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In the last thirty years great strides have been made by large-scale operational numerical weather
prediction models towards improving skills for the medium range time-scale of 7 days. This paper
illustrates the use of these current forecasts towards the construction of a consensus multimodel
forecast product called the superensemble. This procedure utilizes 120 of the recent-past forecasts
from these models to arrive at the training phase statistics. These statistics are described by roughly
107 weights. Use of these weights provides the possibility for real-time medium range forecasts
with the superensemble. We show the recent status of this procedure towards real-time forecasts
for the Asian summer monsoon. The member models of our suite include ECMWF, NCEP/EMC,
JMA, NOGAPS (US Navy), BMRC, RPN (Canada) and an FSU global spectral forecast model.
We show in this paper the skill scores for day 1 through day 6 of forecasts from standard variables
such as winds, temperature, 500 hPa geopotential height, sea level pressure and precipitation. In
all cases we noted that the superensemble carries a higher skill compared to each of the member
models and their ensemble mean. The skill matrices we use include the RMS errors, the anomaly
correlations and equitable threat scores. For many of these forecasts the improvements of skill for
the superensemble over the best model was found to be quite substantial. This real-time product
is being provided to many interested research groups. The FSU multimodel superensemble, in real-
time, stands out for providing the least errors among all of the operational large scale models.

1. Introduction

Some of the basic characterizations of weather and
climate systems over the region of the Asian sum-
mer monsoon may be obtained from Rao (1976)
and Krishnamurti (1979) among several authors.
Our study focuses on daily weather predictabil-
ity over the diverse geographical regions of Asian
monsoon. Most operational weather centers rou-
tinely provide 5 to 6-day NWP forecast over the
global domain. It is thus possible to examine the
current state of the art skills of real-time opera-
tional global models over this belt. As many as
seven global models were available for the predic-
tion of weather on real-time. Our study entails the

construction of ensemble and superensemble fore-
casts following Krishnamurti et al (2000a). Skills
of member models and those of the ensemble and
superensemble are constructed at the end of days
1, 2, 3, 4, 5, and 6 of the forecasts. Traditionally,
monsoon forecasts have encountered many difficul-
ties that stem from numerous issues such as lack of
adequate upper air observation over the neighbor-
ing oceans, mesoscale nature of convection, proper
resolution, radiative interactions, planetary bound-
ary layer physics, mesoscale air–sea fluxes, and rep-
resentation of orography. Uncertainties in any of
these areas lead to large systematic errors; those
are reduced to some extent by the construction
of the multimodel superensemble. These syntheses
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of multimodel forecasts provide us with a some-
what better product for the current state of the
art. In this paper, we present some of these current
improvements that were made possible.

We shall next present the relative performance
of several of these models with respect to each
other. This will describe the current state of the
art. Figure 1 shows the skills computed by EMC’s
global climate and weather modeling branch for
January 2006. Models considered in this compar-
ison study are global weather forecasting center
models such as NCEP (GFS); ECMWF (ECM);
UKMet (UKM); Meteorological Service of Canada
(MSC) and NOGAPS (NGP). In figure 1(a) and
(b) the anomaly correlations for the 500 hPa geopo-
tential height forecasts (day 1 through 6) are illus-
trated for the northern and southern hemisphere
respectively. The forecast from the European cen-
ter (ECMWF) carries the highest skills for all of
the 6 days. It should be noted that these forecast
validations were carried out using the analysis by
NCEP/EMC and hence this is to be viewed as a
current state of operational forecast skills. These
skills for January 2006 for the northern hemisphere
were slightly larger than those for the southern
hemisphere. Higher skills for the anomaly correla-
tion > 0.9 were carried by the GFS (the US model),
UKMet office model and the ECMWF through day
4 of forecasts over the northern hemisphere. These
are indeed very high skills that have been achieved
in recent years. Southern hemispheric skills are
greater than 0.9 through day 3 of the forecasts by
these models. Figure 1 (c and d) illustrates the
skills of forecast over the tropics for zonal and
meridional winds at the 850 hPa and 200 hPa levels
for these same models through day 3 of forecasts.
Anomaly correlation skills at these two vertical lev-
els are comparable in magnitudes. The skills of
the ECMWF again standout compared to all other
models. Figure 1 (e through h) describes RMS error
for the geopotential heights at the 500 hPa level
for the northern hemisphere and southern hemi-
sphere as well as zonal and meridional winds at the
850 hPa and 200 hPa levels. In all of these illustra-
tions, the least RMS error is systematically pro-
vided by the ECMWF. These errors grow with the
lengths of the forecast periods, between day 1 and
day 3 of forecasts. Figure 1 was extracted from the
web files of NCEP/EMC in order to illustrate a
current state of the art. The purpose is to show
that it is possible to provide a multimodel consen-
sus forecast on real-time that provides additional
skill beyond what is seen here.

2. Superensemble methodology

Predictions from an ensemble of slightly different
initial conditions and/or various versions of models

using a single base model are often carried out by
the weather services. An ensemble mean is defined
as the average of all models involved in the ensem-
ble suite. Another type of ensemble mean is the
bias-removed ensemble mean, where the bias of
each model is removed prior to the execution of an
ensemble average. In both of these cases all models
are given an equal weight of 1/N , where N denotes
the total number of models. The superensemble
approach is a recent contribution to the general
area of weather and climate forecasting developed
at FSU; this has been discussed in a series of pub-
lications, Krishnamurti et al (1999, 2000a, 2000b
and 2001). This technique entails the partition of
a time line into two parts. One part is a ‘train-
ing’ phase, where forecasts by a set of member
models are compared to the observed or the analy-
sis fields with the objective of developing statis-
tics (i.e., weights ai) on the least squares fit of the
forecasts to the observations. The second part is
the forecast phase where estimates for ai from the
training phase are used to create the superensem-
ble. The performance of the individual models is
obtained in the training phase using multiple linear
regressions against observed (analysis) fields. The
outcome of this regression is the weights assigned
to the individual models in the ensemble, which are
then passed on to the forecast phase to construct
the superensemble forecasts. The temporal model
anomalies of the variables are regressed against the
observed anomalies when formulating the super-
ensemble forecasts, and the weights are multiplied
to the corresponding model anomalies. The con-
structed forecast is:

S = O +
N∑

i=1

ai (Fi − Fi), (1)

where O is the observed climatology over the train-
ing period; ai is the weight for the ith member in
the ensemble; and Fi and Fi are the ith model’s
forecasts and the forecast mean (over the training
period) respectively. N is the number of member
models. The weights ai’s are obtained by minimiz-
ing the error term G, where G is expressed as:

G =
Ntrain∑

t=1

(St
′ − Ot

′)2. (2)

Here Ntrain is the number of time samples in the
training phase, and St

′ and Ot
′ are the respective

superensemble and observed field anomalies at
training time ‘t’.

This exercise is performed at all model grid
points. A fit performed for all model variables at
all model grid points at all vertical levels typically
yields close to 107 regression weights. These spread
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Figure 1. Current skills of the operational forecasting models for January 2006 (obtained from EMC/NCEP).

of weights are fractional, positive or negative. This
large number arises from the number of transform
grid points, number of vertical levels, number of

basic variables and the number of models. Over
many such locations we have noted diverse perfor-
mance characteristics of the member models that
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arises from differences in horizontal and vertical
discretization, treatment of physics, handling of in-
homogeneity of land surface, orography, water bod-
ies, surface physics and boundary conditions. All
such peculiarities tend to leave their signature in
the error distributions and hence on these weights.
These may be thought of as a collective bias correc-
tion procedure. The second part of the time line is
composed of model predictions. The superensemble
approach combines each of these forecasts accord-
ing to the weights determined during the training
phase using the formulation. The prediction ‘S’ is
referred to as the ‘superensemble’ forecast. This
forecast should be contrasted with the more stan-
dard anomaly forecasts known as the bias-removed
ensemble mean or ensemble mean forecast

E = O +
1
N

N∑

i=1

(Fi − F i)

or
∧
E = O +

1
N

N∑

i=1

(Fi − O). (3)

The skill of the multimodel superensemble
method significantly depends on the error covari-
ance matrix, since the weights of each model are
computed from a designed covariance matrix. The
classical method for the construction of the super-
ensemble utilizes a least square minimization prin-
ciple within a multiple regression of model output
against observed ‘analysis’ estimates. This entails
a matrix inversion that is solved by the Gauss
Jordan elimination technique. That matrix can be
ill-conditioned and singular depending on the inter-
relationships of the member models of the super-
ensemble. We have recently designed a singular
value decomposition (SVD) method (Wilks 1995)
for the multimodel superensemble that overcomes
this problem and removes the ill conditioning of
the covariance matrix entirely (Yun et al 2002).
Tests of this method have shown great skills in
weather and seasonal climate forecasts compared
to the Gauss Jordan elimination method.

3. Models participating in NWP
superensemble suite

Seven global models used in the construction
of real-time superensemble include the Euro-
pean Center for Medium-Range Weather Forecasts
model (ECMWF), the Global Forecast System
of National Centers for Environmental Prediction
(NCEP/GFS), Global spectral model of Japan
Meteorological Agency (JMA), Global Environ-
mental Multiscale Model from Canadian Mete-
orological Center (GEM), the Fleet Numerical

Meteorology and Oceanography Center model
(NOGAPS), the model of Australian Bureau of
Meteorology (GASP) and an FSU Global Spectral
Model. In India, the National Center for Medium
Range Weather Forecasting (NCMRWF) has been
carrying out routine numerical weather predictions
on real-time over the last 12 years. They issue
medium range global forecasts, i.e., 1 to 6 days
into the future. They have steadily improved the
state of numerical prediction and its applications
for the use of the agricultural community in India.
The current FSU multimodel superensemble does
not include this model within its suite of models.
Thus a direct comparison of this model with the
superensemble was not possible.

Table 1 illustrates the layout of the various
participating models of our NWP Superensemble
suite. This table shows the horizontal and verti-
cal resolutions, various physical parameterization
schemes and the land surface schemes deployed
by each of these participating models. Overall, we
note a diversity of operational models that carry a
range of resolution and physics. Table 1 describes
the models which were used to prepare the forecast
used in this study, some of the operational cen-
ters are presently using an advanced version of the
model.

3.1 Data assimilation and satellite datasets

A variety of data assimilation schemes are used
by different operational NWP centers around
the world. The initial datasets used by these
models are generally the same for the surface-
based observations. However, the satellite-based
data content of the different models do vary.
Furthermore, there are major differences in the
way the satellite data are being assimilated by
the different centers. Direct use of radiances is
part of the satellite data assimilation. NCEP
and FNMOC/NOGAPS utilize the satellite-based
datasets in their 3-DVar data assimilation system.
JMA had been using 3-DVar until February 2005
in their global analysis system, although 4-DVar
was operational in their mesoscale analysis sys-
tem. From March 2005 onwards JMA has imple-
mented 4-DVar in the global operational forecast
and analysis system. ECMWF carried out very
comprehensive 4-DVar data assimilation. Canadian
model has 4-DVar operational; recently on 31 Octo-
ber 2006 they made major changes in their oper-
ational Global Environmental Multiscale (GEM)
model that includes increasing significantly hori-
zontal and vertical resolutions, improving its phys-
ical parameterization, improving the condensation
and precipitation package, introducing the more
sophisticated ISBA (interactions soil-biosphere-
atmosphere) surface scheme and improving the
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Table 2. ECMWF data assimilation system.

Satellite or instruments

Conventional observations Platform Data List of sensors

• Synop surface pressure NOAA15-16-17 &
DMSP13-14-15

AMSU/HIRS + SSM/I
raw radiances

• 3 × AMSUA
(NOAA 15/16/17) - radiances

• Ship surface pressure and
wind

• 3 SSMI (F-13/14/15) -
radiances

• Buoy surface pressure and
wind

NASA- QuikScat Sea winds • 2 × HIRS
(NOAA-16/17) - radiances

• PAOB surface pressure Geostationary platform AMVs + WV radiances • Radiances from 2 × GEOS
(Met-7 GOES-10)

• Radiosonde temperature
wind and humidity

Polar platform AMVs from MODIS-
TERRA, AQUA products

• Winds from 3 × GEOS
(Met-7/5 GOES-10) and
MODIS/TERRA

• Pilot wind • Sea winds on QuikScat

• Aircraft temperature and
wind

GOME and
SBUV-NOAA16

Ozone profiles/columns • ERS-2 Altimeter/SAR

• American and European
profiler winds

• SBUV (NOAA-16)

• AIRS AMSUA

GOME – Global Ozone Monitoring Experiment, SBUV – Solar Backscatter Ultraviolet, AMSUA – Advanced Microwave
Sounding Unit-A, AIRS – Atmospheric InfraRed Sounder, HIRS – High Resolution Infrared Radiation Sounder, and ERS –
European Remote Sensing satellite.

model physics. In addition to the model changes,
a number of improvements have also been intro-
duced into the analysis used by the model, e.g.,
use of a new set of background error statistics.
BMRC is using the 1-DVar in their operational
Global Analysis and Prediction (GASP) system.
BMRC is planning to adopt the 3-DVar, where
a set of radiances is analyzed simultaneously in
a three-dimensional sense. Table 2 describes the
data assimilation system of ECMWF. Table 2
explains conventional observations (left column)
and satellite data considered for the assimila-
tion. Table 2 also explains list of sensors deployed
in different platforms to facilitate the existing
observing system.

3.2 FSU model (physical initialization)

The Florida State University Global Spectral
Model (FSUGSM) also produces a 6-day fore-
cast for inclusion into the superensemble. In
this model, the initial fields have been physi-
cally initialized using the Ferraro and Marks rain
rate algorithm (1995), also called the NOAA–
NESDIS (National Oceanic and Atmospheric
Administration)–(National Environmental Satel-
lite Data and Information Service) SSM/I (Special
Sensor Microwave Instrument) algorithm. Physi-
cal initialization is a powerful tool which primar-
ily assimilates satellite-derived observed rainfall
distributions along with calculated surface fluxes
of moisture to produce a physically consistent and

more realistic spin-up of the initial state. The key
to the spin-up procedure is a Newtonian relax-
ation, where selected variables are ‘nudged’ toward
prescribed values during a 24-hour pre-integration
period. Upon integrating the FSUGSM, the rain-
fall patterns and surface moisture fluxes as well as
the wind and mass fields appear more robust. For
example, experiments have shown that within the
ITCZ, monsoonal flows, and typhoons, the mois-
ture flux is stronger and more organized. Thus, the
precipitation areas are better defined. In the physi-
cal initialization technique, day minus one (one day
prior to the initial condition) and day zero (ini-
tial time) ECMWF (European Centre for Medium-
Range Weather Forecasts) operational analyses
are collected. Next, they are augmented with
microwave radiance datasets from five satellites,
including the NASA TRMM (Tropical Rainfall
Measuring Mission) satellite. From these radiances,
rain rates are derived. Then, via a number of
reverse algorithms, including reverse similarity the-
ory and reverse cumulus parameterization, the
observed interpolated rainfall rates at each time
step and at every location are used to derive a
physically consistent initial state at hour zero. This
initialization procedure includes the following five
computational areas:

Step 1: The surface fluxes of moisture and heat
are obtained from the vertical integration
of the apparent moisture sink Q2, and
the apparent heat source Q1, following the
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analysis of Yanai et al (1973). The pro-
posed procedure using this moisture bal-
ance relation improves these estimates as
one applies it repeatedly since the diver-
gence, heating, and the moisture fields
adjust to the imposed rain rates with time.
The vertical integrals of Q1 and Q2 are car-
ried out from the top of the atmosphere,
σ = 0 to the earth’s surface σ = 1, where
σ is the vertical coordinate.

Step 2: A reverse similarity theory is invoked dur-
ing each time step of the physical initial-
ization. The rain rates are assumed to be
known and are used to provide the spe-
cific humidity and the potential tempera-
ture at the top of the constant flux layer.
An assimilation of this data at the top of
the constant flux layer promotes a consis-
tency between the calculated flux and the
imposed rain rate.

Step 3: A reverse cumulus parameterization algo-
rithm restructures the moisture variable
following the vertical coordinate which is
consistent with the imposed rain rate.
This restructuring of the moisture variable
is achieved between the cloud base (the
lifting condensation level) and the cloud
top (the level at which the local moist adia-
batic and the cloud-environment sounding
intersect).

Step 4: In the upper troposphere (σ < 0.5) the
moisture variable is restructured to mini-
mize the local difference between the model
and the satellite inferred fields of outgoing
long wave radiation. A bisection method
determines a parameter which defines the
structure of the moisture variable in the
upper troposphere.

Step 5: These components of physical initializa-
tion are executed within data assimilation
phases of the model initialization. Dur-
ing this assimilation of the surface fluxes,
the outgoing longwave radiation, the diver-
gence field, the diabatic heating and the
surface pressure evolves in a consistent
manner. The details of the above pro-
cedure are presented in the two papers
Krishnamurti et al (1991, 1993).

Lacking a unified column model that integrates
all of the physical process (i.e., the surface flux
parameterization, the cumulus parameterization
and the radiative transfer scheme), the current
FSU model has separate computational algorithms
for these components. The sequence of compu-
tations within the physical initialization modi-
fies the moisture variable separately to satisfy
each requirement, i.e., fluxes, rain rate and the

earth radiation budget. The sequence of reverse
algorithms is: reverse similarity followed by OLR
matching and then the reverse cumulus para-
meterization. The time interpolated rain rates
are an input to the reverse similarity and the
reverse cumulus parameterization algorithms. The
satellite based OLR enters the matching algorithm.
A one time step, forward integration follows the
execution of the reverse cumulus parameterization
algorithm. Since the reverse cumulus and the nor-
mal cumulus are carefully designed to be almost
completely reversible, the “observed” rain rate is
reproduced by the model at the end of the time
step. Thus, an accumulation over 24-hour of simu-
lated assimilated rainfall appears realistic.

Currently missed by the physical initialization
are instances where the model calls for no precipi-
tation (i.e., no net moisture convergence or absence
of conditional instability) whereas the satellite or
raingauge observations imply rain. We impose sat-
uration as an upper limit for the modification of
the specific humidity. This constrains the extent to
which rainfall can be recovered in these instances.
Further work is ongoing in both of these above
areas to overcome these difficulties towards further
improvement of the now casting skill.

3.3 Optimizing the number of training days

Because of the nature of atmospheric variability
over different regions, the minimum number of
training days required for stabilizing the statistical
weights varies from region to region. Krishnamurti
et al (2003) illustrated the nature of this geograph-
ical dependence. They studied the distribution of
the minimum number of days that were required
for the training phase of NWP multimodels. This
distribution varies from roughly 90 days to 120
days; over the land area more days of training
were required compared to those over the ocean.
This led to our accepting a number of 120 days
for the length of training the phase for NWP. We
noted that roughly 120 days of training provided
stability for the statistical weights. This number
does vary somewhat from one vertical level to the
next and from one atmospheric variable to the
next. Overall a use of 120 days appeared to cover
the needs for stable statistics. Another important
aspect of these coefficients is that it is better to
compute these from data of similar previous sea-
sons. For instance a use of dry season pre-monsoon
data over 120 days (such as March, April, May and
June) may not be best suited for the rainy and wet
months of July and August. In such instances, sev-
eral previous years of July August datasets can be
used. This of course also requires that the models of
our forecast suite have not altered much over these
several years used for the training phase.We have
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used the operational ECMWF analysis at 0.5◦ lat-
itude/longitude as the benchmark fields for most
variables for the training phase. The observed mea-
sures of precipitation are derived from the so-called
morphing technique of NOAA CPC (CMORPH)
that is described in some detail in Joyce et al (2004)
and within the references stated therein. In the
light of work by Krishnamurti et al (2000b, 2001),
CMORPH dataset is used for training and valida-
tion of a new precipitation superensemble product
in real-time.

4. Results and discussions

The anomaly correlation and the RMS errors for
the sea level pressure, 500 hPa level geopotential
heights, and the zonal wind at the 850 hPa level
for the Asian monsoon domain covering the mon-
soon months June, July, August and September
(2004) are illustrated in figure 2 (a through f).
The left panels carry the results for the anomaly
correlation, and the right panels carry the RMS
error. Figure 3 (a through f) illustrates the anom-
aly correlation and RMS error for the different
components of the wind fields (i.e., the merid-
ional wind at 850 hPa level, the zonal wind at
the 200 hPa level, and the meridional wind at the
200 hPa level). We note again similar very high
skills for the anomaly correlations, > 0.9 for day 4
of forecast for all these variables. In all cases, the
RMS errors are the least for the multimodel super-
ensemble compared to those of the member models
and the ensemble. Forecasts for all these elements
show very high skills for the multimodel super-
ensemble that is shown by the dark bars. These
carry the highest anomaly correlation and the low-
est RMS errors for each of the forecast days. Here
the skills for seven of the best models are com-
pared with those of the superensemble (far right)
and for the ensemble means (shown next to the
superensemble). The results of the superensemble
appear clearly better than those of the ensem-
ble mean. The most striking results are the large
improvements in the anomaly correlation from the
multimodel superensemble, values as high as 0.90
to 0.94 on day 4 of the forecast are worth not-
ing. The implications of such scores are discussed
below.

Figure 4(a–b) (over plots) shows a superposi-
tion of the observed and predicted sea level pres-
sure and 500 hPa geopotential heights for a day 4
of forecasts when the anomaly correlation was of
the order of 0.92. The isobars of the forecasts, line
for line, seem to lie on top of the observed iso-
bars. We have chosen anonymous dates to show the
pattern matching. The entire season of forecasts

for day 4 and day 5 carry high anomaly correla-
tions (see figure 4c–d). Figure 4(c–d) depicts time
series of the anomaly correlation of day 4 and day 5
MSLP forecast using the multimodel superensem-
ble along with member models. This shows very
high skills of the daily values. The member mod-
els do not carry that degree of consistency in their
forecasts through days 4 and 5. These skills show
a spread between 0.35 and 0.85 on different days
whereas that of superensemble stays close to 0.9 or
higher in most days.

Monsoon lows and depressions are large scale
disturbances with scale > 1000 km. These are
well resolved at the resolution of the multimodel
superensemble (whose horizontal resolution is of
the order of 80 km). The consistent skill of the
superensemble provides a useful guidance for the
mesoscale modelers. Figure 5 was checked dur-
ing day 4 where one such disturbance propagated
across the Indian subcontinent (dotted lines are
analysis while solid lines are day 4 forecast of mul-
timodel superensemble) that occurred during 11 to
13 June 2004. Checking the anomaly correlation
for these dates from figure 4(c–d), we noted that
in most of these instances the day 4 and day 5
of forecast skills of the anomaly correlations was
around 0.9 for the multimodel superensemble. This
shows that it is possible to predict the isobaric dis-
tribution during disturbance passages with a very
high degree of accuracy. Figure 5 was deliberately
selected to show the superposition of isobars (fore-
cast and observed) on day 4 of the forecast where
a depression was present over northern India. This
shows the usefulness of the superensemble prod-
uct. A high skill forecast for up to day 5 may not
meet the needs of agriculture where at least two
weeks forecast is generally demanded. However, it
is satisfying to see that we can provide a very use-
ful guide to the mesoscale modelers through day 5.
This overall consistent improvement of day-to-day
skill for the superensemble is the special feature of
these real-time products.

In the context of the usefulness of the forecasts
of monsoon, precipitation is the most important
variable. Precipitation forecasts are generally eval-
uated using a probabilistic skill, which is called
the Equitable Threat Scores (see appendix 1). Skill
score is evaluated for rainfall thresholds greater
than a preset value. A bias score is also gener-
ally evaluated for each of the thresholds of rainfall
amounts. The normalized bias score (see appen-
dix 1) is designed such that a value of 1.0 defines
a good forecast. Overestimates/underestimates of
rainfall amounts carry bias score > 1 or < 1. In
figure 6(a–d), we present these results of equitable
threat scores and the bias scores for the sea-
son (June to September 2004). We show here the
equitable threat scores in the range of thresholds
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Figure 2. Forecast skills of the multimodel FSU superensemble compared with member models.

between 0.2 and 2.0 mm/day. The highest ETS are
clearly carried by the multimodel superensemble
compared to the individual models for day 1
through 5 of forecasts. The precipitation bias score
of the multimodel superensemble is generally close
to 1.0 for day 1 through 5 of forecasts; one of
the member models does have a very high bias
score, the performance of the bias score of the
multimodel superensemble is close to that of the

best model. A threshold of 0.2 mm/day implies
the skill for the total rain whereas the thresholds
2 mm/day ignores the trace rain that many mem-
ber models have an abundance of. The day 1 ETS
for most member models ranges from 0.2 to 0.35.
With the multimodel superensemble, it is possi-
ble to retain a threat score greater than or equal
to 0.3 through day 4 of forecasts. How good is
an ETS of 0.3? That is the current now casting



378 Akhilesh Kumar Mishra and T N Krishnamurti

Figure 3. Forecast skills of the multimodel FSU superensemble compared with member models.

skill for most operational models. This score does
signify some degree of usefulness of forecast over
a large-scale model whose horizontal resolution
is of the order of 100 km. This skill cannot be
directly compared to that of mesoscale models that
are generally evaluated against radar-based rainfall
estimates.

The ETS and bias scores for a case study of
heavy rains from the passage of a monsoon depres-
sion are shown in figure 6(e–h). Here the initial day

1 skills of the ETS for the multimodel superensem-
ble for rainfall thresholds > 2.0 and > 5.0mm/day
are both close to 0.4. These skills are clearly higher
than those for the member models. For this case
study, there were noted minima of skill for day 3
of forecast. That sharp drop of skill between day 2
and day 3 of the member models was the period of
very heavy rains where their bias scores (for days 2
and 3) showed values somewhat higher than 1.2.
The bias score of the superensemble remained close
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Figure 4. (a) Over plot of day 4 superensemble SLP forecast (red line) with analysis (blue line) on 3 August 2004,
(b) Over plot of day 4 superensemble 500 hPa geopotential heights forecast with analysis on 25 August 2004, (c) Day 4
MSLP anomaly correlation for 2004 monsoon season and (d) same as (c) except for day 5.

to 1.0 (for days 4 and 5 of forecasts). Overall, for
this case study, the bias score of the multimodel
superensemble were clearly better than those of the
member models.

5. Conclusion

In medium range real-time global weather fore-
casts, the largest skill improvements are seen for
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Figure 5. Analysis (dotted line) plotted against day 4 MSLP superensemble forecast (continuous line) during the passage
of monsoon depression (a) 11 June, (b) 12 June and (c) 13 June 2004.

precipitation forecasts both regionally and glob-
ally. The overall skill of the superensemble is 40–
120% higher than the precipitation forecast skills of
the best global models for precipitation forecasts.

The superensemble shows major improvements
in skill for the divergent part of the wind
and the temperature distributions. Tropical lati-
tudes show major improvements in daily weather
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Figure 6. Forecast skills of multimodel superensemble precipitation compared against the member models.

forecasts. It has been possible to maintain a real-
time website (http://lexxy.met.fsu.edu/rtnwp/)
for global numerical weather prediction from the

construction of a multimodel superensemble. These
are the current best known global operational
NWP models. It is possible to obtain the highest
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skills on a daily basis out to 6 days both glob-
ally and regionally from the superensemble. The
fields we have looked at include the winds, temper-
ature, mean sea level pressure, geopotential heights
at 500 hPa, humidity, and precipitation. The skill
matrices include RMS error, anomaly correlation,
and probabilistic measure such as equitable threat
scores and bias score for precipitation. We have
noted some extraordinary improvements in skill
over all models. The overlaying of the geopoten-
tial height isopleths over the globe for day 5 of
forecasts and corresponding analysis (observation)
display a line-for-line match. These carry anom-
aly correlation that exceeds 0.9 on day 5. These
improvements in global NWP are well beyond
those that were possible a few years ago. We
have also seen major improvements in the fore-
casts over the southern hemisphere where the
skills of forecasts are close to those of northern
hemisphere.

The monsoon forecasts by member models espe-
cially for monsoon rainfall were one of the diffi-
cult areas for the global NWP. Here the errors of
the member models were quite large. The use of
the multimodel superensemble reduced these errors
considerably, and it became possible to obtain
much higher equitable threat scores for the day 1
through day 5 forecasts over a monsoon domain.
On day 5 of forecast, it became possible to consis-
tently maintain anomaly correlations for sea level
pressure over the monsoon region at values close to
0.92. The member models best values were consid-
erably lower. This illustrates the robust strength
of the multimodel superensemble. Similar results
were noted for the wind components at 850 hPa
and 200 hPa levels.

The reduction of collective bias error by the
superensemble (derived from the statistics of the
training phase) makes it possible to reduce errors
in the real time forecast phase. We have also exam-
ined the error of the ensemble mean for some vari-
ables. We noted that those were generally lower
compared to those of the member models. How-
ever, when compared to the errors of the multi-
model superensemble the errors of the ensemble
mean were higher consistently. The ensemble mean
assigns weights of 1/N (N being the number of
member models) uniformly over the globe for all
models. The superensemble, in this regard, is very
selective regionally, and assigns fractional, positive
and even negative weights at different grid loca-
tions for the member models. In all we make use
of as many as 107 weights for 3-dimensional grid
location (384 × 142 × 10) for roughly 7 variables
and 7 member models. The error correction plays a
major role in providing the best global NWP prod-
uct on real time. We also illustrate a case study of
a monsoon depression where the improvements of

forecast details from the superensemble over those
of the member models are highlighted.
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Appendix 1

Equitable Threat Score

The equitable threat score (Schaefer 1990) is
defined as

ETS = (H − CH)/(F + O − H − CH)

where F = the number of grid boxes that fore-
cast more than the threshold, O = the number of
grid boxes that observe more than the threshold,
H = the number of grid boxes that correctly fore-
cast more than the threshold, CH = the expected
number of correct forecasts due to chance = F ×
O/T , where T = the total number of grid boxes
inside the verification domain.

The equitable threat score seems to be a good
estimate for overall forecast skill. The higher the
value, the better the forecast model skill for that
particular threshold. The equitable threat score
can vary from a small negative number to 1.0,
where 1.0 represents a perfect forecast. This is basi-
cally the ratio of the correct forecast area to the
total area of the forecast and observed precipita-
tion. The model gets penalized for forecasting rain
in the wrong place as well as not forecasting rain in
the right place. Thus, the model with the highest
score is generally the model with the best forecast
skill.

Bias score

The bias score is a very simple equation, defined
as simply as F/O. This score does not comment
at all on the skill of a model forecast in terms
of the placement of precipitation, but does give
an indication if a model is consistently over- or
under-forecasting areas of precipitation. The best
model is generally the one that remains near the
1.0 line, which means that the model does not gen-
erally over-forecast precipitation or under-forecast
precipitation. If the model verifies over 1.0, it is
over-predicting precipitation, and if below 1.0, it is
under-predicting precipitation.
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List of Acronyms

3D-VAR Three Dimensional Variational
Data Assimilation

4D-VAR Four Dimensional Variational
Data Assimilation

AGCM Atmospheric General Circulation
Model

AIRS Advanced InfraRed Sounder
AMSU Advanced Microwave Sounding

Unit
BMRC Bureau of Meteorology Research

Centre, Australia
CMC Canadian Meteorological Centre
CMORPH CPC MORPHing technique
DMSP Defense Meteorological Satellite

Program
ECMWF European Centre for

Medium-Range Weather Forecasts
EMC Environmental Modeling Center
ERS European Remote Sensing
FNMOC Fleet Numerical Meteorology and

Oceanography Center
FSU Florida State University
GASP Global AnalysiS and Prediction
GEM Global Environmental Multiscale

Model
GFS Global Forecast System
GOES Geostationary Operational

Environmental Satellites
GOMOS Global Ozone Monitoring by

Occultation of Stars
GSM Global Spectral Model
HIRS High Resolution Infrared

Radiation Sounder
ITCZ Inter Tropical Convergence Zone
JMA Japan Meteorological Agency
MODIS Moderate Resolution Imaging

Spectroradiometer
MSU Microwave Sounding Unit
NASA National Aeronautics and Space

Administration
NCAR National Center for Atmospheric

Research
NCEP National Center for

Environmental Prediction
NCMRWF National Centre for Medium

Range Weather Forecasting
NESDIS National Environmental Satellite,

Data, and Information Service
NOAA National Oceanic & Atmospheric

Administration
NOGAPS Navy Operational Global

Atmospheric Prediction System
NRL Naval Research Laboratory
QuikScat Quick Scatterometer
RMS Error Root Mean Square Error

RPN Recherche Prévision Numérique
SBUV Solar Backscatter Ultraviolet

radiometer
SLP Sea Level Pressure
SSM/I Special Sensor Microwave

Instrument
SST Sea Surface Temperature
SVD Singular Value Decomposition
SYNOP Traditional Synoptic Weather

Observations
TRMM Tropical Rainfall Measuring

Mission
UKMet United Kingdom Met. Office
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