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1 Introduction

The gauge/string duality is a conjectured equivalence between strongly coupled gauge field

theories and weakly coupled perturbative string theories [1–3]. One of the most important

problems in understanding this duality is how the space-time geometry described in the

string theory emerges in the framework of the corresponding gauge theory. If the duality is

true, the background space-time in the string theory should emerge in the strong coupling

region of the gauge theories, although it may not be apparent in the weak coupling region.

See [4–8] for recent developments on the emergent space-time.

In this paper, we analyze a one-dimensional gauge theory in the strong coupling region

and study the emergent phenomena of geometries. The theory we consider is a matrix

quantum mechanics called the plane wave matrix model (PWMM), which was proposed

as a fundamental formulation of the M-theory on the pp-wave background in the light-

cone frame [9]. PWMM has SU(2|4) symmetry, which consists of R × SO(3) × SO(6)

bosonic symmetry and 16 supersymmetries. PWMM is a mass deformation of the BFSS
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matrix model [10] and has many discrete vacua given by fuzzy spheres that are labeled by

representations of the SU(2) Lie algebra. In this paper, we consider the case where the

representation is given by a direct sum of the same irreducible representations. In this

case, the vacua are labeled by two integers (N2, N5), where N5 is the dimension of the

irreducible representation and N2 is the multiplicity.

For the theory around each vacuum of PWMM, a corresponding gravity dual geometry

in the type IIA superstring theory was constructed in [11, 12] (also studied in [13] in the

Polchinski-Strassler approximation). The geometry is called the bubbling geometry and

characterized by fermionic droplets on a certain two-dimensional subspace of the space-

time, which define a boundary condition of the solution. By a simple change of variables,

the geometry can be equivalently characterized by a three-dimensional axially symmetric

electrostatic system with some conducting disks (see the next section). The geometry

locally has a topology of R× S2 × S5 ×Me, where Me ∼ R2 corresponds to the space on

which the electrostatic system is defined. For theories around the above mentioned vacua

labeled by two integers (N2, N5), the gravity dual geometries were studied in detail in [14].

The integers, N2 and N5, are interpreted as the D2-brane and NS5-brane charges in the

dual geometries, respectively [15].

In order to see the emergence of this geometry in PWMM, we consider a complex

scalar field φ(t) ∼ X4(t) + i(X9(t) sin t + X10(t) cos t), where X4 is one of SO(3) scalar

fields, X9,10 are SO(6) scalars and t is the time coordinate. We consider a quarter BPS

sector of PWMM which consists of correlators of only φ’s. Since φ has two real degrees of

freedom, it should describe a two-dimensional surface on the gravity dual geometry. Let

Mφ be a two-dimensional subspace in the bubbling geometry described by φ. For a fixed

t, insertions of the field φ(t) in the path integral break the original R × SO(3) × SO(6)

symmetry to SO(2)×SO(5), which is the symmetry of S2×S5 with a marked point. Hence,

Mφ is expected to be fibered on the marked point on S2×S5. From the original symmetry,

however, Mφ should exists everywhere on R × S2 × S5, so that the topology of the total

space should be locally given by R×S2×S5×Mφ. Thus, the subspaceMφ can naturally

be identified with the space Me of the electrostatic problem.

Recently, the localization method, which makes exact computations possible for some

supersymmetric operators [16, 17], was applied to the above sector of φ [18]. In this

paper, using this result, we first show that this sector can be mapped to a one-dimensional

interacting Fermi gas system. We then find that in a strong coupling region, the mean-

field density of the Fermi particles satisfies the same integral equation as the charge density

which appears in the electrostatic system in the gravity side. Thus we identify the mean-

field density with the charge density. Since the charge density ultimately determines the

gravity dual solution, this identification makes it possible to reconstruct the bubbling

geometry based on the gauge theory.

This situation is very similar to the case of the bubbling geometries in the type IIB

supergravity which has R× SO(4)× SO(4) symmetry and 16 supersymmetries [12]. These

geometries correspond to a sector of the half BPS operators in the N = 4 Super Yang-

Mills theory (SYM) on R× S3 that consists of zero modes on S3 of a complex scalar field

Z = Φ4 + iΦ5. This sector can also be mapped to a one-dimensional fermionic system and

its phase space density can be identified with the droplets in the gravity side [19, 20].
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In the case of N = 4 SYM, the sector of Z is protected by the non-renormalization

theorem, so it does not depend on the coupling constant [21, 22]. In our case, however, the

sector we consider in this paper depends on various tunable parameters such as the coupling

constant and the parameters (N2, N5) of the vacua. Hence we can also consider some scaling

limits for these parameters. The gravity dual of PWMM has two interesting scaling limits

which we call the D2-brane limit and the NS5-brane limit in this paper [11, 14]. In the

D2-brane limit, the NS5-brane charges decouple and only the D2-brane charge is left in

the geometry. The geometry asymptotically becomes the D2-brane solution. In the same

manner, the NS5-brane limit sends the geometry to the NS5-brane solution. In this paper,

We show that the D2-brane and the NS5-brane limits are realized on the gauge theory side

as the free and strongly coupled limits of the Fermi gas system, respectively. In these limits,

we solve the Fermi gas system at the planar level and reproduce the radii of the S5’s in the

gravity side. In particular, the S5 corresponds to the spatial worldvolume of fivebranes in

the case of the NS5-brane limit and its radius has been known to be proportional to λ1/4 in

the string unit, where λ is the ’t Hooft coupling in PWMM [15]. Our gauge theory result

reproduces this behavior and hence gives a strong evidence for the description of fivebranes

in PWMM proposed in [15]1.

This paper is organized as follows. In section 2, we review PWMM and the result of

the localization [18]. In section 3, we review the gravity dual of PWMM. In section 4,

we first map the matrix integral obtained through the localization to an interacting Fermi

gas system. Then we identify the mean-field density with the charge density. We also

perform various consistency checks of this identification. Section 5 is devoted to summary

and discussion.

2 Plane wave matrix model

In this section, we review PWMM [9] and the result of the localization obtained in [18].

We use the same notation as in [18]. The action of PWMM is written in terms of the

ten-dimensional notation as,

S =
1

g2

∫
dτTr

(1

4
FMNF

MN +
m2

8
XmX

m +
i

2
ΨΓMDMΨ

)
, (2.1)

where the time direction is assumed to be the Euclidean signature and

F1M = D1XM = ∂1XM − i[X1, XM ] (M 6= 1),

Fa′b′ = mεa′b′c′Xc′ − i[Xa′ , Xb′ ], Fa′m = Da′Xm = −i[Xa′ , Xm], Fmn = −i[Xm, Xn],

D1Ψ = ∂1Ψ− i[X1,Ψ], Da′Ψ =
m

8
εa′b′c′Γ

b′c′Ψ− i[Xa′ ,Ψ], DmΨ = −i[Xm,Ψ]. (2.2)

The range of indices are M,N = 1, · · · , 10, a′, b′ = 2, 3, 4 and m,n = 5, · · · , 10. X1 is the

one-dimensional gauge field, Xa′ and Xm are SO(3) and SO(6) scalars and Ψ is a fermionic

field with 16 components. We put m = 2 for the mass parameter in the following. The m

dependence can be recovered anytime by the dimensional analysis.

1See [23–26] for various descriptions of fivebranes.
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The vacuum of PWMM is given by the fuzzy sphere, namely,

Xa′ = −2La′ , (a′ = 2, 3, 4) (2.3)

and all the other matrices are zero. Here La′ are representation matrices of SU(2) gener-

ators. For any representation of SU(2), (2.3) gives a classical vacuum of PWMM which

preserves 16 supersymmetries. The representation of La′ is reducible in general and it can

be decomposed as

La′ =

Λ⊕
s=1

(1
N

(s)
2

⊗ L[N
(s)
5 ]

a′ ), (2.4)

where L
[N ]
a′ are SU(2) generators in the N dimensional irreducible representation. N

(s)
2

denote the multiplicities of the irreducible representations and
∑

sN
(s)
2 N

(s)
5 must be equal

to the matrix size in PWMM. The notation for N
(s)
2 and N

(s)
5 indicates that they correspond

to membrane and 5-brane charges in M-theory, respectively [15].

In order to define the path integral of PWMM, one has to specify the boundary condi-

tions at τ → ±∞. To study the theory around a fixed vacuum of PWMM, the appropriate

boundary condition is such that all fields approach to the vacuum configuration at the

both infinities. When the multiplicities are sufficiently large compared to the other param-

eters, the instanton effects2 can be ignored, so that the path integral with this boundary

condition defines the theory around the fixed vacuum.

Let us define a complex scalar field,

φ(τ) = 2(−X4(τ) + sinh τX9(τ) + i cosh τX10(τ)). (2.5)

When τ is Wick-rotated to the Lorentzian signature, the real and the imaginary parts of φ

are given by a SO(3) scalar and SO(6) scalars, respectively, as introduced in the previous

section. On the other hand, in another Lorentzian signature where the X10 direction is

Wick-rotated as in [16], four supersymmetries which leave φ invariant were constructed [18].

See appendix B for these supersymmetries.

For the theory around each vacuum of PWMM, one can compute the correlators made

of φ’s by Wick-rotating X10 and applying the localization with the above mentioned bound-

ary conditions [18]3. The result of the localization in [18] is summarized below. The

following equality holds,

〈
∏
a

Trfa(φ(τa))〉 = 〈
∏
a

Trfa(4L4 + 2iM)〉MM , (2.6)

where fa are arbitrary smooth functions. On the left-hand side of (2.6), the expectation

value is taken in the theory around the vacuum (2.4) in PWMM. On the right-hand side

of (2.6), M is a Hermitian matrix with the following block structure,

M =
Λ⊕
s=1

(Ms ⊗ 1
N

(s)
5

), (2.7)

2See [27–29] for instanton solutions in PWMM.
3See [30–32] for localization computations for the case with a boundary.
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where Ms (s = 1, · · · ,Λ) are N
(s)
2 × N

(s)
2 Hermitian matrices. 〈· · · 〉MM stands for an

expectation value with respect to the following partition function,

ZR =

∫ Λ∏
s=1

N
(s)
2∏
i=1

dqsiZ1−loop(R, {qsi})e
− 2
g2

∑
s

∑
iN

(s)
5 q2si , (2.8)

where R denotes the representation of (2.4), qsi are eigenvalues of Ms and

Z1−loop =

Λ∏
s,t=1

∏
J

N
(s)
2∏
i=1

N
(t)
2∏

j=1

′
[
{(2J + 2)2 + (qsi − qtj)2}{(2J)2 + (qsi − qtj)2}

{(2J + 1)2 + (qsi − qtj)2}2

] 1
2

. (2.9)

In (2.9), the product of J runs from |N (s)
5 −N

(t)
5 |/2 to (N

(s)
5 +N

(t)
5 )/2− 1. And

∏′ means

that the second factor in the numerator with s = t, J = 0 and i = j is not included in the

product.

Note that (2.6) implies that the left hand side of (2.6) does not depend on the positions

{τa} of the operators. This follows from the supersymmetry Ward identity in PWMM.

As shown in appendix A, there exists a fermionic matrix Ψ1 in PWMM such that its

variation under the supersymmetry is proportional to D1φ. Then, it follows from the

Ward identity that

0 = δs〈Tr(Ψ1φ
m)(τ) · · · 〉 =

1

m+ 1
〈Tr(D1φ

m+1)(τ) · · · 〉 =
1

m+ 1

∂

∂τ
〈Tr(φm+1)(τ) · · · 〉,

(2.10)

where · · · stands for operators made of φ’s only. Hence, they are indeed independent of

the positions. One can also check this easily by a perturbative calculation around each

vacuum.

In this paper, we consider the case of Λ = 1. In this case, (2.8) is just a one matrix

model,

Z =

∫ ∏
i

dqi

N5−1∏
J=0

N2∏
i>j

{(2J + 2)2 + (qi − qj)2}{(2J)2 + (qi − qj)2}
{(2J + 1)2 + (qi − qj)2}2

e
− 2N5

g2

∑
i q

2
i . (2.11)

When N5 = 1, (2.11) takes the same form as the partition function of the six-dimensional

version of the IKKT matrix model with a suitable regularization [33, 34].

3 Gravity dual of PWMM

In this section, we review the dual geometry for PWMM. The gravity duals for the gauge

theories with SU(2|4) symmetry, which consist of PWMM, N = 8 SYM on R × S2 and

N = 4 SYM on R× S3/Zk, were constructed by Lin and Maldacena [11]4. They assumed

the SU(2|4) symmetric ansatz and then showed that finding the classical solutions is re-

duced to the problem of finding axially symmetric solutions to the 3d Laplace equation

with appropriate boundary conditions given by parallel charged conducting disks and a

background potential.

4See also [35, 36] for the gauge theory side.
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Figure 1. The electrostatic system for PWMM around the vacua labeled by (N2, N5).

3.1 Dual geometry of PWMM

The supergravity solutions dual to the SU(2|4) symmetric theories are given by

ds2
10 =

(
V̈ − 2V̇

−V ′′

)1/2{
−4

V̈

V̈ − 2V̇
dt2 − 2

V ′′

V̇
(dr2 + dz2) + 4dΩ2

5 + 2
V ′′V̇

∆
dΩ2

2

}
,

C1 = − (V̇ 2)′

V̈ − 2V̇
dt, C3 = −4

V̇ 2V ′′

∆
dt ∧ dΩ2,

B2 =

(
(V̇ 2)′

∆
+ 2z

)
dΩ2, e4Φ =

4(V̈ − 2V̇ )3

−V ′′V̇ 2∆2
, (3.1)

where ∆ = (V̈ − 2V̇ )V ′′ − (V̇ ′)2 and the dots and primes indicate ∂
∂ log r and ∂

∂z , respec-

tively. Note that the solution is written in terms of a single function V (r, z). The Killing

spinor equations in the supergravity are reduced to the Laplace equation for V in a three-

dimensional axially symmetric electrostatic system, where the coordinates for the axial and

the transverse directions are given by z and r, respectively. Thus V can be regarded as an

electrostatic potential in this system.

The electrostatic system for the dual geometry of PWMM involves an infinite conduct-

ing surface at z = 0 and only the region z ≥ 0 is relevant. See figure 1. The positivity

of the metric requires the presence of the background potential of the form V0(r2z − 2
3z

3),

where V0 is a constant. In addition to the infinite surface, the system has some finite

conducting disks. The positions and charges of these disks are related to the parameters of

the vacua in PWMM. For the gravity dual of PWMM around the vacuum (2.3) with (2.4),

the system has Λ disks each of which has the charge π2N
(s)
2 /8 and resides at the position

z = πN
(s)
5 /2, where s = 1, · · · ,Λ. (The radii of the disks are not free parameters. The

regularity of the gravity solution demands that the charge density on a finite disk vanishes

at the edge, which relates the radius of the disk to the charge.) The solution V (r, z) of the

Laplace equation in this electrostatic system determines the gravity solution (3.1) that is

dual to the PWMM around the vacuum (2.3) with (2.4). In this geometry, N
(s)
5 and N

(s)
2
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correspond to the charges of NS5-branes and D2-branes, respectively, and s = 1, · · · ,Λ
labels independent cycles with the flux of the branes.

The gravity solution that corresponds to the vacuum with Λ = 1 in PWMM was

studied in detail in [14]. The electrostatic system associated with this solution consists of

one infinite conducting plate at z = 0 and another finite conducting disk at z = d > 0

with radius R and charge Q. The background potential is given by V0(r2z − 2
3z

3). Q and

d are related to the brane charges as N5 = 2d/π and N2 = 8Q/π2. By solving the Laplace

equation with these boundary conditions, one can determine the potential as

VPWMM (r, z) = V0

(
r2z − 2

3
z3

)
+ V0R

3φκ(r/R, z/R), (3.2)

where κ ≡ d/R and φκ(r, z) is given by

φκ(r, z) =
β(κ)

π

∫ 1

−1
dt

(
− 1√

r2 + (z + κ+ it)2
+

1√
r2 + (z − κ+ it)2

)
fκ(t). (3.3)

Here β(κ) is given in terms of f
(n)
κ (t) defined in appendix A as

β(κ) ≡ 2κ
f

(2)
κ (1)

f
(0)
κ (1)

, (3.4)

and fκ(t) is the solution to the Fredholm integral equation of the second kind,

fκ(x)−
∫ 1

−1
dyKκ(x, y)fκ(y) = 1− f

(0)
κ (1)

f
(2)
κ (1)

x2 (3.5)

with kernel

Kκ(x, y) =
1

π

2κ

4κ2 + (x− y)2
. (3.6)

The equation (3.5) is solved by

fκ(t) = f (0)
κ (t)− 2κ

β(κ)
f (2)
κ (t) = f (0)

κ (t)− f
(0)
κ (1)

f
(2)
κ (1)

f (2)
κ (t). (3.7)

The charge density σκ(r) for the radial direction on the disk is related to fκ(t) as

σκ(r) = −β(κ)

π2

∫ 1

r
dt

f ′κ(t)√
t2 − r2

, fκ(t) =
2π

β(κ)

∫ 1

t
dr

rσκ(r)√
r2 − t2

. (3.8)

From this relation, one can interpret fκ(t) as the charge density projected onto a diameter

of the disk. The radius of the disk is related to the charge as

Q = q(κ)V0R
4, q(κ) =

β(κ)

π

∫ 1

−1
dtfκ(t). (3.9)

– 7 –
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Figure 2. The electrostatic system for the D2-brane solution.

The disk radius is related to the radius of S5 at the edge of the disk as

R =
R2
S5

4α′
. (3.10)

One can easily check this by using the Laplace equation to rewrite V ′′ and note that V̇ = 0

on the disk.

The parameters of the electrostatic problem were identified with the parameters in

PWMM as [11, 14]

Q =
π2N2

8
, d =

π

2
N5, R =

(
π2g2N2

m3hq(κ)

) 1
4

, V0 =
hm3

8g2
. (3.11)

Here, h is a constant which does not depend on g2/m3, N2 and N5. In section 4, we

determine the value of h from the gauge theory side.

3.2 D2-brane limit

The supergravity solution given by the potential (3.2) has two interesting scaling limits in

which the solution becomes the D2-brane solution or the NS5-brane solution constructed

in [11]. Let us first consider the limit to the D2-brane solution. The D2-brane solution is

given by the same form as (3.1). The electrostatic system for this solution consists of a

background potential

VD2 = W0(r2 − 2z2) (3.12)

with W0 constant and a finite size disk at z = 0 with charge Q = π2N2/8. Here, the

system has no infinite surface and the whole region of z ∈ (−∞,∞) is considered as shown

in figure 2. See [11] for the explicit form of this solution.

The D2-brane limit is given by redefining the coordinate z → d + z and focusing on

the finite disk in the electrostatic system of (3.2). The limit is given as

d→∞, Q : fixed, V0d = W0 : fixed. (3.13)

– 8 –
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Figure 3. The electrostatic system for the NS5-brane solution.

From (3.9) and (A.8), we can see that this limit corresponds to the large-κ limit. After the

redefinition z → d+ z, the background part of (3.2) becomes

−2

3
V0d

3 − 2V0d
2z + V0d(r2 − 2z2) + V0

(
zr2 − 2

3
z3

)
. (3.14)

One can neglect the first and second terms since they do not affect the supergravity solution

which depends only on V̇ , V̈ , V̇ ′ and V ′′. So up to these terms, (3.14) indeed becomes (3.12)

in the limit of (3.13).

By using the relation (3.11), one can rewrite this limit in terms of the parameters in

PWMM as

N5 →∞, N2 : fixed,
4πg2

m2N5
≡ g2

S2 : fixed. (3.15)

The limit corresponds to the commutative limit of fuzzy spheres, where PWMM describes

U(N2) N = 8 SYM on R×S2. The radius of S2 is given by 1/m = 1/2. The fixed quantity

gS2 in (3.15) is the gauge coupling constant in this theory.

3.3 NS5-brane limit

Let us consider the NS5-brane limit, in which the gravity dual solution written in terms

of (3.2) is reduced to the NS5-brane solution constructed in [11]. The NS5-brane solution

is given by the form of (3.1), where the electrostatic system now consists of two infinite

conducting plates separated by distance d as shown in figure 3. The electrostatic potential

is given by

VNS5(r, z) =
1

g0
sin
(πz
d

)
I0

(πr
d

)
, (3.16)

where g0 is a constant and In is the modified Bessel function of the first kind. For the

explicit form of the geometry, see [11, 14].
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The NS5-brane limit is given as a double scaling limit where both R and V0 are sent

to infinity in an appropriate way. Let us review the derivation of the precise form of the

scaling limit [14]. We first make the Fourier expansion of (3.2) in r < R region as,

VPWMM (r, z) = V0R
3∆(κ)

z

d
+
∞∑
n=1

cn sin
(nπz

d

)
I0

(nπr
d

)
, (3.17)

where κ ≡ d/R and ∆(κ) is defined as

∆(κ) = β(κ)− 2

3
κ3. (3.18)

The restricted form of the expansion (3.17) follows from the conditions that VPWMM is

regular at r = 0, constant (V0R
3∆(κ)) at z = d and zero at z = 0. Since the first term

in (3.17) does not contribute to the geometry, the NS5-brane limit is a limit where

c1 →
1

g0
, cn → 0 (n > 1). (3.19)

One can determine the coefficients cn’s by the inverse Fourier transformation at r = R as

cn =
(
I0

(nπ
κ

))−1
2V0R

3pn(κ), (3.20)

where

pn(κ) =

∫ 1

0
dy

(
φκ(1, κy)−∆(κ)y − κy +

2

3
κ3y3

)
sin(nπy). (3.21)

When κ = d/R is small, pn(κ) behaves as

pn(κ) ∼ bnκ2, (3.22)

where bn are constants. Since In(z) ∼ ez/
√

2πz for z � 1, we find for small κ that

cn ∼ 2bn
√

2π2ne−
nπR
d V0(Rd)

3
2 . (3.23)

Then, the NS5-brane limit is given by

R→∞, d : fixed, V0 →
1

g0

1

2b1
√

2π2
(Rd)−

3
2 e

πR
d , (3.24)

which realizes (3.19). Note that κ = d/R goes to zero in this limit. The value of b1 was

computed numerically and found to be b1 = 0.040 [14].

Using the relations (3.11), one can rewrite the limit (3.24) in the language of PWMM as

N2 →∞, λ→∞, 1

N2
λ

5
8 e

a
N5

λ
1
4 ≡ g̃s : fixed, N5 : fixed, (3.25)

where a = 2π
1
2 /h

1
4 and λ is the dimensionless ’t Hooft coupling in PWMM,

λ = g2N2

(
2

m

)3

. (3.26)

The dual theory of the NS5-brane solution is considered as a six-dimensional non-

gravitational string theory called the little string theory (LST). The parameter g̃s is consid-

ered to be the string coupling constant of LST. The limit (3.25) predicts that the dynamics

of PWMM near the NS5-brane limit is controlled by λ1/4. We will confirm this in the next

section by analyzing the gauge theory side.
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4 Emergent bubbling geometry

In this section, we investigate the matrix integral (2.11) in the parameter region where the

dual supergravity description is valid. In order for the supergravity approximation to be

valid, the brane charges, N2 and N5, should be very large and N2 should be much larger

than λ and N5 to suppress the bulk string coupling. In addition, it turns out that the

condition λ� N5 is needed to suppress the α′ corrections. We first show that the matrix

integral (2.11) is equivalent to a one-dimensional interacting Fermi gas model. We then

study the semi-classical limit of this model, which corresponds to the supergravity regime,

by applying the Thomas-Fermi approximation. Under this approximation, the system is

described in terms of the mean-field density of the Fermi particles. We find that the mean-

field density can be identified with the charge density fκ in the gravity side. We also solve

the Fermi gas model in the D2-brane and NS5-brane limits and reproduce the radii of the

geometries.

4.1 Fermi gas model

Here we show that the matrix integral (2.11) can be mapped to a one-dimensional inter-

acting Fermi gas system with N2 particles. We follow the method proposed in [37].

When N5 is infinity, the measure factors in (2.11) converge to tanh2 π(qi−qj)
2 up to an

over all constant. The 1/N5 corrections are given as

N5−1∏
J=0

[(2J + 2)2 + (qi − qj)2][(2J)2 + (qi − qj)2]

[(2J + 1)2 + (qi − qj)2]2

= tanh2 π(qi − qj)
2

exp

{
2N5

(2N5)2 + (qi − qj)2
− 2N5[(2N5)2 − 3(qi − qj)2]

6[(2N5)2 + (qi − qj)2]3
+ · · ·

}
, (4.1)

where we have neglected the overall constant. By using the Cauchy identity, we rewrite

the hyperbolic tangent part as

N2∏
i 6=j

tanh
π(qi − qj)

2
=
∑
σ∈SN2

(−)ε(σ)
N2∏
i=1

1

cosh
π(qi−qσ(i))

2

, (4.2)

where ε(σ) stands for the sign of the permutation σ.

We introduce the operators, p̂ and q̂, that obey the canonical Heisenberg algebra

[p̂, q̂] = −i. Let H be the usual representation space of this algebra which is an infinite

dimensional Hilbert space spanned by the eigenstates of q̂. We denote the eigenstates by

|q〉, which satisfy q̂|q〉 = q|q〉. Then, we have

1

cosh
π(qi−qj)

2

=
1

π

∫
dp

1

cosh p
eip(qi−qj) =

〈
qi

∣∣∣∣ 2

cosh p̂

∣∣∣∣ qj〉 . (4.3)

We also introduce the Hilbert space for N2 fermions. It is a subspace of H⊗N2 and spanned

by the antisymmetric states,

|q1, · · · , qN2} :=
1

N2!

∑
σ∈SN2

(−)ε(σ)
∣∣qσ(1)

〉
⊗
∣∣qσ(2)

〉
⊗ · · · ⊗

∣∣qσ(N2)

〉
. (4.4)
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We denote by p̂i and q̂i the canonical pair on the i-th Hilbert space. They obey the

commutation relations, [p̂i, q̂j ] = −iδij . With these notations, we can rewrite the matrix

integral (2.11) as the partition function of a Fermi gas system,

Z = Trρ̂ (4.5)

where the trace is taken over the states (4.4) as

Trρ̂ =

∫ ∏
i

dqi {q1, · · · , qN2 |ρ̂| q1, · · · , qN2} , (4.6)

and the density matrix is given by

ρ̂ =

N2∏
i=1

e−U(q̂i)/2
N2∏
i 6=j

e−
1
4
W (q̂i−q̂j)

N2∏
i=1

e−T (p̂i)
N2∏
i=1

e−U(q̂i)/2
N2∏
i 6=j

e−
1
4
W (q̂i−q̂j). (4.7)

The functions T (x), U(x) and W (x) are defined as follows.

T (x) := log coshx,

U(x) :=
2N5

g2
x2,

W (x) := − 2N5

(2N5)2 + x2
. (4.8)

Here, we have kept only the first term of the exponent in (4.1) because we are interested

in the large-N5 limit. Even if N5 is large, the first term should be kept since it can become

comparable to the Gaussian potential in some parameter regions. The model defined

by (4.5) is an interacting one-dimensional Fermi gas system of N2 fermions, where the

interaction is given by W (qi − qj).
The semi-classical limit of this model is described by the many-body Hamiltonian,

Ĥ =
∑
i

T (p̂i) +
∑
i

U(q̂i) +
1

2

∑
i 6=j

W (q̂i − q̂j). (4.9)

When N2 is large, we can apply the Thomas-Fermi approximation at zero temperature (see

in appendix C) to the system (4.9). In this approximation, the original many-body path

integral can be evaluated at a saddle point characterized by the mean-field density ρ(q).

ρ(q) is assumed to have a single support [−qm, qm] and it is normalized as∫ qm

−qm
dq ρ(q) = N2. (4.10)

ρ(q) is determined by (C.9) which follows from the Thomas-Fermi equation at zero tem-

perature. In our case, the equation (C.9) is given by

µ = πρ(q) +
2N5

g2
q2 −

∫ qm

−qm
dq′

2N5

(2N5)2 + (q − q′)2
ρ(q′), (4.11)
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where µ is the chemical potential. Here, we have made an approximation that T (p) =

log cosh p ∼ |p|. This is valid when N2 is large.

The equation (4.11) can also be obtained from the usual saddle-point analysis for

matrix integrals, where ρ(q) is interpreted as the eigenvalue density. By noting that

log tanh2 πqmx
2 → −πδ(x) as qm → ∞, one can see that (4.11) is just a saddle-point

equation for the eigenvalue density and µ plays the role of the Lagrange multiplier which

imposes the normalization (4.10). So the semi-classical equation (4.11) is expected to be

valid when qm � 1 in the large-N2 limit. We will see in section 4.3 that the quantum

corrections in the Fermi gas model are indeed negligible when qm � 1. We will also see

that the condition qm � 1 is written as λ � N5 in terms of the original parameters in

PWMM. This is a strong coupling region of PWMM and corresponds to the region in the

gravity side where the α′ corrections are negligible.

4.2 Mapping to the gravity side

The integral equation (4.11) for the mean-field density ρ(q) in the semi-classical limit is

the same type as the equation (3.5) for the charge density fκ(x) in the gravity dual. So we

propose the following identification.

ρ(q) =
µ

π
fκ(q/qm),

N5

qm
= κ. (4.12)

Under this identification, (4.11) is completely equivalent to (3.5). In the following, we make

consistency checks of the relation (4.12).

Based on the relation (4.12), we first translate the parameters in PWMM to those in

the gravity side as follows. First, since κ is related to the radius of the disk as κ = d/R =

πN5/2R, we have

qm =
2

π
R. (4.13)

From the integral equation, we also have

2N5q
2
m

µg2
=
f

(0)
κ (1)

f
(2)
κ (1)

. (4.14)

Then, by comparing (3.9) and (4.10), we obtain

N2

µqm
=
q(κ)

β(κ)
. (4.15)

Finally, from (4.14) and (4.15), we obtain

λ

q4
m

= q(κ), (4.16)

µλ

N2q3
m

= β(κ), (4.17)

where λ = g2N2 is the ’t Hooft coupling of PWMM. From equations (4.12) and (4.16), we

find that κ depends only on the combination of λ/N4
5 and qm depends only on λ and N5.
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It should be noted that the relation (4.13) is consistent with the fact that h in (3.11)

is a constant and independent of N2, N5 and λ. In fact, from (3.9) and (3.11) with (4.13),

one can determine h as h = 2/π2. Thus the constant a = 2π
1
2 /h

1
4 in (3.25) is given by

a = 2
3
4π. (4.18)

In the following, we consider the D2-brane limit (3.15) and the NS5-brane limit (3.25),

which correspond to the large-κ limit and the small-κ limit, respectively. When κ is large,

the term with the integral kernel in (4.11) is negligible and the system becomes just a set

of N2 free fermions. On the other hand, when κ is small, the effective interactions between

the fermions become very strong5. In these two limits, (4.11) is solvable and we can find

solutions for ρ(x) and qm. Then from the relations (3.10) and (4.13), we can compute the

radii of S5’s as the range of the mean-field density as,6

R2
S5 = 2πqm. (4.19)

We will show that the radii obtained from the Fermi gas model through (4.19) agree with

known results obtained from the gravity solutions [11].

D2-brane limit (large-κ limit). On the gravity side, D2-brane limit corresponds to

the limit of large-κ. In this limit, we can find solutions for β(κ), q(κ) and fκ(q) by solving

the integral equation (3.5). The solutions are given by (A.8) in appendix A.

From the relations, (4.12), (4.16) and (4.17), one can then obtain solutions for ρ(q),

qm and µ in the Fermi gas model as

ρ(q) = N2

(
9N5

8πλ

) 1
3

[
1−

(
q

qm

)2
]
, qm =

(
3πλ

8N5

) 1
3

, µ = N2

(
9π2N5

8λ

) 1
3

. (4.20)

The parameter κ on the gravity side is given by

κ =
2

(3π)
1
3

(
N4

5

λ

) 1
3

. (4.21)

So the D2-brane limit (3.15) in PWMM is indeed mapped to the limit of κ→∞ through

the identification (4.12).

In the D2-brane limit, PWMM is reduced to U(N2) N = 8 SYM on R × S2. The

gravity dual of N = 8 SYM on R×S2 around the trivial vacuum is constructed in [11]. It

is shown that the radius of S5 at the edge of the disk is related to the ’t Hooft coupling in

the SYM as

R2
S5 = π

(
3g2
S2N2

) 1
3 . (4.22)

5This can be seen as follows. qm can be considered as a typical length scale of the system and then the

effective interaction potential is given by W̃ (y) := qmW (qmy) = − κ
κ2+y2

. Hence the interaction range and

the force are proportional to κ and 1/κ2, respectively.
6Here we put α′ = 1.
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Here, the coupling constant gS2 in SYM is related to that in PWMM as shown in (3.15).

On the other hand, we can compute the S5 radius in the D2-brane limit from our so-

lutions (4.20). By substituting the solution (4.20) for qm to the relation (4.19), we can

reproduce (4.22). This shows the consistency of our identification (4.12).

By using the solution (4.20) of the Fermi gas model, one can compute correlators in

this limit. For example, the vev of the loop operator is given by

1

N2N5

〈
TrelM

〉
MM

=
1

N2

∫ qm

−qm
dqρ(q)elq =

3

l3q3
m

{(lqm) cosh(lqm)− sinh(lqm)} . (4.23)

The free energy F defined in (C.12) is given by

F = − 9

10

(
π2N5

3λ

) 1
3

N2
2 . (4.24)

Note that the free energy is a generating function of TrM2. Correlation functions of this

operator can be computed as derivatives of the free energy. For example,

1

N2N5
〈TrM2〉MM = − 1

2N2
2N5

∂

∂(1/λ)
F =

(9π2)
1
3

20

(
λ

N5

) 2
3

. (4.25)

Of course, this agrees with the quadratic term in l in (4.23).

One can also solve the path integral (2.11) in this limit by applying the usual saddle-

point technique. See appendix D.

NS5-brane limit (small-κ limit). On the gravity side, the NS5-brane limit is a limit

of small κ. When κ is small, β(κ), q(κ) and fκ(q) are solved by (A.6) in appendix A.

In this limit, from (4.12), (4.16) and (4.17), we obtain solutions ρ(q), qm and µ for the

Fermi gas model as

ρ(q) =
8

3
4N2

3πλ1/4

[
1−

(
q

qm

)2
] 3

2

, qm = (8λ)
1
4 , µ =

8
1
2N2N5

λ
1
2

. (4.26)

The parameter κ on the gravity side is given by

κ =
N5

(8λ)
1
4

. (4.27)

So the NS5-brane limit (3.25) in PWMM, which implies λ ∼ N4
5 (logN2)4 � N4

5 , is consis-

tently mapped to the small-κ limit. Furthermore, we can see from (4.26) that the typical

scale of the mean-field density is given by λ1/4. So the dynamics in this regime is governed

by λ1/4 as mentioned in the last section.

The gravity dual of PWMM in the small-κ limit is studied in [11]. The radius of S5

at the edge of the disk is given as7

R2
S5 = 2π(8λ)

1
4 . (4.28)

7Note that m in the equation (D8) in [11] is related to our mass parameter m as mLM = mours/2.
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Again we can reproduce this result from the solution (4.26) in the Fermi gas model, by

using (4.19). This gives another supporting evidence for our identification (4.12).

The vev of the loop operator in this limit is given by

1

N2N5

〈
TrelM

〉
MM

=
2
√

2

l2
λ−

1
2 I2

[
l(8λ)

1
4

]
. (4.29)

The free energy F is given by

F = −4
√

2N5

3λ
1
2

N2
2 . (4.30)

The vev of TrM2 can also be computed as

1

N2N5
〈TrM2〉MM = − 1

2N2
2N5

∂

∂(1/λ)
F =

√
2

3
λ

1
2 . (4.31)

4.3 Range of the semi-classical approximation

In this subsection, we consider when the semi-classical approximation used in section 4.1 is

valid. We first expand the partition function (4.5) around the semi-classical limit by using

the Wigner transformation. The Wigner transform of an operator Â on H is defined by

AW (q, p) =

∫
dq′

〈
q − q′

2

∣∣∣Â∣∣∣ q +
q′

2

〉
eipq

′
. (4.32)

It is easy to see that the product of two operators Â and B̂ is translated to the ?-product

of their Wigner transforms:

(ÂB̂)W = AW ? BW , (4.33)

where the ?-product is defined by

(f ? g)(p, q) = f(p, q) exp

[
i

2
(
←−
∂ q
−→
∂ p −

←−
∂ p
−→
∂ q)

]
g(p, q). (4.34)

The trace is written as the integral over the phase space:

TrÂ =

∫
dqdp

2π
AW (q, p). (4.35)

Hence, the partition function (4.5) becomes

Z = Trρ̂ =

∫ ∏
i

dqidpi
2π

ρW . (4.36)

We define

Ui := U(qi) +
1

2

N2∑
j 6=i

W (qi − qj). (4.37)
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Then using the Baker-Campbell-Hausdorff formula, we obtain the expansion around the

semi-classical limit as

ρW = e−
∑
i Ui/2 ? e−

∑
i T (pi) ? e−

∑
i Ui/2

= exp
{
−
∑

i (T (pi) + Ui)− 1
24

[∑
i (2T (pi) + Ui) ,

[∑
j T (pj),

∑
k Uk

]
?

]
?

+ · · ·
}
,

(4.38)

where the star commutator is defined by [f, g]? = f ? g − g ? f . Note that the density

matrix is Hermitian, so that only terms with the even number of commutators appear in

the right-hand side.

Then let us consider when we can neglect the correction terms in (4.38) that have

the star commutators. We always assume the large-N2 limit where the saddle-point con-

figurations dominate. Let us denote generic values of qi, pi, T (qi) and Ui at the saddle

point by q, p, T and U , respectively. (Because of the symmetry, we do not need indices

i = 1, . . . , N2 for the order estimation.) These are related as follows. First, at the saddle

point, the kinetic energy and the potential energy should be in equilibrium. So we have

T ∼ U . Secondly, in the large-N2 limit, T (pi) is approximated by |pi|, so that we also have

T ∼ p. Thirdly, since the Fermi momentum is related to ρ(q) by (C.8) and ρ(q) satisfies

the normalization (4.10), it follows that p ∼ N2/q. Thus we have

T ∼ U ∼ p ∼ N2/q. (4.39)

Note that pq ∼ N2 is large. The semi-classical part (the first term of the exponent

in (4.38)) behaves as N2(T + U) ∼ N2
2 /q. However, this is not true in general. Near

the NS5-brane limit, there is a cancellation between
∑

i T (pi) and 1
2

∑
i 6=jW (qi − qj), so

the order is the same as that of
∑

i U(qi) ∼ N2
2N5q

2/λ. The order of the commutator term,[∑
i T (pi),

[∑
j T (pj),

∑
k Uk

]
?

]
?
, is the same as that of N2T

2U/(pq)2 ∼ N2
2 /q

3. Hence, if

q5 � λ

N5
, (4.40)

the commutator term is negligible. Then let us consider the higher order terms. Note

that, since T is approximated by p in our limit, the commutator terms with more

than one U in (4.38) vanish. Then, the general higher order terms take the form of

[T, [T, [· · · , [T,U ] · · · ]]]. Such a term with 2m T ’s and one U is estimated as N2U/q2m ∼
N2

2 /q
2m+1. So these terms are suppressed compared to the term with a single commuta-

tor, if

q � 1. (4.41)

So we find that when (4.40) and (4.41) are satisfied, the semi-classical approximation is

valid.

However, it turns out that one of the two conditions, (4.40) and (4.41), is redundant,

namely, they are equivalent to each other for the saddle-point configurations. In fact, we
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can see that both of these conditions are equivalent to the following single condition which

is written in terms of the original parameters in PWMM.

λ� N5. (4.42)

For example, one can show that (4.42) follows from (4.40) as follows. In the D2-brane limit,

qm is given in (4.20). So (4.40) implies (4.42). Similarly, the NS5-brane limit corresponds to

1 � κ = N5/qm ∼ N5/λ
1/4 which implies (4.42). (Note that we always assume N5 � 1.)

When κ is in the intermediate region, (4.42) should also be satisfied, because q(κ) is a

smooth positive function of κ. In fact, if κ = N5
qm
∼ 1, we have λ ∼ N4

5 from (4.16). This

implies (4.42). In the same way, one can derive (4.40) from (4.41), and (4.41) from (4.42).

Therefore, the three conditions, (4.40), (4.41) and (4.42), are all equivalent.

From (4.19), we see that the condition (4.41) corresponds to the case of large radius

of the S5. So the semi-classical regime of the Fermi gas system corresponds consistently to

the region in the gravity side in which we can neglect the α′ corrections.

5 Summary and discussion

The gravity dual of the plane wave matrix model (PWMM) is given by bubbling geome-

tries in type IIA superstring theory. These geometries are associated with the problem

of an axially symmetric electrostatic system with some conducting disks and an appropri-

ate background potential, which is defined on a certain two-dimensional subspace of the

ten-dimensional space-time. The solution is written only in terms of a single function,

which corresponds to the electrostatic potential in the axially symmetric system. Once one

finds the potential by solving the Laplace equation of the system, one can construct the

corresponding solution in the ten-dimensional supergravity. In this paper, we studied an

emergent phenomena for this geometry by investigating a quarter BPS sector of the plane

wave matrix model that is associated with the field φ defined in (2.5). Since φ is a complex

field and has two real degrees of freedom, the emergent geometry described in this sector is

expected to be a two-dimensional surfaceMφ. We identifiedMφ with the two-dimensional

surface on the gravity side on which the electrostatic problem is defined.

We considered PWMM around the vacua (2.3) with (2.4). We applied the localization

method to the sector of φ and obtained a matrix integral. We investigated the case with

Λ = 1 and mapped the matrix integral to a one-dimensional interacting Fermi gas system.

And then we applied the Thomas-Fermi approximation which is valid in the semi-classical

limit. We found that the mean-field density of the Fermi particles satisfies the same integral

equation as the disk charge density in the electrostatic problem on the gravity side. Then,

we proposed the identification (4.12) of these two objects. Since the whole geometry can

be reconstructed from the charge density, this relation gives a realization of the emergent

geometry in PWMM.

We made some consistency checks of our identification and obtained positive results.

We consider two scaling limits, the D2-brane limit and the NS5-brane limit. In these limits,

the gravity dual of PWMM is reduced to the solutions associated with the corresponding

branes. We found that the D2-brane and the NS5-brane limits correspond to the free and
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the strongly coupled limits in the Fermi gas system, respectively. By solving the Fermi gas

system in these limits, we found the value of a in (3.25), which was not fixed solely by the

argument in [14]. We reproduced the radius of S5’s in the D2-brane and the NS5-brane

geometries in terms of the solutions of the Fermi gas model. These results strongly support

our identification between the mean-field density and the charge density. In particular,

our result in the NS5-brane limit reproduces the known behavior of the fivebrane radius

proportional to λ1/4 [15] and it gives a strong evidence for the description of fivebranes in

PWMM proposed in [15].

There remain some problems that are not considered in this paper. First, our analysis

in the NS5-brane limit is valid only in the planar limit. It corresponds to the leading order

of the string coupling constant, g̃s defined in (3.25), in the little string theory. However,

the existence of the NS5-brane limit (3.25) in PWMM should also be verified for higher

orders in g̃s. For example, it will be possible to compute the index in PWMM to see if

it agrees in the fivebrane limit with the index of a six-dimensional (2,0) superconformal

field theory [38, 39], which is supposed to be the low energy theory of LST. Also another

useful relation to check the existence of the NS5-brane limit was proposed in [14]. Suppose

that the NS5-brane limit exists in PWMM and an operator O in PWMM has a good

scaling law under the NS5-brane limit, then the coefficients fn of the ’t Hooft expansion

〈O〉 =
∑

n fn/N
2n
2 satisfy

fn+1

fn
= cλ5/4e

2aλ
1/4

N5 , (5.1)

where c is a constant. This relation is obtained by equating the ’t Hooft expansion and the

expansion with respect to g̃s. By adding the 1/N2 corrections to the analysis of the Fermi

gas model in the NS5-brane limit, we may be able to answer this problem.

Secondly, though we studied the vacua (2.4) with Λ = 1 in this paper, the sector

of φ can be mapped to a Fermi gas system also in the case of Λ 6= 1. In this case the

Fermi particles have a labeling, s = 1, · · · ,Λ, and the form of the interaction depends on

s. The remaining problem is whether we can see the emergent geometry in such a general

situation.

Thirdly, the bubbling geometries were also constructed for other SU(2|4) symmetric

field theories such as N = 8 SYM on R× S2 and N = 4 SYM on R× S3/Zk. The double

scaling limits to the NS5-brane solutions were also proposed for these theories [40]. On the

gauge theory side, the localization was also applied to these theories [18]. So we can study

these cases in the same manner as PWMM.

We hope to report on these issues in the near future.
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A Definition of f (n)
κ (x)

f
(n)
κ (x) is defined as a function satisfying the following Fredholm integral equation of the

second kind [14],

f (n)
κ (x)−

∫ 1

−1
dyKκ(x, y)f (n)

κ (y) = xn, (A.1)

with kernel

Kκ(x, y) =
1

π

2κ

4κ2 + (x− y)2
. (A.2)

For integer n, f
(n)
κ (−x) = (−1)nf

(n)
κ (x). f

(0)
κ (x) and f

(2)
κ (x) are relevant for our problem.

In the large-κ or the small-κ limit, one can solve this integral equation.

Small-κ limit. For κ� 1, the solution of (A.1) can be approximated to

1

2κ

∫ 1

−1
dyk(x, y)xn (A.3)

with

k(x, y) =
1

2π
log

{
1− xy +

√
(1− x2)(1− y2)

1− xy −
√

(1− x2)(1− y2)

}
. (A.4)

For n = 0 and n = 2, (A.3) is evaluated as

f (0)
κ (x) ' 1

2κ
(1− x2)

1
2 ,

f (2)
κ (x) ' 1

2κ

{
1

2
(1− x2)

1
2 − 1

3
(1− x2)

3
2

}
. (A.5)

In this case, β(κ), q(κ) and fκ(x) introduced in section 3 are given by

β(κ) ' κ,

q(κ) ' 1

8
,

fκ(x) ' 1

3κ
(1− x2)

3
2 . (A.6)

Large-κ limit. For κ� 1, one can neglect the second term of the left-hand side of (A.1).

So, for n = 0 and n = 2, the leading behavior is

f (0)
κ (x) ' 1,

f (2)
κ (x) ' x2. (A.7)

Hence, β(κ), q(κ) and fκ(x) are approximated to

β(κ) ' 2κ,

q(κ) ' 8

3π
κ,

fκ(x) ' 1− x2. (A.8)
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B Off-shell supersymmetries in PWMM

In this appendix, we review an off-shell supersymmetries which leave φ defined in (2.5)

invariant [18]. We use the convention in [18]. In particular, we work in the Lorentzian

signature by making a Wick rotation iX10 → X0, so that the bosonic symmetry of PWMM

is now R × SO(3) × SO(5, 1). See appendix A in [18] for the definitions of the gamma

matrices Γ and Γ̃ used below.

The supersymmetry transformation in PWMM is given by

δsXM = −iΨΓM ε,

δsΨ =

(
1

2
FMNΓMN − 1

2
XmΓ̃mΓa∇a

)
ε, (B.1)

where the index a runs from 1 to 4, ∇1 = ∂
∂τ and ∇2,3,4 are defined as

∇a′ε =
1

4
εa′b′c′Γ

b′c′ε, (B.2)

The primed indices run from 2 to 4. ε is a real conformal Killing spinor with 16 components

satisfying

∇aε = Γ̃aε̃, (B.3)

where ε̃ is another real spinor satisfying

Γa∇aε̃ = −1

2
ε. (B.4)

Here ε is Grassmann even, so that δs is Grassmann odd. One can easily solve these

equations with the ansatz ε̃ = ±1
2Γ19ε, for which (B.3) and (B.4) become

∇aε = ±1

2
ΓaΓ19ε. (B.5)

Then, the solution is given by

ε+ =


e
τ
2 η1

0

e−
τ
2 η3

0

 and ε− =


0

e−
τ
2 η2

0

e
τ
2 η4

 , (B.6)

for the upper and the lower sign in (B.5), respectively. η1,2,3,4 are four-component constant

spinors. One can see that when the SUSY parameter is given by ε+ with η3 = −J4η1, φ is

invariant, δsφ = 0. See [18] for the notation of J4.

By introducing seven auxiliary fields Ki(i = 1, 2, · · · , 7) with the quadratic action,

1

g2

∫
dτ

1

2
TrKiKi, (B.7)
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one can make the SUSY off-shell [41],

δsXM = −iΨΓM ε,

δsΨ =
1

2
FMNΓMN ε−XmΓ̃mΓ19ε+Kiνi,

δsKi = iνiΓ
MDMΨ. (B.8)

Here, νi are spinors which can be determined by the closure of the SUSY algebra. In

particular, when ε is given by ε+ in (B.6) with η3 = −J4η1, these spinors are explicitly

given by

νi =
√

2e
τ
2

Γ09
e−

π
4

Γ49
Γi8


η1

0

0

0

 . (i = 1, 2, · · · , 7) (B.9)

Since {ΓM ′
ε, νi|M ′ = 1, · · · , 9, i = 1, · · · , 7} forms the orthogonal basis of 16 compo-

nent spinors, Ψ can be decomposed as

Ψ = ΨM ′ΓM
′
ε+ Υiν

i. (B.10)

We also define

Hi := (εε)Ki + 2νiε̃X0 + si, (B.11)

si := νi

1

2

9∑
P,Q=1

FPQΓPQε− 2

9∑
m=5

XmΓmε̃

 . (B.12)

For the SUSY with ε+ with η3 = 0, by introducing the collective notation,

X :=

(
XM ′

(εε)Υi

)
, X ′ :=

(
−i(εε)ΨM ′

Hi

)
,

the transformation rules can be written in a compact form as

δsX = X ′, δsX
′ = −i(δφ + δU(1))X, δsφ = 0. (B.13)

Here, δU(1) is a variation under a U(1) subgroup of the SO(3)× SO(5, 1) and δφ is a gauge

transformation with the parameter φ. One can see that δsΨ1 is proportional to δφX1 = D1φ

as mentioned above (2.10).

C Thomas-Fermi approximation

In this appendix, we review the Thomas-Fermi approximation, which is the semi-classical

limit of the Hartree approximation. We consider a one-dimensional many-body system at

finite temperature 1/β that has a one-body Hamiltonian of the form h(q, p) = T (p) +U(q)

and a two-body interaction potential W (q, q′). The Hartree approximation is just the
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saddle-point evaluation of the path integral of this system and becomes exact when the

particle number N goes to infinity. In this approximation, the saddle point is characterized

by the mean-field density ρ(x) that satisfies the normalization∫
dqρ(q) = N. (C.1)

ρ(x) is determined by the following Hartree equation.

ρ(q) =

〈
q

∣∣∣∣ 1

eβ(H(p̂,q̂)−µ) + 1

∣∣∣∣ q〉 , (C.2)

where µ is the chemical potential and H(p, q) is the effective one-body Hamiltonian de-

fined by

H(p, q) = T (p) + U(q) +

∫
dq′W (q, q′)ρ(q′). (C.3)

If one obtains ρ(x) by solving the equation (C.2), then from (C.1) one can also compute

the first derivative of the grand potential as

∂J

∂µ
=

∫
dqρ(q). (C.4)

The free energy is given by

F = logZ = J(µ(N))− µ(N)N. (C.5)

In the semi-classical limit, the Hartree equation (C.2) reduces to

ρ(q) =

∫
dp

2π~
1

eβ(H(p,q)−µ) + 1
. (C.6)

This equation is called the Thomas-Fermi equation at finite temperature. When the tem-

perature goes to zero, the equation (C.6) is further simplified to

ρ(q) =

∫
dp

2π~
θ(µ−H(p, q)). (C.7)

Let us assume that the Fermi surface {(p, q)|µ = H(p, q)} is simply connected and sym-

metric under p→ −p. Then (C.7) implies that ρ(q) is given by

ρ(q) =
pF (q)

π~
, (C.8)

where pF (q) is the Fermi momentum. From the definition of pF (q), we obtain the following

integral equation that determines ρ(q).

µ = T (π~ρ(q)) + U(q) +

∫
dq′W (q, q′)ρ(q′). (C.9)
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This equation can be regarded as an extremization condition for the Thomas-Fermi func-

tional,

ETF[ρ] =

∫
dq tTF(q) +

∫
dqρ(q)U(q) +

1

2

∫
dqdq′ρ(q)W (q, q′)ρ(q′)− µ

(∫
dqρ(q)−N

)
(C.10)

where tTF(q) is the kinetic energy functional

tTF(q) =

∫
dp

2π~
T (p)θ(µ−H(p, q)), (C.11)

and µ is the Lagrange multiplier associated with the constraint (C.1), which can be iden-

tified with the chemical potential at the saddle point. The free energy is given by (C.10)

with ρ satisfying (C.9);

F = −minρ ETF[ρ]. (C.12)

D Saddle-point method for the D2-brane limit

In this appendix, we solve our matrix integral for the D2-brane limit in the planar limit by

applying the usual saddle-point method [42]. We assume the one-cut solution. The matrix

integral in this limit is given by

Z =

∫ ∏
i

dqi
∏
i<j

tanh2

(
π(qi − qj)

2

)
e
− 2π

g2
S2

∑
i q

2
i

. (D.1)

By changing the integral variables to zi := exp(πqi+g
2
S2π/4), the path integral is reduced to

Z =

∫ ∏
i

dzi
∏
i>j

(
zi − zj
zi + zj

)2

e
− 2

g2
S2
π

∑
i(log zi)

2

. (D.2)

The saddle-point equation is given by

2

g2
S2π

log zi
zi
−
∑
j(6=i)

(
1

zi − zj
− 1

zi + zj

)
= 0. (D.3)

Note that this equation is symmetric under the inversion, zi → 1/zi. Let [a, b] be the

support of the eigenvalue distribution of zi. From the inversion symmetry, it follows that

b = 1/a. We define the resolvent as

W (z) = 4g2
S2π

∑
i

(
1

z − zi
− 1

z + zi

)
. (D.4)

This function has two branch cuts at [a, b] and [−b,−a]. The eigenvalue distribution,

ρ(z) =
1

N2

∑
i

δ(z − zi), (D.5)
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can be expressed as the discontinuity of W (z) as usual,

W (z + i0)−W (z − i0) = −8π2ig2
S2N2ρ(z). (D.6)

We introduce a new variable y = z2. The resolvent is also a holomorphic function of

y. So let us denote W (z) = P (y), where P (y) is holomorphic in y. P (y) has a single cut

at [a2, b2] on the y-plane. Using (D.3), one can easily get

P (y + i0) + P (y − i0) =
8 log y
√
y
, (D.7)

where y ∈ [a2, b2]. By defining a new function,

P̂ (y) =
P (y)√

(y − a2)(y − b2)
, (D.8)

one can convert (D.7) to the discontinuity equation,

P̂ (y + i0)− P̂ (y − i0) =
1√

(y − a2)(y − b2)

8 log y
√
y
. (D.9)

This equation determines P̂ up to the regular part. Since P̂ (y) ∼ y−2 when y → ∞, the

regular part should be vanishing. Thus, we obtain

P̂ (y) =

∫ b2

a2

dp

2π

8 log p

(y − p)√p
1√

(p− a2)(b2 − p)
, (D.10)

and then the resolvent is given by

W (z) = 32

∫ b

a

dq

2π

log q

z2 − q2

√
(z2 − b2)(z2 − a2)

(b2 − q2)(q2 − a2)
. (D.11)

From (D.6), the eigenvalue distribution is given by

ρ(x) =
4

π3g2
S2N2

P

∫ b

a
dq

log q

q2 − x2

√
(b2 − x2)(x2 − a2)

(b2 − q2)(q2 − a2)
, (D.12)

where x ∈ [a, b] and P
∫

means the principal value. Note that it satisfies

xρ(x) =
1

x
ρ(1/x). (D.13)

When the ’t Hooft coupling g2
S2N2 is large, the integral in (D.12) can be performed.

This limit will turn out to correspond to the large-b limit. By changing the variables

in (D.12) as

log b = − log a = α, log x = vα, log q = uα, (D.14)

one can obtain

xρ(x) +
1

x
ρ(1/x) =

4α2

π3g2
S2N2

P

∫ 1

−1
du u sign(u− v) +O(α1). (D.15)
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Then, the integral can be easily performed. By using (D.13), one obtains

ρ(x) =
2

π3g2
S2N2

(log b)2 − (log x)2

x
, (D.16)

in the leading order of α. Since
∫ b
a ρ(x)dx = 1 by definition, b is determined as

b = 1/a = exp

π(3g2
S2N2

8

) 1
3

 . (D.17)

Thus, b is indeed large when the ’t Hooft coupling is large.

Using (D.16), one can easily compute the free energy of the matrix integral. The result

is given by

logZ =
9π

10

N2
2

(3g2
S2N2)1/3

. (D.18)
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