators between Hilbert spaces X
and Y.For T, S € L(X; X), the notation T > § means that
T — S is positive semidefinite; in particular, 7 > 0 means
that T is positive semidefinite. In this case, we also denote

[0, T]:= {AT | % € [0, 1]}.

The identity operator is denoted by 7, as is standard.

For 0 < M € L(X; X), which can possibly not be self-
adjoint, we employ the notation
(a,b)y := (Ma,b), and

lally = v {a,a)m. @)

We also use the notation 7~ 1% := (T~ 1)*,

2.2 Background

As in the introduction, let us be given convex, proper, lower
semicontinuous functionals G : X — Rand F* : Y — Ron
Hilbert spaces X and Y, as well as a bounded linear operator
K € L(X; Y). We then wish to solve the minimax problem

minmax G(x) + (Kx,y) — F*(y), (P)

xeX yeY

assuming the existence of a solution 7 = (x,y) satisfying
the optimality conditions
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— K*y€0G(X), and KX € aF*(y). (0C)
Such a point always exists if lim x| - 00 G (x)/]|x|| = 0o and

limyy o0 F*(3)/Ilyll = o0, as follows from [2, Proposition
VI.1.2 & Proposition V1.2.2]. More generally the existence
has to be proved explicitly. In finite dimensions, see, for
example, [19] for several sufficient conditions.

The primal-dual method of Chambolle and Pock [3] for
the solving (P) consists of iterating

= (1 +50G) 7 (x! — nK*Y), (3a)
)Ei+l = wl_(xi+1 _x[) +xi+1’ (3b)
Vit = (I + 0,110 F) 7' (v + 010 KX, (3¢)

In the basic version of the algorithm, w; = 1, t; = 19, and
0; = o0y, assuming that the step length parameters satisfy
7000/| K || < 1. The method has O (1/N) rate for the ergodic
duality gap [3]. If G is strongly convex with factor y, we may
use the acceleration scheme [3]

wi = 1//1+2y7, T4 :=7tw;, and o041 = o0;/w;,
“)

to achieve O (1/N?) convergence rates of the iterates and an
ergodic duality gap, defined in [3]. To motivate our choices
later on, observe that oy is never used expect to calculate o7y.
We may therefore equivalently parametrise the algorithm by
§=1—|K|*wo0 > 0.

We note that the order of the steps in (3) is different from
the original ordering in [3]. This is because with the present
order, the method (3) may also be written in the proximal
point form. This formulation, first observed in [20] and later
utilised in [10,11,21], is also what we will use to stream-
line our analysis. Introducing the general variable splitting
notation,

u=(x,y),
the system (3) then reduces into
0€ Hw'™) + Myasic.i (0’ — u), )

for the monotone operator

_ (3G() + K*y
Hu) = (8 o Kx) , ©)

and the preconditioning or step length operator

= (M oK
Myasic.i := (—w,-K I/Gi+1) . v

We note that the optimality conditions (OC) can also be
encoded as 0 € H ().

2.3 Abstract Partial Monotonicity

Our plan now is to formulate a general version of (3), replac-
ing 7; and o; by operators 7; € L(X; X) and ¥; € L(Y;Y).
In fact, we will need two additional operators T, e L(X; X)
and f] € L(Y;Y) to help communicate change in 7; to X;.
They replace w; in (3b) and (7), operating as f}+1K 7~"[._1 ~
w; K from both sides of K. The role of 7; is to split the orig-
inal primal step length 7; in the space X into the two parts
T; and T; with potentially different rates. The role of T; is
to transfer 7 into the space Y, to eventually control the dual
step length ;. In the basic algorithm (3) we would simply
haveT =T, =1l € L(X; X), and T< =15l € L(Y;Y)
for the scalar ;.

To start the algorithm derivation, we now formulate
abstract forms of partially strong monotonicity. As a first
step, we take subsets of invertible operators

’]~'C/J(X;X), and TCE(Y; Y),

as well as subsets of positive semidefinite operators

0<KcLX;X), and 0<K cCL(Y;Y).
We assume 7 and 7 closed with respect to composition:
f]fz € ffor f], Tz € 'f

We use the sets K and K as follows. We suppose that 0G
is partially strongly (Y, 7, IE)-monotone, meaning that for
allx,x' € X,T € 7,T" € [0,I'] + K holds

(0G(x) — G (x), T~ '(x’ — x))

> = 2l — Vi@ —x). (G-PM)
for some family of functionals {y7 : X — R}, and a lin-
ear operator 0 < I' € £(X; X) which models partial strong
monotonicity. The inequality in (G-PM), and all such set
inequalities in the remainder of this paper, is understood to
hold for all elements of the sets dG(x") and dG(x). The
operator T €T actsasa testing operator, and the operator
I € K as introduced strong monotonicity. The functional
YF-1xr_r) 1S a penalty corresponding to the test and the
introduced strong monotonicity. The role of testing will
become more apparent in Sect. 2.4.

Similarly to (G-PM), we assume that d F™* is (¢, T, I@)-
monotone with respect to 7 in the sense that for all v,y €7,
T €7, R €K holds

(OF*(y) —aF*(y), T (5 — y)) (F*-PM)

= 1Y = yl5 ., — ¢71 20" =),

@ Springer
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for some family of functionals {¢7 : ¥ — R}. Again, the
inequality in (F*-PM) is understood to hold for all elements
of the sets d F*(y’) and 9 F*(y).

In our general analysis, we do not set any conditions on
Y and ¢, as their role is simply symbolic transfer of dissatis-
faction of strong monotonicity into a penalty in our abstract
convergence results.

Let us next look at a few examples on how (G-PM) or
(F*-PM) might be satisfied. First we have the very well-
behaved case of quadratic functions.

Example 2.1 G(x) = || f — Ax|?/2 satisfies (G-PM) with
[ =A*AK = {0}, and ¢ = O for any invertible T . Indeed,
G is differentiable with (VG(x") — VG(x) T-'(x' —x)) =
(AFAG =), T =) = | = x ]2,

The next lemma demonstrates what can be done when all
the parameters are scalar. It naturally extends to functions of
the form G(x1, x2) = G(x1) + G(x2) with corresponding
product form parameters.

Lemma2.1 Let G : X — R be convex and proper with

dom G bounded. Then,

G() = G = (G (). x —x) + 2 (I = xI? = Cy).
(®)

‘or some constant Cy, > 0, eve >0, and x,x" € X.
1 ryy

Proof We denote A :=dom G.Ifx’ ¢ A, we have G(x') =
00, 80 (8) holds irrespective of y and C. If x ¢ A, we have
dG(x) = ¢, so (8) again holds. We may therefore compute

Algorithm 1 Primal—dual algorithm with partial acceleration

Require: F* and G satlsfylng (G-PM) and (F*-PM) for some sets and
spaces IC IC T T and 0 < I' € L(X; X). Initial invertible Ty €
L(X; X), To eT, T| eT,and X € L(Y;Y),aswellas§ € (0, 1),
satisfying for j = 0 the condition

=1, %p—1
S,-sz(S(T/' N g) ©)

: Choose initial iterates x* € X and y° € Y.
: repeat
3:  Perform the updates

[N

A=+ TaG) T - TRy,
it = fwi+1K7-i—l(xi+l — x4 Kxit,
yi+l =+ E,‘+|8F*)7I(yi + Z:i+1d)i+l)~

4: Findinvertible Ty, € £(X; X), Tis1 € T.Tipo € T,and S5 €
L(Y; Y) satisfying (9) with j =i + 1, as well as the condition
Si(M; +T) > Sip1Mig

for some 0 < R4 € K and riel0, ]+ K.
5: until a stopping criterion is fulfilled.

@ Springer

the constants based on x, x’ € A. Now, there is a constant M
such that sup, ., Ilx]| < M. Then, ||x" — x|| < 2M. Thus, if
we pick C = 4M?, then (y /2)(||x’ —x||*> — C) < 0 for every
y > 0and x, x’ € A. By the convexity of G, (8) holds. O

Example 2.2 An indicator function ¢4 of a convex bounded
set A satisfies the conditions of Lemma 2.1. This is generally
what we will use and need.

2.4 A General Algorithm and the Idea of Testing

The only change we make to the proximal point formulation
(5) of the method (3) is to replace the basic step length or
preconditioning operator Mpasic,; by the operator

_1 . *
M; = ( L K ) (10)
T KT 37

As we have remarked, the operators f“,-+1 and T, play the role
of w;, acting from both sides of K. Our proposed algorithm
can thus be characterised as solving on each iteration i € N
for the next iterate u'*! the preconditioned proximal point
problem
0e Hu™ + My —u'). (PP)
To study the convergence properties of (PP), we define
the testing operator

7—1,%
T 0

s =" ) (11)
( 0 Ti-H)

It will turn out that multiplying or ‘testing’ (PP) by this oper-
ator will allow us to derive convergence rates. The testing of
(PP) by §; is why we introduced testing into the monotonicity
conditions (G-PM) and (F*-PM). If we only tested (PP) with
S; = I, we could at most obtain ergodic convergence of the
duality gap for the unaccelerated method. But by testing with
something appropriate and faster increasing, such as (11), we
are able to extract better convergence rates from (PP).
We also set
Ti * (K T -1 _

T ~21",- R l+1K)*
TR T =T K) 2Rit1

for some I'; € [0,T"] + K and Riy1 € K. We will see in
Sect. 2.6 that T; is a factor of partial strong monotonicity
for H with respect to testing by S;. With this, taking a fixed
8 > 0, the properties

S;(M; +T;) > S;y1M;y1, and (C1)
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0 0 (C2)

F—1,xpn—1
SMﬂES(E i O)za
will turn out to be the crucial defining properties for the con-
vergence rates of the iteration (PP). The method resulting
from the combination of (PP), (C1), and (C2) can also be
expressed as Algorithm 1. The main steps in developing prac-
tical algorithms based on Algorithm 1 will be in the choice
of the various step length operators. This will be the content
of Sects. 3 and 4. Before this, we expand the conditions (C1)
and (C2) to see how they might be satisfied and study abstract
convergence results.

2.5 A Simplified Condition

We expand
F—1,kp—1 _"—1,* *
sm = (T L oh KT (12)
—KT; Ti+12i+l
as well as
27 TR - KT
Siri =( ~711 . i . i+1 )’ (13)
KT, =T, K 2T Riv
and
Si(M; +T)
~_1 _ ~_1
_ (Ti Tt arn KT )
- A1 - -1 )
—Ti, K T (30 +2Rit)

We observe thatif S, T € L(X; Y), then for arbitrary invert-
ible Z € L(Y;Y) a type of Cauchy (or Young) inequality
holds, namely

0 T*S\ _ 0 T*Z*Z71*S
s*T 0 ) \s*z~lzr 0

T*Z*ZT 0
= ( 0 S*Z—‘Z—l»*s)‘ (14

The inequality here can be verified using the basic Cauchy
inequality 2(x, y) < [lx]|>+ ||y|I>. Applying (14) in (12), we
see that (C2) is satisfied when

=1 v —1 —15—1,%
% = K272 K", and
A=T "17 ' > T " 72r 2, T, (15)

1

for some invertible Z; € L£(X; X). The second condition in
(15) is satisfied as an equality if

Z¥Z; = (1 - 8T 'T,. (16)

By the spectral theorem for self-adjoint operators on Hilbert
spaces (e.g. [22, Chapter 12]), we can make the choice (16)
if
T7'T e Q

:={A € L(X; X) | Ais self-adjoint and positive definite}.

Equivalently, by the same spectral theorem, T‘i*lTi e Q.
Therefore, we see from (15) that (C2) holds when

~ N 1 ~
-1 — -1 -1 * /
T;- TIEQ and Ti+12i+1meTi T;K™. (C2)
Also, (C1) can be rewritten as
-1, —1 F—1, —1 -1, ~—1,
(n-’%ﬂ =TT T KK T )>0
F-1_ A1 Al 1 N
KT, —T K Ti+1(2i+1 +2Ri+1)7Ti+22i+2
(C1)

2.6 Basic Convergence Result

Our main result on Algorithm 1 is the following theorem, pro-
viding some general convergence estimates. It is, however,
important to note that the theorem does not yet directly prove
convergence, as its estimates depend on the rate of decrease
in Ty T, as well as the rate of increase in the penalty sum
lez 61 Dj 1 coming from the dissatisfaction of strong con-

vexity. Deriving these rates in special cases will be the topic
of Sect. 4.

Theorem 2.1 Let us be given K € L(X;Y), and convex,
proper; lower semicontinuous functionals G : X — R and
F*:Y — R on Hilbert spaces X and Y, satisfying (G-PM)
and (F*-PM). Pick § € (0, 1), and suppose (C1) and (C2) are
satisfied for each i € N for some invertible T; € L(X; X),
T}- e 7T, f}+] e 7, and Yit1 € L(Y;Y), as well as
Iy e [0,T]+ K and Rit1 € K. Suppose that T’;]‘*Ti_l
and f;;ll Ei_+11 are self-adjoint. Let w = (X, y) satisfy (OC).
Then, the iterates of Algorithm 1 satisfy

N-1

< Co+ D Dipi, (N=1), (17

8
N ~n2
Sl = xl%o.
2 Ty
i=0

Ty

for

~ i
Diy1 = wifl'*(Fi—F)('ler _f)

+oi-1p

i+1 i+l

_ 1 _
O =), and Co:= E”MO - u||§oMo‘
(18)

@ Springer
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Remark 2.1 The term 5,-+1, coming from the dissatisfaction
of strong convexity, penalises the basic convergence, which
is on the right-hand side of (17) presented by the constant
Co.If Ty fN is of the order 0(1/N2), at least on a subspace,
and we can bound the penalty L~)l~+ 1 < C for some constant
C, then we clearly obtain mixed O(1/N 2y + O(1/N) con-
vergence rates on the subspace. If we can assume that l~),-+1
actually converges to zero at some rate, then it will even be
possible to obtain improved convergence rates. Since typ-
ically T,, T,H ¢ O reduce to scalar factors within D,H,
this would require prior knowledge of the rates of conver-
gence x! — X and y/ — 3. Boundedness of the iterates
{(x",y )}l o> We can, however, usually ensure.

Proof Since 0 € H (i), we have

— W) C(Hw' ™)
—H®@), SF@' ™ — ).

<H(l/li+1), S;k(l/li+l

Recalling the definition of S; from (11), and of H from (6),
it follows

<H(Mi+]), Si*(ui+] _ﬁ)) C (aG(xi+l)
-G, I, " = %)
-%@F*@”*) aF<A>T+1(y+‘—§»

K(x"H A) Tz+1 (yH—l _ 5)\)>
An application of (G-PM) and (F*-PM) consequently gives

<H(Mi+l), S;k(ui-'l‘l ',/?))

il =2 it
> |x x||~71* +||y y||T Rt
H—l
¢T,+1R,+1 -0 - 1ﬂT Ly r)(x x)
HKT T =3,y =)

<23K@”¢—@ox - 9.

Using the expression (13) for S;T;, and (18) for 5,~+1, we
thus deduce
!

(H@'™, S7 @™ =) = —lg 5, — Disi-

(19)

1
2

For arbitrary self-adjoint M € L(X x Y; X x Y), we
calculate

<Mi+1 _ ui’ ul+1 u ”M

L oin
uy = 2||M

| I B
—;wuﬂm@+§w”‘—m@. (20)

@ Springer

We observe that S M; in (12) is self-adjoint as we have

assumed that fl Tl " and Tl +121 +11 are self-adjoint. In

consequence, using (20) we obtain

. . ) 1 )
(M (' = u™ D), SF@H =) = =W =y,

_ l”ui-i-l

i ~2 ~
5l =, — @3,

Using (C1) to estimate % luitt =2 %l_ M; and (C2) to eliminate

1 i+1 i 12 :
sl ™t —ut|I . vields
, . . 1 .
1 1 A~ ~12
(M ' = a0, SF ™ =) = Sl =l
Lt —ap + L e 1)
2 Siv1Mit1 ) ST

Combining (19) and (21) through (PP), we thus obtain

Uil _ !

ST =TS, < S =TS+ Dt 22)
Summing (22) overi = 1,..., N — 1, and applying (C2) to
estimate Sy My from below, we obtain (17). O

3 Scalar Off-diagonal Updates and the Ergodic
Duality Gap

One relatively easy way to satisfy (G-PM), (F*-PM), (C1)
and (C2) is to take the ‘off-diagonal’ step length operators T;
and T; as equal scalars. Another good starting point would
be to choose T‘, = T;. We, however, do not explore this route
in the present work. Instead, we now specialise Theorem 2.1
to the scalar case. We then explore ways to add estimates
of the ergodic duality gap into (17). While this would be
possible in the general framework through convexity notions
analogous to (G-PM) and (F*-PM), the resulting gap would
not be particularly meaningful. We therefore concentrate on
the scalar off-diagonal updates to derive estimates on the
ergodic duality gap.

3.1 Scalar Specialisation of Algorithm 1
We take both 7; = 7:1, and T; = 7; I for some 7; > 0. With
w; =Ti1/T,

the condition (C2’) then becomes

T; € Q, > o;(1 -8 'KT;K*".

and »7 (C2")

The off-diagonal terms cancelling out (C1’) on the other hand
become
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Algorithm 2 Primal-dual
acceleration—partially scalar

algorithm with partial

Require: F* and G satisfying (G-pm) and (F*-pm) for some sets i,
I@, and 0 < T € L(X; X). A choice of § € (0, 1). Initial invertible
step length operators 7p € Q and ¥y € L(Y;Y), as well as step
length parameter 79 > 0.

: Choose initial iterates x* € X and y° € Y.

2: repeat

3: Findw; >0,Q; € L(X; X),andT; € [0,T] + i satisfying

(23a)

—

o (I +2IT)R > 1,
4:  Set

and T;Q; € Q.
Tip1:=T;Q;, and Ty = Tw;. (23b)
5: Find ¥4 € L(Y;Y)and R; € K satistfying

2 2R = ' > (1 -8 T KT KR
6:  Perform the updates

(23¢)

Xt = (1 + T06) " (¢ — TLK*y1),
= (it — ) 4 xitL
Y = (T + 2 dF) 7 O + S K.

7: until a stopping criterion is fulfilled.

~’1(1+2F-T~)T.’1 T AT, and

-1
Tit1 +2Ri+1) = fz+221+2

(C17)
l+1
Observe also that M; is under this setup self-adjoint if 7;
and X; 4 are.

For simplicity, we now assume ¢ and ¥ to satisfy the
identities

Yr(=x) =
Yor (X) = ar(x),

Yr(x), and
xeX; 0<aelR). (24)

The monotonicity conditions (G-PM) and (F*-PM) then sim-
plify into

(0G(x) — 3G (x), x' —x) = |x" — x|} — Yr—r (' —x),

(G-pm)
holding for all x,x’ € X,and I'" € [0, '] + C; and

—or(Y — ),
(F*-pm)

OF*(Y) = dF* (), y —y) = Iy — ylk

holding forall y, y € Y, and R € K.

We have thus converted the main conditions (C2), (C1),
(G-PM), and (F*-PM) of Theorem 2.1 into the respective
conditions (C2"), (C1”), (G-pm), and (F*-pm). Rewriting
(C1”)in terms of 0 < €; € L(X; X) and @; > 0 satisfying

Tiv1 =T;Q and Ty = Tw;,

we reorganise (C1”) and (C2”) into the parameter update
rules (23) of Algorithm 2. For ease of expression, we intro-
duce there X( and Rp as dummy variables that are not used
anywhere else. Equating w'™! = Kx'*!, we observe that
Algorithm 2 is an instance of Algorithm 1.

Example 3.1 (The method of Chambolle and Pock) Let G
be strongly convex with factor y > 0. We take 7; = t;1,
T,- = 1l, T = 1;1, and ¥;41 = oj4+1] for some scalars
7, 0i4+1 > 0. The conditions (G-pm) and (F*-pm) then hold
with ¢ = 0 and ¢ = 0, while (C2"”) and (C1”) reduce with
Riy1=0,T; =yI,Q2 = w1, and w; = w; into

wf(14+2y7) > 1, and
(1= &/IKI? > Ti420i42 > Ti410i41-

Updating o;1 such that the last inequality holds as an equal-
ity, we recover the accelerated PDHGM (3) + (4). If y = 0,
we recover the unaccelerated PDHGM.

3.2 The Ergodic Duality Gap and Convergence

To study the convergence of an ergodic duality gap, we
now introduce convexity notions analogous to (G-pm) and
(F*-pm). Namely, we assume

1
GO) = G@) = (3G (), x" = x) + S lIx" = x|l#  (G-pe)
11# (x" —x)
S ¥r-r —x),
to hold for all x, x’ € X and I € [0, '] + K and
F*(Y) = F*(y) = (0F*(»).y" — y) (F*-pc)

+ llly’ -yl - lI/fR(y/ -y,
2 2

to hold for all y,y’ € Y and R € K. Clearly these imply
(G-pm) and (F*-pm).
To define an ergodic duality gap, we set

N = ?i_l, and gy := wal’ (25)

and define the weighted averages
N-1 N—-1
1 ~1 i+l a1 F=1 it
XN =gy E T, x'T and oy = dy E tz+1y

i=0 i=0

With these, the ergodic duality gap at iteration N is defined
as the duality gap for (xy, Yn), namely
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GV == (G(xy) + (3. Kxn) — F*(3))
—(G@® + (yn, KX) = F*(yn)),

and we have the following convergence result.

Theorem 3.1 Let us be given K € L(X;Y), and convex,
proper, lower semicontinuous functionals G : X — R and
F* : Y — R on Hilbert spaces X and Y, satisfying (G-pc)
and (F*-pc) for some sets IE I& and 0 < T e L(X; X).
Pick § € (0, 1), and suppose (C2") and (C1") are satisfied
for each i € N for some invertible self-adjoint T; € Q,
e LY Y),
0<7 <7, (C3")
as well as T; € A([0,T] + K) and R; € AK for » = 1/2.
Let u = (x,y) satisfy (OC). Then, the iterates of Algorithm
2 satisfy

N—1

SN _ = _

S =R +GnGY = Cot D Digi. (26)
i=0

Here Cy is as in (18), and

Div1 =7 ", =) + T g, 0T = ).
27)

If only (G-pm) and (F*-pm) hold instead of (G-pc) and
(F*-pc), and we take . = 1, then (26) holds with the modifi-
cation GV := 0.

Remark 3.1 For convergence of the gap, we must accelerate
less (factor 1/2 on I';).

Example 3.2 (No acceleration) Consider Example 3.1,
where v = 0 and ¢ = 0. If y = 0, we get ergodic con-
vergence of the duality gap at rate O (1/N). Indeed, we are
in the scalar step setting, with T; = 7; = 7. Thus, presently
gy = N1.

Example 3.3 (Full acceleration) With y > 0 in Example
3.1, we know from [3, Corollary 1] that

lim Ntyy = 1. (28)
N—o00

Thus, gy is of the order Q2 (N?), while Ty Ty = 1:1%,1 is of
the order O(1/N?). Therefore, (26) shows O(1/N?) con-
vergence of the squared distance to solution. For O(1/N?)
convergence of the ergodic duality gap, we need to slow down

Dtow; =1/J/1+yT.

Remark 3.2 The result (28) can be improved to estimate
vy < C;/N without a qualifier N > Njp. Indeed, from
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[3, Lemma 2] we know the following for the rule w; =
1//1 42yt given A > 0and N > 0 with yry < A,
for any £ > 0 holds
1 L 1 1
+ =< =
yin 1 +A 7 yinpe T yn

+ 4.

If we pick N = 0 and A = y 19, this says

1 £

=

+ Lo
yo l+yto = yw

1
— + L
Y70

The first inequality gives 7, < (1 + yro)/('l:o_l + yf) <

(r~'+ 1)/t
Therefore, ty < C;/N for C; := y’l + 19. Moreover,
the second inequality gives ‘L’ﬁl <1 4 yN.

Proof (Theorem 3.1) The non-gap estimate in the last para-
graph of the theorem statement, where . = 1, we modify
Gy =0, is a direct consequence of Theorem 2.1. We there-
fore concentrate on the estimate that includes the gap, and
fix A = 1/2. We begin by expanding

(H@'™h, SF™*! —w)

— %;71 (aG(xi"t‘l)’ xi+1 _f) + %;1]1<8F*(yi+1), yi+l _5)\)
+:Ei_l(K*yi+l’ Xt 3y - »fi:rl](KxiH’ Yt _ 5
Since then I'; € ([0, '] + IE)/2, and Rj;1 € 16/2, we may
take I'" = 2T; and R = 2R;1 in (G-pc) and (F*-pc). It

follows
(H@'™), 57 @™ —)
=7 (G -G®

1 . . 1 :
+ 5 I =R, = Svenr (T - B)

~ ; L e

+ T[+11 (F*(yl+1) _ F*(’)?) + 5”yl"t‘l _ y”%R’-+l
1 i+1 YR DIV ES QSN

- §¢2R;+| (v - ')7)) -7 (", Kx)

+T 0 KT+ @G =T Do kT,

Using (2) and (24), we can make all of the factors ‘2’ and
‘1/2’ in this expression annihilate each other. With D;| as
in (27) and A = 1/2, we therefore have

(H(uH_l), S;k(ui+l _ /u\))
> ﬁ—l (G(xi+1) —G® + G, Kxi+l>)
L
Jr%«;rl1 (F*(yiJrl) — F*G) — (i, Kf))
+y =12

1
T Rin
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+ @ =7 (O =T K - B)
— (3, KX)) — Dj41.

A little bit of reorganisation and referral to (13) for the expan-

sion of S;I"; thus gives

(H@™h), SFa™*! =)

=7 (G0 - 6@ + (3, Kx'))

+73) (Fro™h - F*m — (LKD)

z+1) Y KA) + H_l _ﬁ“é‘f‘i

N — Di.

(29)
Let us write

gi (ui+] A) . (~—1G(xl+1) +~—l<y’ le-‘rl) _ ~_1F*(A))
—(7 z+1G(A) + tz+1 O KR -7 FRGT).

Observing here the switches between the indices i + 1 and
i of the step length parameters in comparison with the last
step of (29), we thus obtain

(H@™™h, Si@™ —w) > L@ 0 -

|
it 2
LGN P

G (@, )

— Diy1.
(30)

We note that S; M; in (12) is self- adJ01nt as we have assumed

T; and X; 4 to be, and taken T and T,+ | to be scalars times

the identity. We therefore deduce from the proof of Theorem

2.1 that (21) holds. Using (PP) to combine (21) and (30), we
thus deduce

1 . 1 o~ . il ~

EHMIJF B u||51+1M1+1 +gfi-(ul+ )

G @) < S =@, + D;
—Yi U,M)_EHM _u”S,-M,-+ i+1-

Summing this fori =0, ...,
the estimate

N — 1 gives with Cg from (27)

N-1

Sl =y + ZO (¢ @+ - g @)
1=l
N-—1
<Co+ D D 31
i=0

We want to estimate the sum of the gaps g; in (31). Using
the convexity of G and F*, we observe

N—1
TG = GyG(xy), and
i=0
N—1 '
TLEROT = Gy FF(n). (32)
i=0

Also, by (25) and simple reorganisation

Z 7G® =qvG@ + 7' 6@ ~ T ' G@). and

(33)
N-—1
S UEIFG) = GnFrOow) — Ty FFO) + T ' FF().
i=0

(34)

All of (32)—(34) together give

N—
z 3_ l+1 ,\)
i=0
>(@nGxn) +qn (3. Kxn) — GnF*(9))
—(GNG @) + gn (yn. KX) — GnF*(yn))

+ (?glccc‘) —% GO+ Fr.® - ?(;‘F*@) :

Another use of (25) gives

N-1

> Gi@

i=0
= (JN _éN) 3'77 KA)
+(#HE® - D+ TR F® -% P D).

Thus,

N-—1 ) ) )

DGt ) - G @ w) = GgnG" + (35)
i=0

where the remainder

rn = (qn —qn) (F*(3) — F*(yn) — (§ — yv. K£)) .

Ata solutionu = (X, y) to (OC), we have Kx € aF*(y)
sory > 0 provided gy < gn.Butgy — gy = 1:0 L TN s
so this is guaranteed by our assumption (C3”). Using (35) in
(31) therefore gives

N—1

1 e ~
Sl = @5y, +aNGY +rv < Cot+ 3 Dist. (36)
i=0
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A referral to (C2) to estimate Sy My from below shows (26),
concluding the proof. O

4 Convergence Rates in Special Cases

To derive a practical algorithm, we need to satisfy the update
rules (C1) and (C2), as well as the partial monotonicity con-
ditions (G-PM) and (F*-PM). As we have already discussed
in Sect. 3, this can be done when for some 7; > 0 we set

A

T, =71, and T; =T1. (37

The result of these choices is Algorithm 2, whose conver-
gence we studied in Theorem 3.1. Our task now is to verify
its conditions, in particular (G-pc) and (F*-pc) [alternatively
(F*-pm) and (G-pm)], as well as (C1”), (C2"), and (C3") for
I" of the projection form y P.

4.1 An Approach to Updating

We have not yet defined an explicit update rule for ¥4,
merely requiring that it has to satisfy (C2”) and (C1”). The
former in particular requires

¥

=@l =8 'KT,K*.

Hiring the help of some linear operator F € L(L(Y;Y);
L(Y;Y)) satisfying

F(KTiK*) > KT; K", (38)
our approach is to define

2o =@ (1= 8 ' F(KT;K*). (39)
Then, (C2”) is satisfied provided Tl._1 € Q. Since
?1111 Ei_+11 = 'fl._l(l — 8~ F(KT;K*), the condition (C1”)
reduces into the satisfaction for each i € N of

T a+2rmr ! -1 > 25 (0~ T), and

i+17i+1
(40a)
1
s (57 (KTik*) = 7\ F (KT k7))
> =27\ Riqi. (40b)

To apply Theorem 3.1, all that remains is to verify in special
cases the conditions (40) together with (C3”) and the partial
strong convexity conditions (G-pc) and (F*-pc).
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4.2 When T is a Multiple of a Projection

We now take I' = y P for some y > 0, and a projection oper-
ator P € L(X; X): idempotent, P2 = P, and self-adjoint,
P* = P.Welet PL := [ — P.Then, PP = PP+ = 0.
With this, we assume that K is such that for some )7J- >0
holds

[0, 7P c K. 41)

To unify our analysis for gap and non-gap estimates of
Theorem 3.1, we now pick A = 1/2 in the former case,
and A = 1 in the latter. We then pick 0 < y < Ay, and
0< yiJ‘ < A)?J-, and set
T, =1tP+ tl.J‘PJ‘, Qi = w; P +a),-lPl, and
T =yP+ytpPt (42)
With this, ;, rf- > ( guarantee T; € 9 Moreover, T; is self-
adjoint. Moreover, I'; € A([0, '] 4+ K), exactly as required
in both the gap and the non-gap cases of Theorem 3.1.

Since
KT;K* = ;KPK* + ;" K P+ K*

= (t — tHKPK* + 1 KK*,

we are encouraged to take

F(KT;K*) = max{0, 7; — T} | K P11 + - | K% 1.
(43)

Observe that (43) satisfies (38). Inserting (43) into (39),
we obtain

Yit1 = oj411 with
_ i
ol =2 (max{O, o — MK PP + r,#||1<||2) .

1-6
(44)

Since ¥; 11 is now equivalent to a scalar, (40b), we also take
Ri+1 = pit+11, assuming for some p > 0O that

[0, 511 C K.

Setting

o~
n =1

max{0, 7; — 77} — ?;_11 max{0, 741 — T4}
we thus expand (40) as

(452)
(45b)

Tl A+ 2y — Tty =0,

S ST R ~ 11
LT —TaTa =722 v
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— (niIIKPII2 + &'

>2r

~—1_1 2
~ 7Tk

1 Pi+1- (45c¢)

We are almost ready to state a general convergence result
for projective I'. However, we want to make one more thing
more explicit. Since the choices (42) satisfy

[y = Al = (y —29)P + ;" PT <yt P*
and Riy1 = pi+11,

we suppose for simplicity that

Y (x) =yt (Pry) and dr.,, (V) = pir19(y)
(46)

for some ¥+ : PXX — Rand ¢ : ¥ — R. The conditions
(G-pc) and (F*-pc) reduce in this case to the satisfaction for
some 7, 7+, p > 0 of

G(x') = G(x) = (IG(x). x' — x) + gnP(x’ — 0|2

1
+ 5 (1P =0 = w Pt —x)
(G-per)
forallx,x’ € X and 0 < yl < )7{ as well as of
F*(Y) = F*(y) = (0F*(»).y" —y)
B /o 2 I
+ 2 (I =12 = 00" = ).
(F*-per)

forall y,y' € Y and 0 < p < p. Analogues of (G-pm) and
(F*-pm) can be formed.

To summarise the findings of this section, we state the
following proposition.

Proposition 4.1 Suppose (G-pcr) and (F*-pcr) hold for
some projection operator P € L(X; X) and scalars
7,75 p > 0. With » = 1/2, pick y € [0, Ay]. For each
i €N, suppose (45) is satisfied with

0<p <ip, and T >7 >0. (47)
If we solve (45a) exactly, define T;, T';, and X;41 through
(42) and (44), and set Ri+1 = pit+11, then the iterates of
Algorithm 2 satisfy with Co and Djy1 as in (27) the estimate

1
- + —g"
+2y

N— 1
<INty (Co + z DH-I)-

i=0

(SIIP(
= X
2

(43)

If we take ). = 1, then (48) holds with GV =

Observe that presently

Dit1 =7 'ytyt (Pt - 2)

+T e =), (49)
Proof As we have assumed through (47), or otherwise
already verified its conditions, we may apply Theorem 3.1.
Multiplying (26) by Ty Ty, we obtain

N-1
—||x — X3 +gniven gy < Tvw (Co + Z Dz+1)
i=0
(50)
Now, observe that solving (45a) exactly gives
~1_—1 _ =1 _—1 ~1
Ty Ty =Ty_ 1Ty +2vTy
N-1
=%+ D> 2 F =Ty + 2van. 5D
j=0
Therefore, we have the estimate
- 67N
gNTNTN =
Ty f() Tt 2y 4N
B 1 - 1 (52)
Tl gy 2y T o 2y
With this, (50) yields (48). O

4.3 Primal and Dual Penalties with Projective T’

We now study conditions that guarantee the convergence of
the sum Ty Ty Zf\’: 61 D;y1 in (48). Indeed, the right-hand
sides of (45b) and (45c) relate to D;y1. In most practical
cases, which we study below, ¢ and y transfer these right-
hand side penalties into simple linear factors within D; .
Optimal rates are therefore obtained by solving (45b) and
(45¢) as equalities, with the right-hand sides proportional to
each other. Since n; > 0, and it will be the case that n; = 0 for
large i, we, however, replace (45¢) by the simpler condition

Tl 7!
T T T T DIK? = 2Tz+1'01+1

(53)

Then, we try to make the left-hand sides of (45b) and (53)
proportional with only rij;l as a free variable. That is, for
some proportionality constant ¢ > 0, we solve

—_L;vf]TJ_, 1 —1 _1,—

i — Tt 1+l (54)

— ol
;(T T Tiv1 l+1)
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Multiplying both sides of (54) by ¢~
the quadratic condition

= 1 o 1
Tit1T 4> glveson T,

e T =k - =
Thus,
T = % (CNUi(TiJ_ ¢l h
N L +4§—1). (55)

Solving (45b) and (53) as equalities, (54) and (55) give

200 =8)

~—1_ 1 _
2 = ||K||2 Tip1Pi+1 =

ik
i Vi ).

é‘(rl+1 i1

(56)

Note that this quantity is non-negative exactly when a)ll >
;. We have

1 i
@i _ Tl
;i T
1 _ _
:-(1—; 1rl-J" .
2

+\/(1 — g2 4 4;—15;2¢—2) .

This quickly yields w > @; if @; < 1. In particular, (56) is
non-negative when w; < 1.

The next lemma summarises these results for the standard
choice of ;.

Lemma 4.1 Let tf;rl by given by (55), and set

c~oi=wi=1/\/1+2yti. 67

Then, a)lJ‘ > w, T < Ty, and (45) is satisfied with the
right-hand sides given by the non-negative quantity in (56).
Moreover,

1 —-1/2
T <¢ /

Proof The choice (57) satisfies (45a), so that (45) in its
entirety will be satisfied with the right-hand sides of (45b)-
(45c¢) given by (56). The bound 7; < Tj follows from w; < 1.
Finally, the implication (58) is a simple estimation of (55).

O

Specialisation of Algorithm 2 to the choices in Lemma
4.1 yields the steps of Algorithm 3. Observe that 7; entirely
disappears from the algorithm. To obtain convergence rates,
and to justify the initial conditions, we will shortly seek to
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Algorithm 3 Partial acceleration for projective '—primal
and dual penalties

Require: F* and G satisfying (G-pcr) and (F*-pcr) for some 7, )7{ p >0,
and a projection operator P € L£(X; X). A choice of y € [0, y]. Initial
step length parameters 7, 770 > 0, achoiceof § € (0,1),and ¢ < r(f‘ -2,

all satisfying (61).

: Choose initial iterates x° € X and y* € Y.

. repeat

Set

=1/y1+2y7,
ot =~ ((1 [ S \/(1 — 1202 4 4§_1rf‘_2) .

4: Update
1 1L
Titl =T, T =T, and

oir1 = 0 (1 = 8)/(max{0, 7; — T MK P + tHIK |12,
5: WithT, =P+ riLPL, perform the updates

P."\-”—

A= (14 T0G) T (o = iKY, (59a)
B (it — ) 4L (59b)
V= U 0 0FD) TG o KE, (59¢)

6: until a stopping criterion is fulfilled.

exploit with specific ¢ and v the telescoping property stem-
ming from the non-negativity of the last term of (56).

There is still, however, one matter to take care of. We
need p; < Ap and yl.L < A)?l, although in many cases of
practical interest, the upper bounds are infinite and hence
inconsequential. We calculate from (55) and (57) that

1

-1_1 L 1,—1
( ll—‘cl-)——z(—g‘[i -1
—l—\/(;ril A L 4§a)l._2)

<Je@* -1 =2tyn <2y . (60)

Therefore, we need to choose ¢ and g to satisfy 2¢y 19 <
(Ay1)?%. Likewise, we calculate from (56), (57), and (60) that

@i IK)Pe IK ||*@; :
Pi+1 = CVi (1—8){ 5(1_8);,\/251/751
(1—68)¢ '

This tells us to choose 79 and ¢ to satisfy 21K |1*/(1 —
8)2¢ Yytg < (Ap)2. Overall, we obtain for 7y and ¢ the
condition

2 12 2.1 o2
A .[V p°¢dl 5)] ©1)

0<1 <—min )
2y ¢ K4

This can always be satisfied through suitable choices of ¢
and ¢.
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If now ¢ = Cyp and y = Ci, using the non-negativity of
(56), we calculate

N-1
! IIKII Cy
Zt,+1pt+l¢(yl+ 5 Z
i=0 i=0
~—1_1 ~—1
T. 4 T; T. 7; K C .
2 > )= 20-9
Similarly
N-—1
— : ¢Cy
_L,i lyiL,(//(xl'f'] _f) < 2"//' TNITii (63)

i=0

Using these expression to expand (49), we obtain the follow-
ing convergence result.

Theorem 4.1 Suppose (G-pcr) and (F*-pcr) hold for some
projection operator P € L(X; X), scalars 7,7+, p > 0
with¢ = Cyp, and f = Cd;,forsome constants Cg, ij‘ > 0.
With A = 1/2, fix y € (0, Ay]. Select initial T, 170 > 0, as
well as § € (0,1) and ¢ < (r Y~2 satisfying (61). Then,
Algorithm 3 satisfies for some Cqy, Cy > O the estimate

8 N 1 CoC?

SIPaN =D+ ————GY < 0t

2 T, +2y N
¢2IK )P

c
+ = (;1/2% +

N C¢,) , (N =0). (64)

)
If we take A = 1, then (48) holds with gV =o.

Proof During the course of the derivation of Algorithm 3,
we have verified (45), solving (45a) as an equality. Moreover,
Lemma 4.1 and (61) guarantee (47). We may therefore apply
Proposition 4.1. Inserting (62) and (63) into (48) and (49)
gives

1) —
PN =D + — G < vy
2 + 2y
tCy IK(*Cyp ~._
(C0+ Zw leﬁ‘i‘z(l—_;;fjvlfﬁ). (65)

The condition ¢ < (7, L) ~2 now guarantees ‘Cﬁ < ¢ 2

through (58). Now we note that 7; is not used in Algorithm 3,
so it only affects the convergence rate estimates. We therefore
simply take Tp = 10, sothat Ty = ty forall N € N. With this
and the bound 7y < C;/N from Remark 3.2, (64) follows

by simple estimation of (65). O
Remark 4.1 As a special case of Algorithm 3, if we choose
. = r&"_z, then we can show from (55) that rl.l = rol =

¢~ 12 foralli e N.

Remark 4.2 The convergence rate provided by Theorem 4.1
isamixed O(1/N?)+ O(1/N) rate, similarly to that derived
in [5] for a type of forward—backward splitting algorithm for
smooth G. Ours is of course backward—backward type algo-
rithm. It is interesting to note that using the differentiability
properties of infimal convolutions [23, Proposition 18.7], and
the presentation of a smooth G as an infimal convolution, it
is formally possible to derive a forward—backward algorithm
from Algorithm 3. The difficulties lie in combining this con-
version trick with conditions on the step lengths.

4.4 Dual Penalty Only with Projective I'

Continuing with the projective I" setup of Sect. 4.2, we now
study the case K = {0}, that is, when only the dual penalty
¢ is available with ¥ = 0. To use Proposition 4.1, we need
to satisfy (47) and (45), with (45a) holding as an equality.

Since )/l.L = 0, (45b) becomes
Tl T 20 (66)

With respect to r,.i |» the left-hand side of (45¢) is maximised
(and the penalty on the right-hand side minimised) when (66)
is minimised. Thus, we solve (66) exactly, which gives

s L~—1
Ty =T o .
In consequence a)lL = cT)l._ 1, and (45c¢) becomes
1 2 %;—2 ~_2 2 ~1
mﬂi”KPH + m(l —o; HIKN" = =27, pit1-

(67)

In order to simultaneously satisfy (45a), this suggests for
some, yet undetermined, a; > 0, to choose

- 1 1
wj = ———— and w; = ———. (68)
1 + a2 o;i(1+2y7)
1
Since n; > 0, (67) is satisfied with the choice (68) if we take

IK|I?

Ti+1aim~

Pi+1 =
To use Proposition 4.1, we need to satisfy p;+1 < Ap. Since
(68) implies that {7; }°°, is non-increasing, we can satisfy this
for large enough i if @; N\ 0. To ensure satisfaction for all
i € N, it suffices to take {ai}j?io non-increasing, and satisfy
the initial condition

Cl()‘AL:()m < Ap. (69)
2(1 —=6) —
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~—2 _
i+1 —

The rule 7;4+1 = @;T; and (68) give T i’fz + a;. We

therefore see that

N—1
~ i—1
>2y > JR X Tha = 1/up).
i=0

Assuming ¢ to have the structure (46), moreover,

N-—1 N-—1
D D=2 e G =)
i=0 i=0
N—-1
KR i+1
=50-3) Z;alqs(y .

Thus, the rate (48) in Proposition 4.1 states

SipeN ot — gV < uNcy+ K N
2 ity T 21-8)""
(70)
for
N—1 ‘
w) =g D aip(y = ).
i=0

The convergence rate is thus completely determined by uf)v
and ,ullv .

Remark 4.3 1f ¢ = 0, that is, if F* is strongly convex, we

may simply pick w; = w; = 1/4/1+ 2y7;, thatis a; = 2y,
and obtain from (70) a O(1/N 2) convergence rate.

For a more generally applicable algorithm, suppose
(YT —3) = Cy as in Theorem 4.1. We need to choose
a;. One possibility is to pick some g € (0, 1] and

ai =72 (G + D7 — i), (71)
The concavity of i > ¢’ for ¢ € (0, 1] easily shows that

{a;}72, is non-increasing. With the choice (71), we then com-
pute

N-1

i-1 o~ :q/2

i=0aj =Ty E i
i=0

N—-1 ?—1
,1/ X2y = 0 (N —q)ltas2,
o Jo 14+¢/2
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v
S\

Algorithm 4 Partial acceleration for projective I'—dual

penalty only

Require: G satisfying (G-pcr) (with ¥ = 0) for some y > 0 and a
projection operator P € L£(X; X). F* satisfying (F*-pcr) for some
p > 0. A choice of y € [0, y] and a non-increasing sequence
{ai}i"io, for example as in (71). Initial step parameters 7, TOL, T0 >
0, as well as § € (0, 1), satisfying (69).

1: Choose initial iterates x* € X and y° € Y.

2: repeat
3:  Set
~ . = == Lo 1=
w; =1/ 1+a,-%;2, Titl = Tw;, T =T /i,
~_1
wi =0, [1+2y7), Tyl i= o,

as well as
i1 = o; (1 = 8)/(max{0, 5 — YK P> + 7| K|I).
4: WithT; :=1,P + riLPl, perform the updates

A= I+ T06) T (o = TRy,

FH = &t — x4 XL

Yyt i= (I + 0 dF) T O + o KX,

5: until a stopping criterion is fulfilled.

and
N—1
S ar <7 2N
—

If N > 2, we find with C, = (1 + ¢/2)/(2'T9/21y) that

Cu.Cy
ToN1-4/2°

N :EO Ca

N
Mo Sm, and pp <

(72)
The choice g = 0 gives uniform O (1/N) over both the ini-
tialisation and the dual sequence. By choosing ¢ = 1, we get
O (1/N?3/?) convergence with respect to the initialisation, and
O(1/N'/%) with respect to the residual sequence.

With these choices, Algorithm 2 yields Algorithm 4,
whose convergence properties are stated in the next theorem.

Theorem 4.2 Suppose (G-pcr) and (F*-pcr) hold for some
projection operator P € L(X; X) and 7,7+, p = 0 with
Y = 0and ¢ = Cy for some constant Cyp > 0. Withh = 1/2,
choose y € (0, Ly], and pick the sequence {a; }7°, by (71) for
some q € (0, 1]. Select initial 7, rd‘, 70> 0and s € (0,1)
verifying (69). Then, Algorithm 4 satisfies

N 70CaCo
= N1z

é 1
SIPeN =D+ ——G
2 T, +v
CaCylIK|I?
2(1 — §)TgN1-49/2’

(N = 2). (74)

If we take ). = 1, then (74) holds with GV = 0.
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Proof We apply Proposition 4.1 whose assumptions we have
verified during the course of the present section. In particular,
T; < 70 through the choice (68) that forces w; < 1. Also,
have already derived the rate (70) from (48). Inserting (72)
into (70), noting that the former is only valid for N > 2,
immediately gives (74). O

5 Examples from Image Processing and the Data
Sciences

We now consider several applications of our algorithms.
We generally have to consider discretisations, since many
interesting infinite-dimensional problems necessitate Banach
spaces. Using Bregman distances, it would be possible to
generalise our work form Hilbert spaces to Banach spaces,
as was done in [24] for the original method of [3]. This is,
however, outside the scope of the present work.

5.1 Regularised Least Squares

A large range of interesting application problems can be
written in the Tikhonov regularisation or empirical loss min-
imisation form

mi)r(l Go(f — Ax) +aF(Kx). (75)

Here @ > 0 is a regularisation parameter, Go : Z — R
typically convex and smooth fidelity term with data f € Z.
The forward operator A € £(X; Z)—which can often also be
data—maps our unknown to the space of data. The operator
K € L(X;Y) and the typically non-smooth and convex F :
Y — R act as a regulariser.

We are particularly interested in strongly convex G¢ and
A with a non-trivial null-space. Examples include, for exam-
ple, Lasso—a type of regularised regression—with Go =
Ixl3/2, K = I, and F(x) = |x|l1, on finite-dimensional
spaces. If the data of the Lasso is ‘sparse’, in the sense that
A has a non-trivial null-space, then, based on accelerating
the strongly convex part of the variable, our algorithm can
provide improved convergence rates compared to standard
non-accelerated methods.

In image processing examples abound, we refer to [25]
for an overview. In total variation (TV) regularisation, we
still take F'(x) = ||x]||1, butis K = V the gradient operator.
Strictly speaking, this has to be formulated in the Banach
space BV(2), but we will consider the discretised setting to
avoid this problem. For denoising of Gaussian noise with TV
regularisation, we take A = I, and again Gog = ||x ||%/2. This
problem is not so interesting to us, as it is fully strongly con-
vex. In a simple form of TV inpainting—filling in missing
regions of an image—we take A as a subsampling operator

S mapping an image x € L*(S2) to one in L?(Q \ ©y), for
Qg C Q the defect region that we want to recreate. Observe
that in this case, [ = S§*S is directly a projection opera-
tor. This is therefore a problem for our algorithms! Related
problems include reconstruction from subsampled magnetic
resonance imaging (MRI) data (see, for example, [11,26]),
where we take A = S§ for § the Fourier transform. Still,
A*A is a projection operator, so the problem perfectly suits
our algorithms.

Another related problem is total variation deblurring,
where A is a convolution kernel. This problem is slightly
more complicated to handle, as A*A is not a projection
operator. Assuming periodic boundary conditions on a box
Q = [ lci, di], we can write A = F*aF, multiplying
the Fourier transform by some @ € L*($2). If |a| > y on a
subdomain, we obtain a projection form I" (it would also be
possible to extend our theory to non-constant y, but we have
decided not to extend the length of the paper by doing so.
Dualisation likewise provides a further alternative).

Satisfaction of convexity conditions In all of the above exam-
ples, when written in the saddle point form (P), F* is a
simple pointwise ball constraint. Lemma 2.1 thus guarantees
(F*-per). If F(x) = ||x||; and K = I, then clearly || P%||
can be bounded in Z = L' for % the optimal solution to
(75). Thus, for some M > 0, we can add to (75) the artificial
constraint

G'(x) = ). ,<m (P x). (76)

In finite dimensions, this gives a bound in L?. Lemma 2.1
gives (G-per) with =+ = oo.

In case of our total variation examples, F(x) = |x]
and K = V. Provided mean-zero functions are not in the
kernel of A, one can through Poincar’s inequality [27] on
BV() and a two-dimensional connected domain 2 C R?
show that even the original infinite-dimensional problems
have bounded solutions in L?(2). We may therefore again
add the artificial constraint (76) with Z = L2 to (75).

Dynamic bounds and pseudo-duality gaps We seldom know
the exact bound M, but can derive conservative estimates.
Nevertheless, adding such a bound to Algorithm 4 is a sim-
ple, easily implemented projection of P+ (x! — T; K*y') into
the constraint set. In practise, we do not use or need the
projection, and update the bound M dynamically so as to
ensure that the constraint (76) is never active. Indeed, A hav-
ing a non-trivial nullspace also causes duality gaps for (P) to
be numerically infinite. In [28], a ‘pseudo-duality gap’ was
therefore introduced, based on dynamically updating M. We
will also use this type of dynamic duality gaps in our report-
ing.
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5.2 TGV? Regularised Problems

So far, we have considered very simple regularisation terms.
Total generalised variation, TGV, was introduced in [29] as
a higher-order generalisation of TV. It avoids the unfortu-
nate stair-casing effect of TV—Iarge flat areas with sharp
transitions—while preserving the critical edge preservation
property that smooth regularisers lack. We concentrate on the
second-order TGV?. In all of our image processing examples,
we can replace TV by TGV?.

As with total variation, we have to consider discretised
models due the original problem being set in the Banach
space BV(2). For two parameters «, 8 > 0, the regularisa-
tion functional is written in the differentiation cascade form
of [30] as

TGV%ﬂ,a)(u) =min «||Vu —wll1 + BllEull.
w

Here £ = (V! + V)/2 is the symmetrised gradient. With
x = (v, w) and y = (y1, y2), we may write the problem

min Go(f — Av) + TGV (5,4, (v). (77)
in the saddle point form (P) with

G(x) := Go(f — Av),
F*(y) = ¢].00<a1) + 1), 00<p(¥2), and

ki=(y 7)

If A = I, as is the case for denoising, we have

I 0
I'=yP for P_(O O)’

perfectly uncoupling in both Algorithm 3 and Algorithm 4
the prox updates for G into ones for G| and G;. The condition
(F*-pcr) with p = oo is then immediate from Lemma 2.1.

@ Springer

(b)

Fig. 1 We use sample image (b) for denoising, and (c) for deblurring experiments. Free Kodak image suite photo, at the time of writing online at
http://rOk.us/graphics/kodak/. a True image. b Noise image. ¢ Blurry image

Moreover, the Sobolev—Korn inequality [31] allows us to
bound on a connected domain € C R? an optimal w to (77)
as

inf || — w2 < CqllEwlli < CaGo(f)

w affine

for some constant Co > 0. We may assume that w = 0, as
the affine part of w is not used in (77). Therefore we may
again replace G, = 0 by the artificial constraint Go(w) =
U f,o<m(w). By Lemma 2.1, G will then satisfy (G-pcr)
with 71 = oo.

5.3 Numerical Results

We demonstrate our algorithms on TGV? denoising and TV
deblurring. Our tests are done on the photographs in Fig. 1,
both at the original resolution of 768 x 512, and scaled down
by a factor of 0.25 to 192 x 128 pixels. It is image #23 from
the free Kodak image suite. Other images from the collection
that we have experimented on give analogous computational
results. For both of our example problems, we calculate a
target solution by taking one million iterations of the basic
PDHGM (3). We also tried interior point methods for this,
but they are only practical for the smaller denoising problem.

We evaluate Algorithms 3 and 4 against the standard
unaccelerated PDHGM of [3], as well as (a) the mixed-
rate method of [5], denoted here C-L-O, (b) the relaxed
PDHGM of [20,32], denoted here ‘Relax’, and (c) the adap-
tive PDHGM of [33], denoted here ‘Adapt’. All of these
methods are very closely linked and have comparable low
costs for each step. This makes them straightforward to com-
pare.

As we have discussed, for comparison and stopping pur-
poses, we need to calculate a pseudo-duality gap as in [28],
because the real duality gap is in practise infinite when A
has a non-trivial nullspace. We do this dynamically; upgrad-
ing, the M in (76) every time, we compute the duality gap.
For both of our example problems, we use for simplicity
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Fig. 2 Step length parameter 102

evolution, both axes

logarithmic. ‘Alg.3” and ‘Alg.4
q=1" have the same parameters 100t
as our numerical experiments

— — Alg.3 ¢100]| | 101k
— - — - Alg.4 g=0.1

Alg.3
Alg.4 g=1

for the respective algorithms, in
particular ¢ = r(f"_z for 102}
Algorithm 3, which yields

constant T+, ‘Alg.3 £/100’ uses

— — — —

the value ¢ = roi‘*z/lOO, which 10:00 1(;1
causes T to increase for some

iterations. ‘Alg.4 q=0.1" uses the

value ¢ = 0.1 for Algorithm 4, (@ -
everything else being kept equal

Iteration

103 10° 10" 102 103
Iteration

(b) ==

10 L .
10° 10"
Iteration

(© 7

Z = L?* in (76). In the calculation of the final duality gaps
comparing each algorithm, we then take as M the maximum
over all evaluations of all the algorithms. This makes the
results fully comparable. We always report the duality gap
in decibels 10 loglo(gap2 / gap%) relative to the initial iterate.
Similarly, we report the distance to the target solution # in
decibels 10logq(Jlu’ — al?/1l@)|?), and the primal objec-
tive value val(x) := G(x) + F(Kx) relative to the target
as 1010g10(val(x)2/val(£)2). Our computations were per-
formed in MATLAB+C-MEX on a MacBook Pro with 16GB
RAM and a 2.8 GHz Intel Core i5 CPU.

TGV? denoising The noise in our high-resolution test image,
with values in the range [0, 255], has standard deviation
29.6 or 12 dB. In the downscaled image, these become,
respectively, 6.15 or 25.7 dB. As parameters (8, @) of the
TGV? regularisation functional, we choose (4.4, 4) for the
downscale image, and translate this to the original image
by multiplying by the scaling vector (0.257%,0.25~") cor-
responding to the 0.25 downscaling factor. See [34] for a
discussion about rescaling and regularisation factors, as well
as for a justification of the B/« ratio.

For the PDHGM and our algorithms, we take y = 0.5,
corresponding to the gap convergence results. We choose
8 = 0.01, and parametrise the PDHGM with og = 1.9/| K ||
and 7§ = 79 ~ 0.52/||K|| solved from tgop = (1 — 8K
These are values that typically work well. For forward-
differences discretisation of TGV? with cell width & = 1,
we have || K ||> < 11.4 [28]. We use the same value of § for
Algorithm 3 and Algorithm 4, but choose 1’0L = 37, and

Iteration

d) o

10 = To = 807;. We also take ¢ = rd"_z for Algorithm
3. These values have been found to work well by trial and
error, while keeping § comparable to the PDHGM. A similar
choice of 1y with a corresponding modification of oy would
significantly reduce the performance of the PDHGM. For
Algorithm 4, we take exponent ¢ = 0.1 for the sequence {q; }.
This gives in principle a mixed O (1/N'3)+0(1/N3) rate,
possibly improved by the convergence of the dual sequence.
We plot the evolution of the step length for these and some
other choices in Fig. 2. For the C-L-O, we use the detailed
parametrisation from [35, Corollary 2.4], taking as Qy the
true L2-norm Bregman divergence of B(0, «) x B(0, 8), and
Qx = 10 - || f|I?/2 as a conservative estimate of a ball con-
taining the true solution. For ‘Adapt’, we use the exact choices
of a, n, and ¢ from [33]. For ‘Relax’, we use the value 1.5 for
the inertial p parameter of [32]. For both of these algorithms,
we use the same choices of oy and 7( as for the PDHGM.
We take fixed 20,000 iterations and initialise each algo-
rithm with y© = 0 and x* = 0. To reduce computational
overheads, we compute the duality gap and distance to tar-
get only every 10 iterations instead of at each iteration.
The results are in Fig. 3 and Table 1. As we can see,
Algorithm 3 performs extremely well for the low-resolution
image, especially in its initial iterations. After about 700
or 200 iterations, depending on the criterion, the standard
and relaxed PDHGM start to overtake. This is a general
effect that we have seen in our tests: the standard PDHGM
performs in practise very well asymptotically, although in
principle all that exists is a O(1/N) rate on the ergodic
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Fig. 3 TGV? denoising performance, 20,000 iterations, high- and low-
resolution images. The plot is logarithmic, with the decibels calculated
as in Sect. 5.3. The poor high-resolution results for ‘Adapt’ [33] have

Table 1 TGV? denoising performance, maximum 20,000 iterations

Low resolution

Method Gap < —50dB Tgt < —40 dB Val < 1dB

Iter Time (s)  Iter Time (s) Iter Time (s)
PDHGM 30 040 40 0.46 30 040
C-L-O 500 4.67 1210  11.31 970 9.04
Alg.3 20 0.29 10  0.22 20 0.29
Alg4 20 047 20 0.47 20 047
Relax 20 034 30 045 20 0.34
Adapt 5360 106.63 2040 41.38 3530 70.78
High resolution
Method Gap < —40dB Tgt < —30dB Val < 1dB

Tter Time (s)  Iter Time (s) Iter Time (s)
PDHGM 50 8.85 30 5.13 30 5.13
C-L-O 80 15.76 30 5.97 80 15.76
Alg.3 40 6.20 20  3.10 40 6.20
Alg.4 60 9.18 30 4.53 60 9.18
Relax 40 7.45 20 3.70 20 3.70
Adapt - - - - - -

The CPU time and number of iterations (at a resolution of 10) needed
to reach given solution quality in terms of the duality gap, distance to
target, or primal objective value

@ Springer

(e) )

been omitted to avoid poor scaling of the plots. a Gap, low resolution,
b target, low resolution, ¢ value, low resolution, d gap, high resolution,
e target, high resolution, f value, high resolution

duality gap. Algorithm 4, by contrast, does not perform
asymptotically so well. It can be extremely fast on its initial
iterations, but then quickly flattens out. The C-L-O surpris-
ingly performs better on the high-resolution image than on
the low-resolution image, where it does somewhat poorly in
comparison with the other algorithms. The adaptive PDHGM
performs very poorly for TGV? denoising, and we have
indeed excluded the high-resolution results from our reports
to keep the scaling of the plots informative. Overall, Algo-
rithm 3 gives good results fast, although the basic and relaxed
PDHGM seems to perform, in practise, better asymptoti-
cally.

TV deblurring Our test image has now been distorted by
Gaussian blur of standard deviation 4, which we intent to
remove. We denote by a the Fourier presentation of the blur
operator as discussed in Sect. 5.1. For numerical stability of
the pseudo-duality gap, we zero out small entries, replacing
this @ by d xja(.)|> 4]l /1000(€)- Note that this is only needed
for the stable computation of G* for the pseudo-duality gap,
to compare the algorithms; the algorithms themselves are
stable without this modification. To construct the projection
operator P, we then set p(§) = xja(.)>03d|l (§), and P =
3PS

We use TV parameter 2.55 for the high-resolution image
and the scaled parameter 2.55 % 0.15 for the low-resolution
image. We parametrise all the algorithms almost exactly as
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Fig. 4 TV deblurring performance, 10,000 iterations, high- and low-resolution images. The plot is logarithmic, with the decibels calculated as in
Sect. 5.3. a Gap, low resolution. b Target, low resolution. ¢ Value, low resolution. d Gap, high resolution. e Target, high resolution. f Value, high
resolution

Table 2 TV deblurring performance, maximum 10,000 iterations

Method Low resolution High resolution

Gap < —60 dB Tgt < —40 dB Val < 1 dB Gap < —60 dB Tgt < —30dB Val < 1dB

Iter Time (s) Iter Time (s) Iter Time (s)  Iter Time (s) Tter Time (s) Iter Time (s)
PDHGM 390 2.53 2630 17.41 60 0.47 1180 118.30 970 98.98 70 6.59
C-L-O 600 3.81 8930 54.20 950 5.95 500 48.44 1940 187.42 1000 96.60
Alg.3 130 1.14 880 7.22 20 0.25 400 58.42 320 46.16 40 6.13
Alg.4 30 0.47 90 0.97 10 0.29 60 7.97 50 6.66 30 3.98
Relax 260 1.62 1750 11.34 40 0.29 790 77.31 650 63.84 50 5.29
Adapt 110 1.12 660 5.94 10 0.16 260 39.39 150 23.30 30 4.72

The CPU time and number of iterations (at a resolution of 10) needed to reach given solution quality in terms of the duality gap, distance to target,
or primal objective value

TGV? denoising above, of course with appropriate €2y and
|K||?> < 8corresponding to K = V [36]. The only difference
in parameterisation is that we take ¢ = 1 instead of ¢ = 0.1
for Algorithm 4.

The results are in Fig. 4 and Table 2. It does not appear
numerically feasible to go significantly below —100 or
—80 dB gap. Our guess is that this is due to the numerical
inaccuracies of the fast Fourier transform implementation

in MATLAB. The C-L-O performs very well judged by
the duality gap, although the images themselves and the
primal objective value appear to take a little bit longer to
converge. The relaxed PDHGM is again slightly improved
from the standard PDHGM. The adaptive PDHGM performs
very well, slightly outperforming Algorithm 3, although not
Algorithm 4. This time Algorithm 4 performs remarkably
well.
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6 Conclusion

To conclude, overall, our algorithms are very competitive
within the class of proposed variants of the PDHGM. Within
our analysis, we have, moreover, proposed very stream-
lined derivations of convergence rates for even the standard
PDHGM, based on the proximal point formulation and the
idea of testing. Interesting continuations of this study include
whether the condition 7; K = K T; can reasonably be relaxed
such that f‘, and T", would not have to be scalars, as well as
the relation to block coordinate descent methods, in particu-
lar [14,37].
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