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Abstract

Background: Inference of biological networks has become an important tool in Systems Biology. Nowadays it is
becoming clearer that the complexity of organisms is more related with the organization of its components in
networks rather than with the individual behaviour of the components. Among various approaches for inferring
networks, Bayesian Networks are very attractive due to their probabilistic nature and flexibility to incorporate
interventions and extra sources of information. Recently various attempts to infer networks with different Bayesian
Networks approaches were pursued. The specific interest in this paper is to compare the performance of three
different inference approaches: Bayesian Networks without any modification; Bayesian Networks modified to take
into account specific interventions produced during data collection; and a probabilistic hierarchical model that
allows the inclusion of extra knowledge in the inference of Bayesian Networks. The inference is performed in three
different types of data: (i) synthetic data obtained from a Gaussian distribution, (ii) synthetic data simulated with
Netbuilder and (iii) Real data obtained in flow cytometry experiments.

Results: Bayesian Networks with interventions and Bayesian Networks with inclusion of extra knowledge
outperform simple Bayesian Networks in all data sets when considering the reconstruction accuracy and taking the
edge directions into account. In the Real data the increase in accuracy is also observed when not taking the edge
directions into account.

Conclusions: Although it comes with a small extra computational cost the use of more refined Bayesian network
models is justified. Both the inclusion of extra knowledge and the use of interventions have outperformed the
simple Bayesian network model in simulated and Real data sets. Also, if the source of extra knowledge used in the
inference is not reliable the inferred network is not deteriorated. If the extra knowledge has a good agreement
with the data there is no significant difference in using the Bayesian networks with interventions or Bayesian
networks with the extra knowledge.

Background
The rapid increase in the availability and diversity of mole-
cular biology data has enabled many discoveries and
advances in different fields related with systems biology.
Many of these studies were based in a single biological
entity or the union of several such entities. Nowadays the

research community is realizing that the complexity of an
organism is related with the network of single entities
rather than with the individual biological entity. It is now
clearer that the joint acting of several components through
a network of interactions plays a pivotal role in determin-
ing the development and sustainability of an organism.
Therefore, the study of biological networks is highly
relevant. The problem is that these intricate biological net-
works are mainly unknown. Since we have at our disposal
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many different types of measurements taken from the
components of these networks one interesting approach
would be to try to reconstruct such networks.
In the last few years, several methods for the recon-

struction of regulatory networks and biochemical path-
ways from data have been proposed. These methods
were reviewed for example in [1,2].
Differential Equations are the most refined mathematical

method to describe biophysical processes. They can
describe, for example, the intra-cellular processes of tran-
scription factor binding, diffusion, and RNA degradation;
see, for instance, [3]. Such detailed descriptions of the
dynamics are essential to an accurate understanding of
regulatory networks but they require substantial prior
knowledge about the system under investigation. For
instance it is necessary to specify how the entities of the
system relate with each other and all the parameters of
the biochemical reactions. Although differential equations
are the most accurate way of representing regulatory net-
works their use is limited by the necessity of substantial
prior knowledge about the system they are representing.
At the other extreme is the coarse grain approach of clus-
tering which has been widely applied to the analysis of
microarray gene expression data [2,4]. Clustering methods
have very low computational costs to extract qualitative
information about co-expression, but they are not power-
ful enough to provide the inference of the detailed struc-
ture of the underlying biochemical signalling pathways.
A promising compromise between these two extremes

are Machine Learning methods that allow interactions
between the nodes in the network to be represented in an
abstract way - without the level of detail of the underlying
pathways described by Differential Equation models - and
to infer these interactions from data in a systems context,
that is, distinguishing direct interactions from indirect
interactions that are mediated by other nodes in the
domain.
A non exhaustive list of methods used to infer the struc-

ture of networks from data includes: a system of Coupled
Differential Equations [3], Graphical Gaussian Models
[5,6], Relevance Networks [7] and Bayesian Networks
[8-10]. See [11] for a comparison of some of the methods
aforementioned. The main focus in this study is the sys-
tematic comparison amongst different BNs approaches. In
all the approaches investigated in this paper a score-based
inference scheme is followed. In this scheme a score is
assigned to a particular model (network structure) given
some observed data. The approaches investigated are: (i) a
simple BN, (ii) a BN which benefits from interventions
that are made in the system of interest during the mea-
surement of the data and (iii) a probabilistic model which
enables the use of extra knowledge in the inference. Here-
after we name BNs with interventions as BN-I and BNs
with extra knowledge as BN-E.

Results
Evaluation criteria
Not all of the edge directions in a Bayesian network can
always be inferred. This is due to the existence of equiva-
lence classes of networks [12] which may lead to partially
directed graphs. In view of the presence of directed and
partially directed graphs, we apply two different criteria to
assess the performance of the methods. In one of the
approaches the information about the edge directions is
completely discarded. Whenever two nodes are connected
by a directed edge this edge is replaced by an undirected
one. This approach is called the undirected graph evalua-
tion (UGE). The other approach considers a predicted
undirected edge as the superposition of two directed
edges, pointing in opposite directions. This approach is
called the directed graph evaluation (DGE). The result of
the MCMC simulation is a sample of network structures
which leads to a matrix of marginal posterior probabilities
associated with the edges in a network. This defines a
ranking of the edges. This ranking defines a receiver
operator characteristics (ROC) curve, where the relative
number of true-positive (TP) edges is plotted against the
relative number of false-positive (FP) edges. Ideally we
would compare the whole ROC curves but this is imprac-
tical. Therefore, we use the area under the ROC curve
(AUC). The AUC summarizes the results for all the
thresholds. A perfect predictor would produce an AUC
value of 1.00. Conversely, a random predictor would pro-
duce an AUC value around 0.50. In general, bigger area
values represent better predictors.

Inference results
MCMC simulations are performed for all the
approaches and data sets twice in order to check con-
vergence. The convergence is verified by plotting the
posterior probabilities of the edges from two different
simulations initializations and checking if the results are
similar. Note that this is a necessary but not a sufficient
condition for convergence. All the MCMC simulations
are executed with 5 × 105 steps from which the first
half were discarded as burn-in.
The extra knowledge used in conjunction with the real

data in the BN-E approach was obtained from Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
database [13-15] as described in [16]. For the synthetic
data sets, obtained from a Gaussian distribution and
from Netbuilder, we used two distinct sources of extra-
knowledge, one completely correct (B100) , and one half
correct i.e. half of the entries are correct and the other
half is wrong, (B50) .
In Figure 1 we present a typical result of the hyper-

parameters for the two different sources of extra-knowl-
edge used with synthetic data, B50 and B100 , and for
Real data, KEGG. The results presented are the
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posterior distribution of the hyper-parameters obtained
with a kernel estimator. In other words, the hyper-
parameter is sampled with an MCMC scheme and in
Figure 1 it is shown the distribution of these sampled
hyper-parameters. The values of the hyper-parameter
are an indicator of how much the extra knowledge
agrees with the available data. The completely correct
extra-knowledge, B100 , is fully integrated in the infer-
ence as is indicated by the wide range of large values
sampled to the hyper-parameter. Conversely, when
considering the half correct extra-knowledge, B50 , the
low values of the sampled hyper-parameter indicates
that the extra-knowledge available is not completely
integrated in the inference. For the Real data we can
see that the extra knowledge from KEGG is not in
complete agreement as is B100 but it presents a slightly
higher agreement in terms of the hyper-parameter than
the one presented when considering B50 .
In Figure 2 it is presented a comparison of reconstruc-

tion accuracy. Each of the three sub-figure presents the
results for one type of data set, Gaussian, Netbuilder
and Real data. For each data set type there are two
groups of results, one obtained when taking the edge
directions into account (DGE) and the other obtained
when taking only the skeleton of the network into

account. Each bar represents the AUC value, averaged
over five data sets, for the different methods as indicated
in sub-figures legend. The errorbar shows the respective
standard deviations. For Real data only one source of
extra-knowledge is used, therefore, there is one less bar
in the results.

Discussion
Figure 1 provides an indication about how the method
BN-E can benefit from different types of extra knowl-
edge. We can observe that when the method is asso-
ciated with the extra knowledge, B100 , the extra
knowledge is effectively used as is indicated by the wide
distribution of the sampled hyper-parameters. Conver-
sely, when the method is associated with extra knowl-
edge that is not in perfect agreement with the data, as is
the case in B50 and KEGG, it moderately uses the extra
knowledge as is evidenced by the distribution of their
sampled hyper-parameters close to zero.
One interesting aspect observed is the behaviour of

the hyper-parameter of the BN-E approach and the
reconstruction accuracy obtained with this method. As
we can see from Figure 1 the sampled hyper-parameter
for the extra knowledge B50 is much smaller than the
one sampled for B100 . It is important to notice that this

Figure 1 Posterior distribution of hyper-parameter. In the figure B50 is the solid line with circles, B100 is the dashed line and KEGG is the
dotted line with crosses. This figure summarizes the typical hyper-parameter found by the BN-E for both sources of extra knowledge available,

B50 and B100 , when applied to the Gaussian and Netbuilder data and for the extra knowledge from KEGG applied to the Real data. The
posterior distribution of the sampled hyper-parameters is estimated with a kernel estimator.
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is the expected behaviour of the hyper-parameter. If we
observe Figures 2 left and center we can see that the
accuracy of the recovered structure is much higher for
B100 than for B50 and that this difference is more pro-
nounced for the DGE evaluation criterion. Also, note
that the AUC values obtained for B50 are in fact very
similar to the ones obtained by the BN approach. This
behaviour suggests that in order to the BN-E approach
to take advantage from the extra knowledge available it
has to have a very good agreement with the data. More-
over, if the data and the extra knowledge are not in
agreement i.e. the extra knowledge is not beneficial to
the inference, the BN-E approach does not suffer any
impairment.
Observing the results for synthetic data in Figures 2 left

and central we see that the methods BN-I and BN-E100
clearly outperform the others specially when considering
the edge directions (DGE criterion). This suggests that the
increase in the accuracy of the recovered networks is
related with the edge directions i.e. these methods provide
a way to the break up the symmetries which imply in the
equivalence classes. It is also possible to note that the
addition of the half correct extra knowledge, B50 , did not
improve the results obtained with the BN approach. It is
important to emphasize that the extra knowledge B50 has
half of its entries correct and the other half incorrect. As
there is only one hyper-parameter associated with the
extra knowledge if this hyper-parameter increases the
inference method would use wrong information and cer-
tainly the result would be worse than without any extra
knowledge. Therefore, this explains why the BN-E50

approach had the hyper-parameter sampled at very small
values and, hence, has not improved the accuracy of the
reconstructed network.

In Figure 2 right we see that both BN-I and BN-E out-
performed BN increasing substantially the accuracy of
the recovered networks for the Real data. Interestingly
though, in this case both the DGE and UGE criteria
have benefited of the extra information introduced by
both approaches. We see that the hyper-parameter asso-
ciated with the KEGG prior is slightly higher than the
hyper-parameter associated with the B50 . This is
explained by the construction of the KEGG prior where
unknown entries were regarded as unknown (Bi,j = 0.5)
as opposite to the extra knowledge B50 where half of
the entries are wrong.

Conclusion
BNs are very attractive to the inference of the structure
of networks by various reasons. One of the main advan-
tages of BNs is its flexibility. In this paper we compared
different BNs approaches where two of them are exten-
sions of the classical BNs framework. The essence of
both of these extensions of BNs is the inclusion of
knowledge other than the data in the inference. If the
BN-I interventions are taken into consideration and in
the BN-E extra knowledge is added to the learning
scheme.
Observing the results in Figure 2 we can conclude that

both BN-I and BN-E100 perform better than the simple
BN. This performance is significantly better when the
comparison takes into account the edge directions (DGE
score). This leads to the conclusion that both methods in
fact perform better because they are able to destroy the
equivalence classes symmetries. Another interesting con-
clusion is obtained when we observe Figure 1 in conjunc-
tion with Figure 2. It is clear that in order to the BN-E to
benefit from the available extra-knowledge this has to

Figure 2 Comparison of reconstruction accuracy. Each sub-figure presents the results for one type of data set as indicated at the top of the
sub-figure. For each data set type there are two groups of results, one obtained when taking the edge directions into account (DGE) and the
other obtained when taking only the skeleton of the network into account. Within a figure each bar represents the AUC average over five data
sets for different methods which are indicated in the legend of the sub-figures. The errorbars show the respective standard deviations. For Real
data only one source of extra-knowledge is used, therefore, there is one less bar in the results.
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have a very good agreement with the data as is the case
with the B100 extra knowledge. If this is not the case, the
behaviour is similar to the one presented by the extra
knowledge B50 where the hyper-parameter is sampled at
values close to zero effectively switching off the use of the
extra knowledge, hence not improving the AUC scores.
Interestingly there are no significant differences when

comparing the two best methods, BN-I and BN-E100, as can
be observed in Figure 2. Both performed equally well in all
the data sets used in this work. Therefore, there is no clear
indication about which of these methods should be used.
Nonetheless, it is clear that using any of them is a great
advantage over the simple BN. The decision to chose
among BN-E and BN-I will have to be made according to
the system in study and the data available. For systems in
which there are plenty of available extra knowledge this
study suggests that it is not necessary to perform such
expensive experiments with interventions. Conversely, if
the system under scrutiny does not have extra knowledge
available, it may be advisable to perform experiments with
interventions. It is worth to note that even if there is plenty
of extra knowledge available it is impossible to know
beforehand if this will be in good agreement with the data.
One indication about the quality of the extra knowledge
can be obtained by the observation of the distribution of
the sampled hyper-parameters as it is presented in Figure 1.
The main conclusion is that the use of more refined

Bayesian network models significantly improves the
results. Both more refined methods, BN-E and BN-I, per-
formed equally well and, hence, their choice should be
made according to the quality and availability of the data
obtained from the system under investigation.

Methods
Bayesian Networks - BNs
Bayesian Networks (BNs) are a combination of probability
theory and graph theory. A graphical structure M , a
family of conditional probability distributions F and their
parameters q, fully specify a BN. The graphical structure
M of a BN consists of a set of nodes and a set of directed
edges. The nodes represent random variables, while the
edges indicate conditional dependence relations. The
family of conditional probability distributions F and their
parameters q specify the functional form of the conditional
probabilities associated with the edges, that is, they indicate
the nature of the interactions between nodes and the inten-
sity of these interactions. A BN is characterized by a simple
and unique rule for expanding the joint probability in
terms of simpler conditional probabilities. This follows the
local Markov property: A node is conditionally independent
of its non descendants given its parents. Due to this prop-
erty, the structure M of a BN has necessarily to be a
directed acyclic graph (DAG), that is, a network without
any directed cycles. Let X1, X2, ..., XNbe a set of random

variables represented by the nodes i Î{1, ..., N} in the
graph, define πi[G] to be the parents of node Xiin graph G,
and let Xπ i

[G] represent the set of random variables asso-
ciated with πi[G]. Then we can write the expansion for the

joint probability as P(X1, ... ,XN) =
∏N

i=1
P(Xi|Xπ i

[G]) .

The task of learning a BN structure in a score-based
approach consists in devising a BN structure from a given
set of training data D . The main aim is to find a DAG
structure that better explains the data available for learn-
ing. If we define that M is the space of all models, the
first goal is to find a model M∗ ∈ M that is most sup-

ported by the data D , M∗ = argmax
M

{P(M|D)} . Having

the best structure M∗ and the data D , we can now find
the best parameters, q = argmaxq{P(q|M∗,D|} If we

apply Bayes’ rule we get P(M|D)∞P(D|M)P(M)
where the marginal likelihood implies an integration over
the whole parameter space:

P(D|M) =
∫

P(D|q,M)P(q|M)dq (1)

The integral in Equation 1, our score, is analytically
tractable when the data is complete and the prior
P(q|M) and the likelihood P(D|q,M) satisfies certain
regularity conditions [17,18].
According to Equation 1 we have a way to assign a

score to a graphical structure given a data set. However,
the search for high scoring structures is not trivial. It is
impossible to list the whole set of structures because its
number increases super-exponentially with the number
of nodes. Also when considering an sparse data set
P(M|D) is diffuse, meaning that P(M|D) will not be
properly represented by a single structure M∗ . Hence, a
Markov chain Monte Carlo (MCMC) scheme is adopted
[19], which under fairly general regularity conditions is
theoretically guaranteed to converge to the posterior
distribution [20]. Given a network structure Mold, a
network structure Mnew is proposed from the proposal
distribution Q(Mnew|Mold) , which is then accepted
according to the standard Metropolis-Hastings [20]
scheme with the following acceptance probability:

A = min
{
P(D|Mnew)P(Mnew)Q(Mold|Mnew)
P(D|Mold)P(Mold)Q(Mnew)(Mold)

, 1
}

(2)

In this paper we use the standard MCMC proposal
which consists in to propose, at each interaction, one of
the basic operations of adding, removing or reversing an
edge. For more details about this scheme see [10].

Bayesian Networks with Interventions - BN-I
Nowadays molecular biology has different techniques for
producing interventions in biological systems, for instance,
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knocking genes down with RNA interference or transpo-
son mutagenesis. The consequence is that the components
of the system which are targeted by the interventions are
no longer subject to the internal dynamics of the system
under investigation. The components of the biological sys-
tem can be either activated (up-regulated) or inhibited
(down-regulated) and under this external intervention
their values are no longer stochastic. The intervened com-
ponents are not subject to the internal dynamics of the
system, hence their values are deterministic. However, the
other components which are not intervened are influenced
by these deterministic values. Therefore, interventions are
very useful to break the symmetries within the equivalence
classes of BNs and consequently to the discovery of puta-
tive causal relationships. For a discussion about equiva-
lence classes see [21] and for a discussion about putative
causal relationships see [12,22].
In order to incorporate the interventions under the

BN framework two small modifications are necessary.
The calculation of the score for observational data
P(D|M) as defined in Equation (1) is modified. Effec-
tively the measurements of a node Xiunder intervention
are removed from the computation of the score.
The second necessary modification is related to the defi-

nition of equivalence classes. In [23] it is defined the Tran-
sition Sequence equivalent networks (TS-equivalent). Two
networks M1 and M2 are TS-equivalent if and only if
they have the same skeleton, the same set of v-structures
and the same set of parents for all manipulated variables.
All edges connected with an intervened node become
directed when the concept of TS-equivalence is applied.
Therefore, new v-structures are formed and further edges
become directed. In order to obtain the TS-equivalent
DAG the procedure presented by [24] is applied. For each
intervened node in the network two dummy nodes are
added each with one directed edge pointing from the
dummy node to the intervened node. The new DAG now
with the dummy nodes added is converted to a CPDAG
(for a discussion about CPDAGs see [25] ). Finally the
dummy nodes are removed and we have the DAG TS-
equivalent graph.
The sampling scheme of the BNs-I is the same of the

BNs and is given by Equation 2.

Bayesian Networks with addition of Extra
knowledge - BN-E
In order to be able to incorporate extra knowledge in
the inference of networks it is necessary to define a
function that measures the agreement between a given
network structure M and the extra knowledge that we
have at our disposal, B . We call this agreement mea-
sure ‘energy’ following the approach proposed in [26].
A network structure M is represented by an adja-

cency matrix where each entry Mij can be either 0 or 1

representing respectively the absence and the presence
of an edge between node-i and node-j. The prior knowl-
edge matrix, or belief matrix, B , is defined to have
entries Bij Î [0, 1] representing our knowledge about
the node interactions. An entry Bij = 0.5 denotes that
we do not have any information about the presence or
absence of an edge between node-i and node-j. If
0 ≤ Bij < 0.5 we have prior evidence that the edge
between node-i and node-j is absent and the evidence is
stronger as Bij is closer to 0. At last, if 0.5 < Bij ≤ 1
we have prior evidence that there is a directed edge
pointing from node-i to node-j. The evidence is stronger
as Bij is closer to 1. It is important to note that the
entries in our belief matrix are not proper probabilities
and they only express our belief, or knowledge obtained
from other sources, about the relationships among
nodes.
Having defined how to represent a BN structure, M ,

and the extra belief, B , the energy of a network is
defined as:

E(M) =
N∑

i,j=1

|Bi,j − Mi,j| (3)

where N is the total number of nodes in the studied
domain. From Equation 3 it is clear that the energy E is
zero for a perfect match between the prior knowledge
B and the actual network structure M , while increas-
ing values of E indicate an increasing mismatch between
B and M .
Following the work of [26] we integrate the prior

knowledge expressed by Equation 3 into the inference
procedure, and define the prior distribution over network
structures, M , to take the form of a Gibbs distribution:

P(M|β) = e−βE(M)∑
M∈Me−βE(M)

(4)

where the energy E(M ) was defined in Equation 3, b
is a hyper-parameter that corresponds to an inverse
temperature in statistical physics, and the denominator
is a normalizing constant that is usually referred to as
the partition function. Note that the summation in the
denominator extends over the set of all possible network
structures. The hyper-parameter b can be interpreted as
a factor that indicates the strength of the influence of
the prior knowledge relative to the data. For b ® 0, the
prior distribution defined in Equation 4 becomes flat
and uninformative about the network structure. Conver-
sely, for b ® ∞, the prior distribution becomes sharply
peaked at the network structure with the lowest energy.
For Dynamic Bayesian Networks the summation in the

denominator of Equation 4 can be computed exactly
and efficiently as discussed in [16] with
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Z(β) =
∏
n

∑
πM(n)

e−βε(n,πM(n)). (5)

In this paper we apply the method only to static BNs
and thus the summation in the denominator of Equation 4
is in fact an upper bound to the true value. This happens
because this summation includes all possible structures
and we are only interested in the DAG structures. Further-
more, throughout this paper we use a fan-in restriction of
three as has been proposed in several other applications,
for instance see [27-29]. This fan-in restriction makes the
summation over all structures closer to the summation of
only the DAGs as it reduces the number of densely con-
nected networks. The partition function approximation
has been investigated elsewhere [16,30] and was not found
to pose a problem to the proposed method.

BN-E MCMC sampling scheme
At this point, having the prior probability distribution
over network structures defined, an MCMC scheme to
sample both the hyper-parameters and the network
structures from the posterior distribution P(M,β|D) is
proposed.
A new network structure Mnew and a new hyper-

parameter βnew are proposed respectively from the pro-
posal distributions Q(Mnew|Mold) and R(βnew|βold) .
This proposed move is then accepted according to the
Metropolis-Hastings update rule [20] with the following
acceptance probability:

A = min
{
P(D|Mnew)
P(D|Mold)

× P(Mnew|βnew)
P(Mold|βold)

× P(βnew)
P(βold)

×
Q(Mold|Mnew)
Q(Mnew|Mold)

× R(βold|βnew)
R(βnew|βold)

, 1
} (6)

which was expanded following the conditional inde-
pendence relationships depicted in Figure 3.
In order to increase the acceptance probability which

in turn can augment the mixing and convergence of the
Markov chain the move is separeted into two submoves.
In the first move a new network structure Mnew is
sampled from the proposal distribution Q(Mnew|Mold)

while keeping the hyper-parameter b fixed. Next, we
sample a new hyper-parameter b from the proposal dis-
tribution R(βnew|βold) for a fixed network structure
M . The two sub-moves are iterated until a conver-
gence criterion is satisfied.

Data sets
One very interesting aspect when comparing different
methods applied to the inference of the structure of net-
works is the ability to compare how they perform when
faced with real data sets. In our case a real data set
means data obtained with real experiments from a real
biological system. Also, the comparison among the
methods with real data is only possible if the network
which the data was generated from is known. We call
this known network the gold-standard network. Taking
these considerations into account we use data from flow
cytometry experiments obtained by [31] where the Raf
signalling pathway, see Figure 4, was studied. This parti-
cular data set is very interesting as it provides high qual-
ity measurements, large amounts of data, intervened
data and a gold-standard network.
Because the interest is to compare the BNs approaches

in the context of inference of networks, where the data
available are usually sparse, we down sampled the origi-
nal data to 100 data points. Furthermore, we average the
results over five data sets. The observational data is
obtained from the original data where no interventions
were realized. The interventional data is sampled from all
the interventions realized in the original data and is com-
posed by: 16 data points without intervention; 14 data
points for each of the inhibited proteins (AKT, PKC,
PIP2, MEK) and 14 data points for each of the activated
proteins (PKC, PKA) proteins, performing a total of 100
data points.
In order to further investigate how the methods com-

pare synthetic data sets were also prepared. These data
are obtained from two different sources: a linear Gaus-
sian distribution and a simulation tool named Net-
builder [32,33]. In both cases, the data is obtained from
the known structure of Figure 4.

Figure 3 Probabilistic Model. The probabilistic graphical model represents conditional independence relationships between the data D , the
network structure M , and the hyper-parameter of the prior on M . The conditional independence relationships can be obtained from the
graph according to the standard rules of factorization in Bayesian networks, as discussed, e.g., in [34]. This leads to the following expansion:
P(D,M,β) = P(D|M)P(M|β)P(β) .

Werhli BMC Genomics 2012, 13(Suppl 5):S2
http://www.biomedcentral.com/1471-2164/13/S5/S2

Page 7 of 9



Considering N (.) to denote the Normal distribution, a
random variable xiis sampled from a linear Gaussian dis-
tribution with value distributed according to
xi ∼ N (

∑
kwikxk, σ 2) where the sum extends over all

parents of node i and xk represents the value of node k.
The standard deviation is set to s = 0.1 and the interac-
tion strengths |wik| are sampled from the uniform distri-
bution over the interval [0.5, 2], where the sign of wikis
randomly varied.
In Netbuilder a sigma-pi formalism is implemented as

an approximation to the solution of a set of Ordinary
Differential Equations that models enzyme-substrate reac-
tions, allowing the acquisition of data typical of signals
measured in molecular biology. The data sets simulated
with Netbuilder are closely related to real data sets when
compared with the Gaussian data. For more details about
the data generation see [11].
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