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1. Motivation and preliminaries

For a fixed p ∈ N := {1, 2, . . .}, let Ap denote the class of all analytic functions of the form

f(z) = zp +
∞∑

k=1

ak+pz
k+p, (1.1)

which are p-valent in the open unit disc U = {z ∈ C : |z| < 1} and let A := A1. Upon
differentiating both sides of (1.1) q-times with respect to z, the following differential operator
is obtained:

f (q)(z) = λ(p; q)zp−q +
∞∑

k=1

λ(k + p; q)ak+pz
k+p−q, (1.2)

where

λ(p; q) :=
p!

(p − q)!
(
p ≥ q; p ∈ N; q ∈ N ∪ {0}). (1.3)
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Several researchers have investigated higher-order derivatives of multivalent functions, see,
for example, [1–10]. Recently, by the use of the well-known Jack’s lemma [11, 12], Irmak and
Cho [5] obtained interesting results for certain classes of functions defined by higher-order
derivatives.

Let f and g be analytic in U. Then f is subordinate to g, written as f(z) ≺ g(z) (z ∈ U)
if there is an analytic function w(z) with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)).
In particular, if g is univalent in U, then f subordinate to g is equivalent to f(0) = g(0)
and f(U) ⊆ g(U). A p-valent function f ∈ Ap is starlike if it satisfies the condition
(1/p)R(zf ′(z)/f(z)) > 0 (z ∈ U). More generally, let φ(z) be an analytic function with
positive real part inU, φ(0) = 1, φ′(0) > 0, and φ(z)maps the unit discU onto a region starlike
with respect to 1 and symmetric with respect to the real axis. The classes S∗

p(φ) and Cp(φ)
consist, respectively, of p-valent functions f starlike with respect to φ and p-valent functions
f convex with respect to φ in U given by

f ∈ S∗
p(φ) ⇐⇒ 1

p

zf ′(z)
f(z)

≺ φ(z), f ∈ Cp(φ) ⇐⇒ 1
p

(
1 +

zf ′′(z)
f ′(z)

)
≺ φ(z). (1.4)

These classes were introduced and investigated in [13], and the functions hφ,p and kφ,p,
defined, respectively, by

1
p

zh′
φ,p

hφ,p
= φ(z)

(
z ∈ U, hφ,p ∈ Ap

)
,

1
p

(
1 +

zk′′
φ,p

k′
φ,p

)
= φ(z)

(
z ∈ U, kφ,p ∈ Ap

)
,

(1.5)

are important examples of functions in S∗
p(φ) and C∗

p(φ). Ma andMinda [14] have introduced
and investigated the classes S∗(φ) := S∗

1(φ) and C(φ) := C1(φ). For −1 ≤ B < A ≤ 1, the class
S∗[A,B] = S∗((1 +Az)/(1 + Bz)) is the class of Janowski starlike functions (cf. [15, 16]).

In this paper, corresponding to an appropriate subordinate function Q(z) defined on
the unit disk U, sufficient conditions are obtained for a p-valent function f to satisfy the
subordination

f (q)(z)
λ(p; q)zp−q

≺ Q(z),
zf (q+1)(z)
f (q)(z)

− p + q + 1 ≺ Q(z). (1.6)

In the particular case when q = 1 and p = 1, and Q(z) is a function with positive real
part, the first subordination gives a sufficient condition for univalence of analytic functions,
while the second subordination implication gives conditions for convexity of functions. If
q = 0 and p = 1, the second subordination gives conditions for starlikeness of functions.
Thus results obtained in this paper give important information on the geometric prop-
erties of functions satisfying differential subordination conditions involving higher-order
derivatives.
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The following lemmas are needed to prove our main results.

Lemma 1.1 (see [12, page 135, Corollary 3.4h.1]). Let Q be univalent in U, and ϕ be analytic in a
domainD containing Q(U). If zQ′(z) ·ϕ[Q(z)] is starlike, and P is analytic in U with P(0) = Q(0)
and P(U) ⊂ D, then

zP ′(z) ·ϕ[P(z)] ≺ zQ′(z) ·ϕ[Q(z)
]
=⇒ P ≺ Q, (1.7)

and Q is the best dominant.

Lemma 1.2 (see [12, page 135, Corollary 3.4h.2]). Let Q be convex univalent in U, and let θ be
analytic in a domain D containing Q(U). Assume that

R

[
θ′[Q(z)] + 1 +

zQ′′(z)
Q′(z)

]
> 0. (1.8)

If P is analytic in U with P(0) = Q(0) and P(U) ⊂ D, then

zP ′(z) + θ
[
P(z)

] ≺ zQ′(z) + θ
[
Q(z)

]
=⇒ P ≺ Q, (1.9)

and Q is the best dominant.

2. Main results

The first four theorems below give sufficient conditions for a differential subordination of the
form

f (q)(z)
λ(p; q)zp−q

≺ Q(z) (2.1)

to hold.

Theorem 2.1. Let Q(z) be univalent and nonzero in U, Q(0) = 1, and let zQ′(z)/Q(z) be starlike
in U. If a function f ∈ Ap satisfies the subordination

zf (q+1)(z)
f (q)(z)

≺ zQ′(z)
Q(z)

+ p − q, (2.2)

then

f (q)(z)
λ(p; q)zp−q

≺ Q(z), (2.3)

and Q is the best dominant.
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Proof. Define the analytic function P(z) by

P(z) :=
f (q)(z)

λ(p; q)zp−q
. (2.4)

Then a computation shows that

zf (q+1)(z)
f (q)(z)

=
zP ′(z)
P(z)

+ p − q. (2.5)

The subordination (2.2) yields

zP ′(z)
P(z)

+ p − q ≺ zQ′(z)
Q(z)

+ p − q, (2.6)

or equivalently

zP ′(z)
P(z)

≺ zQ′(z)
Q(z)

. (2.7)

Define the function ϕ by ϕ(w) := 1/w. Then (2.7) can be written as zP ′(z) ·ϕ[P(z)] ≺
zQ′(z) ·ϕ[Q(z)]. Since Q(z)/= 0, ϕ(w) is analytic in a domain containing Q(U). Also
zQ′(z) ·ϕ(Q(z)) = zQ′(z)/Q(z) is starlike. The result now follows from Lemma 1.1.

Remark 2.2. For f ∈ Ap, Irmak and Cho [5, page 2, Theorem 2.1] showed that

R
zf (q+1)(z)
f (q)(z)

< p − q =⇒ ∣∣f (q)(z)
∣∣ < λ(p; q)|z|p−q−1. (2.8)

However, it should be noted that the hypothesis of this implication cannot be satisfied by any
function in Ap as the quantity

zf (q+1)(z)
f (q)(z)

∣∣∣∣
z=0

= p − q. (2.9)

Theorem 2.1 is the correct formulation of their result in a more general setting.

Corollary 2.3. Let −1 ≤ B < A ≤ 1. If f ∈ Ap satisfies

zf (q+1)(z)
f (q)(z)

≺ z(A − B)
(1 +Az)(1 + Bz)

+ p − q, (2.10)
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then

f (q)(z)
λ(p; q)zp−q

≺ 1 +Az

1 + Bz
. (2.11)

Proof. For −1 ≤ B < A ≤ 1, define the function Q by

Q(z) =
1 +Az

1 + Bz
. (2.12)

Then a computation shows that

F(z) :=
zQ′(z)
Q(z)

=
(A − B)z

(1 +Az)(1 + Bz)
,

h(z) :=
zF ′(z)
F(z)

=
1 −ABz2

(1 +Az)(1 + Bz)
.

(2.13)

With z = reiθ, note that

R
(
h
(
reiθ

))
= R

1 −ABr2e2iθ

(1 +Areiθ)(1 + Breiθ)

=
(1 −ABr2)(1 +ABr2 + (A + B)r cos θ)

|(1 +Areiθ)(1 + Breiθ)|2
.

(2.14)

Since 1+ABr2 + (A+B)r cos θ ≥ (1−Ar)(1−Br) > 0 for (A+B) ≥ 0, and similarly, 1+ABr2 +
(A + B)r cos θ ≥ (1 + Ar)(1 + Br) > 0 for (A + B) ≤ 0, it follows that Rh(z) > 0, and hence
zQ′(z)/Q(z) is starlike. The desired result now follows from Theorem 2.1.

Example 2.4. (1) For 0 < β < 1, choose A = β and B = 0 in Corollary 2.3. Sincew ≺ βz/(1 + βz)
is equivalent to |w| ≤ β|1 −w|, it follows that if f ∈ Ap satisfies

∣∣∣∣
zf (q+1)(z)
f (q)(z)

− p + q +
β2

1 − β2

∣∣∣∣ <
β

1 − β2
, (2.15)

then

∣∣∣∣
f (q)(z)

λ(p; q)zp−q
− 1

∣∣∣∣ < β. (2.16)

(2) With A = 1 and B = 0, it follows from Corollary 2.3 that whenever f ∈ Ap satisfies

R

{
zf (q+1)(z)
f (q)(z)

− p + q

}
<

1
2
, (2.17)
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then

∣∣∣∣
f (q)(z)

λ(p; q)zp−q
− 1

∣∣∣∣ < 1. (2.18)

Taking q = 0 and Q(z) = hφ,p/z
p, Theorem 2.1 yields the following corollary.

Corollary 2.5 (see [13]). If f ∈ S∗
p(φ), then

f(z)
zp

≺ hφ,p

zp
. (2.19)

Similarly, choosing q = 1 and Q(z) = k′
φ,p

/pzp−1, Theorem 2.1 yields the following
corollary.

Corollary 2.6 (see [13]). If f ∈ C∗
p(φ), then

f ′(z)
zp−1

≺
k′
φ,p

zp−1
. (2.20)

Theorem 2.7. Let Q(z) be convex univalent in U and Q(0) = 1. If f ∈ Ap satisfies

f (q)(z)
λ(p; q)zp−q

·
(
zf (q+1)(z)
f (q)(z)

− p + q

)
≺ zQ′(z), (2.21)

then

f (q)(z)
λ(p; q)zp−q

≺ Q(z), (2.22)

and Q is the best dominant.

Proof. Define the analytic function P(z) by P(z) := f (q)(z)/λ(p; q)zp−q. Then it follows from
(2.5) that

f (q)(z)
λ(p; q)zp−q

·
(
zf (q+1)(z)
f (q)(z)

− p + q

)
= zP ′(z). (2.23)

By assumption, it follows that

zP ′(z) ·ϕ[P(z)] ≺ zQ′(z) ·ϕ[Q(z)
]
, (2.24)

where ϕ(w) = 1. Since Q(z) is convex, and zQ′(z) ·ϕ[Q(z)] = zQ′(z) is starlike, Lemma 1.1
gives the desired result.
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Example 2.8. When

Q(z) := 1 +
z

λ(p; q)
, (2.25)

Theorem 2.7 is reduced to the following result in [5, page 4, Theorem 2.4]. For f ∈ Ap,

∣∣∣∣f
(q)(z) ·

(
zf (q+1)(z)
f (q)(z)

− p + q

)∣∣∣∣ ≤ |z|p−q =⇒ ∣∣f (q)(z) − λ(p; q)zp−q
∣∣ ≤ |z|p−q. (2.26)

In the special case q = 1, this result gives a sufficient condition for the multivalent function
f(z) to be close-to-convex.

Theorem 2.9. Let Q(z) be convex univalent in U and Q(0) = 1. If f ∈ Ap satisfies

zf (q+1)(z)
λ(p; q)zp−q

≺ zQ′(z) + (p − q)Q(z), (2.27)

then

f (q)(z)
λ(p; q)zp−q

≺ Q(z), (2.28)

and Q is the best dominant.

Proof. Define the function P(z) by P(z) = f (q)(z)/λ(p; q)zp−q. It follows from (2.5) that

zP ′(z) + (p − q)P(z) ≺ zQ′(z) + (p − q)Q(z), (2.29)

that is,

zP ′(z) + θ
[
P(z)

] ≺ zQ′(z) + θ
[
Q(z)

]
, (2.30)

where θ(w) = (p − q)w. The conditions in Lemma 1.2 are clearly satisfied. Thus f (q)(z)/
λ(p; q)zp−q ≺ Q(z), and Q is the best dominant.

Taking q = 0, Theorem 2.9 yields the following corollary.

Corollary 2.10 (see [17, Corollary 2.11]). Let Q(z) be convex univalent in U, and Q(0) = 1. If
f ∈ Ap satisfies

f ′(z)
zp−1

≺ zQ′(z) + pQ(z), (2.31)
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then

f(z)
zp

≺ Q(z). (2.32)

With p = 1, Corollary 2.10 yields the following corollary.

Corollary 2.11 (see [17, Corollary 2.9]). Let Q(z) be convex univalent in U, and Q(0) = 1. If
f ∈ A satisfies

f ′(z) ≺ zQ′(z) +Q(z), (2.33)

then

f(z)
z

≺ Q(z). (2.34)

Theorem 2.12. Let Q(z) be univalent and nonzero in U, Q(0) = 1, and zQ′(z)/Q2(z) be starlike.
If f ∈ Ap satisfies

λ(p; q)zp−q

f (q)(z)
·
(
zf (q+1)(z)
f (q)(z)

− p + q

)
≺ zQ′(z)

Q2(z)
, (2.35)

then

f (q)(z)
λ(p; q)zp−q

≺ Q(z), (2.36)

and Q is the best dominant.

Proof. Define the function P(z) by P(z) = f (q)(z)/λ(p; q)zp−q. It follows from (2.5) that

λ(p; q)zp−q

f (q)(z)
·
(
zf (q+1)(z)
f (q)(z)

− (p − q)
)

=
1

P(z)
· zP

′(z)
P(z)

=
zP ′(z)
P 2(z)

. (2.37)

By assumption,

zP ′(z)
P 2(z)

≺ zQ′(z)
Q2(z)

. (2.38)

With ϕ(w) := 1/w2, (2.38) can be written as zP ′(z) ·ϕ[P(z)] ≺ zQ′(z) ·ϕ[Q(z)]. The function
ϕ(w) is analytic in C − {0}. Since zQ′(z)ϕ[Q(z)] is starlike, it follows from Lemma 1.1 that
P(z) ≺ Q(z), and Q(z) is the best dominant.
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The next four theorems give sufficient conditions for the following differential subor-
dination

zf (q+1)(z)
f (q)(z)

− p + q + 1 ≺ Q(z) (2.39)

to hold.

Theorem 2.13. Let Q(z) be univalent and nonzero in U, Q(0) = 1, Q(z)/= q − p + 1, and
zQ′(z)/[Q(z)(Q(z) + p − q − 1)] be starlike in U. If f ∈ Ap satisfies

1 + (zf (q+2)(z)/f (q+1)(z)) − p + q + 1
(zf (q+1)(z)/f (q)(z)) − p + q + 1

≺ 1 +
zQ′(z)

Q(z)(Q(z) + p − q − 1)
, (2.40)

then

zf (q+1)(z)
f (q)(z)

− p + q + 1 ≺ Q(z), (2.41)

and Q is the best dominant.

Proof. Let the function P(z) be defined by

P(z) =
zf (q+1)(z)
f (q)(z)

− p + q + 1. (2.42)

Upon differentiating logarithmically both sides of (2.42), it follows that

zP ′(z)
P(z) + p − q − 1

= 1 +
zf (q+2)(z)
f (q+1)(z)

− zf (q+1)(z)
f (q)(z)

. (2.43)

Thus

1 +
zf (q+2)(z)
f (q+1)(z)

− p + q + 1 =
zP ′(z)

P(z) + p − q − 1
+ P(z). (2.44)

The equations (2.42) and (2.44) yield

1 + (zf (q+2)(z)/f (q+1)(z)) − p + q + 1
(zf (q+1)(z)/f (q)(z)) − p + q − 1

=
zP ′(z)

P(z)(P(z) + p − q − 1)
+ 1. (2.45)

If f ∈ Ap satisfies the subordination (2.40), (2.45) gives

zP ′(z)
P(z)(P(z) + p − q − 1)

≺ zQ′(z)
Q(z)(Q(z) + p − q − 1)

, (2.46)
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that is,

zP ′(z) ·ϕ[P(z)] ≺ zQ′(z) ·ϕ[Q(z)
]

(2.47)

with ϕ(w) := 1/w(w + p − q − 1). The desired result is now established by an application of
Lemma 1.1.

Theorem 2.13 contains a result in [18, page 122, Corollary 4] as a special case. In
particular, we note that Theorem 2.13 with p = 1, q = 0, and Q(z) = (1 + Az)/(1 + Bz)
for −1 ≤ B < A ≤ 1 yields the following corollary.

Corollary 2.14 (see [18, page 123, Corollary 6]). Let −1 ≤ B < A ≤ 1. If f ∈ A satisfies

1 + (zf ′′(z)/f ′(z))
zf ′(z)/f(z)

≺ 1 +
(A − B)z

(1 +Az)2
, (2.48)

then f ∈ S∗[A,B].

For A = 0, B = b and A = 1, B = −1, Corollary 2.14 gives the results of Obradovič and
Tuneski [19].

Theorem 2.15. Let Q(z) be univalent and nonzero in U, Q(0) = 1, Q(z)/= q − p + 1, and let
zQ′(z)/[Q(z) + p − q − 1] be starlike in U. If f ∈ Ap satisfies

1 +
zf (q+2)(z)
f (q+1)(z)

− zf (q+1)(z)
f (q)(z)

≺ zQ′(z)
Q(z) + p − q − 1

, (2.49)

then

zf (q+1)(z)
f (q)(z)

− p + q + 1 ≺ Q(z), (2.50)

and Q is the best dominant.

Proof. Let the function P(z) be defined by (2.42). It follows from (2.43) and the hypothesis
that

zP ′(z)
P(z) + p − q − 1

≺ zQ′(z)
Q(z) + p − q − 1

. (2.51)

Define the function ϕ by ϕ(w) := 1/(w + p − q − 1). Then (2.51) can be written as

zP ′(z) ·ϕ[P(z)] ≺ zQ′(z) ·ϕ[Q(z)
]
. (2.52)

Since ϕ(w) is analytic in a domain containingQ(U), and zQ′(z) ·ϕ[Q(z)] is starlike, the result
follows from Lemma 1.1.
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Theorem 2.16. Let Q(z) be a convex function in U, and Q(0) = 1. If f ∈ Ap satisfies

zf (q+1)(z)
f (q)(z)

[
2 +

zf (q+2)(z)
f (q+1)(z)

− zf (q+1)(z)
f (q)(z)

]
≺ zQ′(z) +Q(z) + p − q − 1, (2.53)

then

zf (q+1)(z)
f (q)(z)

− p + q + 1 ≺ Q(z), (2.54)

and Q is the best dominant.

Proof. Let the function P(z) be defined by (2.42). Using (2.43), it follows that

zf (q+1)(z)
f (q)(z)

(
1 +

zf (q+2)(z)
f (q+1)(z)

− zf (q+1)(z)
f (q)(z)

)
= zP ′(z), (2.55)

and, therefore,

zf (q+1)(z)
f (q)(z)

(
2 +

zf (q+2)(z)
f (q+1)(z)

− zf (q+1)(z)
f (q)(z)

)
= zP ′(z) + P(z) + p − q − 1. (2.56)

By assumption,

zP ′(z) + P(z) + p − q − 1 ≺ zQ′(z) +Q(z) + p − q − 1, (2.57)

or

zP ′(z) + θ
[
P(z)

] ≺ zQ′(z) + θ
[
Q(z)

]
, (2.58)

where the function θ(w) = w+p−q+1. The proof is completed by applying Lemma 1.2.

Theorem 2.17. Let Q(z) be a convex function in U, with Q(0) = 1. If f ∈ Ap satisfies

zf (q+1)(z)
f (q)(z)

[
1 +

zf (q+2)(z)
f (q+1)(z)

− zf (q+1)(z)
f (q)(z)

]
≺ zQ′(z), (2.59)

then

zf (q+1)(z)
f (q)(z)

− p + q + 1 ≺ Q(z), (2.60)

and Q is the best dominant.
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Proof. Let the function P(z) be defined by (2.42). It follows from (2.43) that zP ′(z) ·ϕ[P(z)] ≺
zQ′(z) ·ϕ[Q(z)],where ϕ(w) = 1. The result follows easily from Lemma 1.1.

Acknowledgment

This work was supported in part by the FRGS and Science Fund research grants, and was
completed while the third author was visiting USM.

References
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