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Abstract

Background: RNA-seq is a well-established method for studying the transcriptome. Popular methods for library
preparation in RNA-seq such as Illumina TruSeq® RNA v2 kit use a poly-A pulldown strategy. Such methods can
cause loss of coverage at the 5′ end of genes, impacting the ability to detect fusions when used on degraded
samples. The goal of this study was to quantify the effects RNA degradation has on fusion detection when using
poly-A selected mRNA and to identify the variables involved in this process.

Results: Using both artificially and naturally degraded samples, we found that there is a reduced ability to detect
fusions as the distance of the breakpoint from the 3′ end of the gene increases. The median transcript coverage
decreases exponentially as a function of the distance from the 3′ end and there is a linear relationship between the
coverage decay rate and the RNA integrity number (RIN). Based on these findings we developed plots that show
the probability of detecting a gene fusion (“sensitivity”) as a function of the distance of the fusion breakpoint from
the 3′ end.

Conclusions: This study developed a strategy to assess the impact that RNA degradation has on the ability to
detect gene fusions by RNA-seq.
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Background
RNA-seq [1] is a popular method that uses Next Gener-
ation Sequencing (NGS) to assess the diversity of the tran-
scriptome. Such method has been used successfully to
measure gene expression [2], identify gene fusions [3–5]
and detect expressed Single Nucleotide Variants (eSNV)
[6, 7] and is increasingly used in the clinical realm [8].
The major steps involved in RNA-seq include 1) li-

brary preparation where the RNA is converted into small
fragments of cDNA, 2) NGS where those DNA frag-
ments are sequenced and 3) bioinformatics analysis
where the fragments are aligned to the reference genome
and processed to identify features of biological interest.
The Illumina TruSeq RNA v2 kit is a popular method

for next generation sequencing library preparation from

mRNA that uses a “poly-A pulldown” which refers to
the use of oligo (dT) coated magnetic beads to capture
polyadenylated mRNA. Large projects such as The Can-
cer Genome Atlas (TCGA) [9] and the Genotype-Tissue
Expression (GTEx) [10] have used this method exten-
sively. It is already known that when sequencing partially
degraded samples, the poly-A pulldown chemistry causes
less read coverage at the 5′ end of the gene and results
in biases in gene quantification. Because of this, a variety
of methods [11–15] have been developed that assess the
level of degradation at the sample or transcript level and
reduce this bias when performing gene quantification.
The earliest method [13] represents the RNA degrad-
ation at the transcript level using an exponential model
and proposes a method to estimate the isoform expres-
sion. Another method [12] argues for the use of the
RNA Integrity Number (RIN) as a variable in a linear
model to correct for the effect of degradation in gene
quantification. 3′ Tag Counting [11] performs gene
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quantification by considering only reads that occur
within a particular distance of the 3′ end. The mRNA
integrity number (mRIN) [15] uses a modified
Kolmogorov-Smirnov statistic to model the 3′ bias at
the transcript level and argues for the use of such metric
to exclude samples from the analysis. A similar method,
the Transcript Integrity Number (TIN) calculates the en-
tropy of coverage at the transcript level and uses such
measure to adjust the gene expression. These methods
do not address the effect of degradation in fusion detec-
tion which we describe next.
Gene fusions are chimeric transcripts where parts of

two known genes are expressed in a single transcript.
RNA-seq has been successful in identifying fusions and
there are numerous tools with which to do this [4, 16–19].
These tools work by detecting and aggregating reads
which either span the fusion junction (usually referred to
as spanning reads) or read pairs where each part of the
read maps to a different gene (usually referred to as
encompassing reads). The sequencing depth in an RNA-
seq experiment impacts the number of spanning and
encompassing reads, hence the sensitivity of popular fu-
sion detection tools decreases as the total sequencing
depth is reduced and reaches a peak at around 15 to 35
million reads [18].
A recent study [20] reports that poly-A pulldown li-

braries negatively affect fusion detection in degraded
samples and argues for the use of an exome capture step
during library preparation. Furthermore, it has been
shown that methods that avoid the use of poly-A selec-
tion such as RiboMinus [11] or capture enrichment [20]
do not suffer from 3′ bias. However, given the large
amount of publicly available RNA-seq data using poly-A
pulldown libraries, we sought to quantify the effects
RNA degradation has on fusion detection accuracy when
using the Illumina TruSeq method and to characterize
the variables involved in this process and their effect on
the sensitivity of fusion detection. To do this we utilized
RNA isolated from the KU812 tumor cell line [21] and
the Universal Human Reference (UHR) RNA tumor
samples [22] and experimentally degraded the RNA in
these samples to different RNA Integrity Number (RIN)
[23] values. We also explored the impact RNA degrad-
ation had on fusion detection in normal and tumor
specimens with naturally varying levels of RNA
degradation.

Results
In a degraded chronic myelogenous leukemia (CML) cell
line the BCR-ABL fusion was not detected while the
reciprocal ABL-BCR fusion was found
KU812 is a myeloid cell line established from a patient
with chronic myelogenous leukemia (CML) [21]. One of
the hallmarks of CML is the t (9;22) (q34;q11.2) [24]

translocation that results in a BCR-ABL fusion [25]
which is a driver of the disease. In an attempt to
characterize the effect of RNA degradation on the detec-
tion of fusions by RNA-seq we artificially degraded RNA
isolated from the KU812 cell line to various RIN values
(10, 7, 5, and 3) and performed RNA-seq.
Using the intact RNA (RIN 10) from the KU812 cell

line we identified a BCR-ABL fusion with 1.82 support-
ing events per million reads (around 27 supporting reads
in a sample with 15 million reads) and its reciprocal
ABL-BCR fusion with 0.63 supporting events per million
reads (around 9 supporting reads in sample with 15 mil-
lion reads) (Fig. 1a). In the degraded samples (RIN
values 7, 5 and 3) we detected the ABL-BCR fusion but
did not detect the BCR-ABL fusion (Fig. 1a). We noticed
that the two fusion products have substantially different
distances from the fusion breakpoint to the 3′ end of
the transcript (approximately 1.5 kb for ABL-BCR and
5.3 kb for BCR-ABL) (Fig. 1b). We speculated that this
might explain the differences in fusion product support-
ing reads identified for the ABL-BCR and BCR-ABL fu-
sion at different RIN values.
A plot of the number of reads starting from the 3′end

up to the BCR-ABL breakpoint (Fig. 1c, Additional file 1:
Figure S1a) and ABL-BCR fusion breakpoint (Fig. 1d,
Additional file 1: Figure S1b) reveals that the level of
coverage is relatively constant for the sample with a RIN
of 10. However, for both fusions RNA degradation caused
an increase in read counts at the 3′ end of the transcript,
with a subsequent non-linear decrease in read counts as a
function of the 3′ distance. The number of reads close to
the ABL-BCR breakpoint is similar across all levels of deg-
radation (Fig. 1d, Additional file 1: Figure S1b) resulting in
the detection of the ABL-BCR fusion at all four RIN values
(Fig. 1a). In contrast, the number of reads close to the
BCR-ABL breakpoint drops dramatically and results in the
inability to detect such a fusion in the degraded samples
(Fig. 1c, Additional file 1: Figure S1a).

Median coverage decreases exponentially as a function of
the distance from the 3′ end
To more accurately characterize the effect RNA degrad-
ation has on read coverage of the transcripts we chem-
ically degraded Universal Human Reference RNA (UHR)
to six RIN values (8.6, 8.4, 7.6, 5.9, 4.9 and 3.9) and per-
formed RNA-Seq analysis. We measured the read cover-
age for all expressed genes as a function of transcript 3′
end distance (Fig. 2a, Additional file 2: Figure S2a) and ob-
served that read coverage decreased as a function of both
3′ distance and sample RIN value. Furthermore, there was
an exponential relationship between the median coverage
and the distance from the 3′ end (Fig. 2a, Additional file
3: Table S2). The rate of exponential decay increased for
highly degraded samples. We obtained similar results
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(Additional file 2: Figure S2b, Additional file 3: Table S2)
in a replicate study using a public dataset [11] that had de-
graded and sequenced RNA from a U251 MG brain glio-
blastoma cell line using similar methods.
For a degraded sample we can increase the sequencing

depth to obtain the coverage levels of an intact sample. We
estimated this increase in sequencing depth as a function
of the 3′ distance for the UHR sample at different levels of
degradation (Additional file 2: Figure S2c). Given that the
read coverage decreases exponentially as a function of the
3′ distance we have that even for a mildly degraded sample
(RIN = 8.4) we need around 1.8x more reads to achieve ad-
equate coverage at a distance of 2.5 kb from the 3′ end
and around 4.9x more sequencing depth to achieve the
same level of coverage at 5 kb from the 3′ end. For a highly
degraded sample (RIN = 3.9) we need 9.4x and 28.3x more
reads at a distance of 2.5 kb and 5 kb from the 3′ end, re-
spectively. This fact makes the strategy of adding sequen-
cing depth prohibitively expensive in practice.

Coverage and decay profile of fusion related genes
We defined the median coverage decay rate per kilobase
(decay rate for short) as the rate of decay of the median
read coverage as a function of the distance from the 3′ end
of the mRNA multiplied by 1 kb. The median read decay
rates for the UHR and U251 samples at different RIN
values are shown in Fig. 2b and similar median read decay

rates were observed for independent samples with similar
RIN values. This relationship can be modeled as Me-
dian coverage decay rate/kb = − 1.45 + 0.13 RIN with an
R2 = 0.92. As expected, samples with lower RIN values had
a larger negative decay rates and samples with high RIN
values had a decay rate close to 0. It should be noted that
there were samples that deviated from the model, for ex-
ample our UHR sample with a RIN of 8.6 has a decay rate
close to 0 even though it would have been expected to have
a decay rate of approximately −0.2.
To characterize any bias associated with genes known

to be part of cancer-related fusions, we queried all fusion
partner genes in the COSMIC database [26]. Based on
this gene set, the median distance of fusion breakpoints
from the 3′ end is 2.7 kb, with approximately 80 % of
the breakpoints occurring within 5 kb of the 3′ end and
95 % occurring within 7 kb of the 3′end (Fig. 2c). We
then expanded this analysis to include fusion partners
reported in the Atlas of Genetics and Cytogenetics in
Oncology and Hematology [27] and scientific literature
for potentially clinically significant gene fusions in solid
and hematologic tumors as well as oncogenes not cur-
rently known to be involved in gene fusions that have
the potential to be activated through gene fusions. This
curated list of 545 genes (further referred to as 545 gene
set) (Additional file 3: Table S3) has a median size of
3.8 kb (Additional file 4: Figure S3a), which is higher

Fig. 1 Identification of the BCR-ABL and ABL-BCR fusions in chemically degraded RNA from a KU812 cell line using the TruSeq RNA-seq protocol. a Supporting
reads per million reads for BCR-ABL and ABL-BCR at different RIN values (10, 7, 5, 3). b Diagram of ABL and BCR genes and the BCR-ABL and ABL-BCR fusion
products showing the different distances of each fusion product from the 3′ end. c Coverage level per million reads as a function of the distance from the 3′
end for the ABL-BCR fusion at different levels of degradation. A loess trend line is depicted for each sample. d Coverage level per million reads as a function
of the distance from the 3′ end for the BCR-ABL fusion at different levels of degradation. A loess trend line is depicted for each sample
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than the median size of 2.5 kb for all genes reported in
UCSC (Additional file 4: Figure S3a). Evaluating the 545
gene set in the UHR sample data, we show the median
coverage follows a similar exponential decay dependent
on the distance from the 3′ end, but with a 12 % greater
decay rate than that computed for all expressed genes
(Additional file 4: Figure S3b).
To further validate our findings we isolated RNA from 20

samples, which included 14 tumor specimens (7 cell lines
and 7 snap frozen tumor specimens) and 6 snap frozen
normal tissue specimens (Additional file 3: Table S4). RNA
from the 7 cell line samples had high RIN values (average
= 9.9, minimum= 9.7, maximum= 10), while RNA from
the 13 tumor and normal fresh tissue samples had lower
RIN values (average 8.0, minimum= 3.4, maximum= 9.3).
No intentional degradation was performed on these sam-
ples. We calculated the decay rate for the 545 gene set on
these 20 samples (Additional file 3: Table S4, Fig. 2d). Re-
flective of our previous findings, there was a direct relation-
ship between sample RIN and the decay rate modelled as
Median coverage decay rate/kb = − 1.51 + 0.15 RIN with an.
R2 = 0.66. It should be noted that samples with similar RIN

values did not always have the same decay rate and that in-
dividual samples deviated from the trend line. These differ-
ences were more pronounced for samples with lower RIN
values. For example, the two most degraded samples
(Additional file 3: Table S4) had very different RIN values
(3.4 and 6.4) but similar decay rates (−0.74 and −0.76).

The sensitivity of fusion detection depends on fusion
breakpoint distance from the 3′ end
Using the 545 gene set, the probability of detecting a gene
fusion (i.e. sensitivity on y-axis of plot) whose breakpoint
occurs at a specific distance from the 3′ was determined by
calculating the fraction of expressed genes whose coverage
was ≥10x at that distance from the 3′ end of the gene
(Fig. 3a). This calculation assumes at least 10 total reads are
required to detect a heterozygous fusion product at our
lower detection limit, which requires at least 5 supporting
reads. Using the 545 gene set we plotted the estimated fu-
sion detection sensitivity (Fig. 3b). The sensitivity decreased
with the distance from the 3′ end, with greater reductions
in sensitivity for the more heavily degraded UHR samples.
However, the sensitivity remained high (>85 %) for all

Fig. 2 Median coverage profile as a function of distance from 3′ end of mRNA and read decay across all protein-coding genes and genes involved in
fusions for samples with different levels of degradation. a Median coverage per million reads (in log scale) as function of the distance from the 3′ end
for UHR sample at different RIN values (8.6, 8.4, 7.6, 5.9, 4.9 and 3.9). Linear trend lines and 95 % confidence intervals are denoted in gray. b Median read
decay rate per kilobase for all genes as a function of RIN for chemically degraded samples (UHR and U251 cell line). Notice that U251 had replicates.
Linear trend line is shown in blue and 95 % confidence intervals are shown in gray. c Cumulative histogram of the distance of gene fusion breakpoints
from the 3′ end for fusions in the COSMIC database. d Median read decay rate per kilobase for fusion related genes as function of RIN for a set of 20
fresh tissue specimens. Linear trend line is shown in blue and 95 % confidence intervals are shown in gray
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samples for fusion breakpoints less than 1 kb from the 3′
end regardless of RIN value.
The UHR is RNA isolated from 10 tumor cell lines

[22], some which contain well characterized fusions (e.g.
BCR-ABL fusion in the CML tumor cell line). We plot-
ted the estimated sensitivity per RIN score for five
known fusions in UHR with breakpoints having varied
distances from the 3′ end of the gene (Fig. 3c); also
computing whether that particular fusion had more than
5 supporting reads (Fig. 3c, Additional file 3: Table S5).
As expected, the fusion detection for each of these 5 fu-
sions is consistent with the estimated sensitivity, in that
fusions with breakpoints further away from the 3′ end
(e.g. BCR-ABL at 5.3 kb or ARHGEF2-SULF2 at 3.1 kb)
are not detected as the level of degradation increases. At
the same time, fusions with breakpoint distance less than
1 kb to 3′end (e.g. FOXA1-TTC6 or BCAS3-BCAS4)
were detected regardless of RIN value (Fig. 3c). Interest-
ingly, the number of supporting reads for these fusions in-
creased as the RIN value decreased down to 5.9
(Additional file 3: Table S5), which is consistent with a

majority of the reads coming from the 3′ end. No false
positives were found at different levels of degradation.
We tested our approach on our previously described

set of 20 specimens. Out of the 14 tumor samples from
such set, 12 had known fusions. Using RNA-seq we were
able to detect the known fusions from the 12 cases. We
calculated the estimated sensitivity for the distance from
the 3′ end of the breakpoint of each fusion in each sam-
ple (Additional file 3: Table S6). The fusions that were
detected had high values of estimated sensitivity at its
corresponding distance from the 3′ end (average = 92 %,
minimum = 75 %, maximum = 96 %).

Discussion
RNA-Seq Poly-A pull down libraries impact fusion detection
accuracy in degraded samples
In this study, we designed experiments using artificially
degraded RNA from cell lines as well as naturally de-
graded RNA from tissue samples to quantify the effect
RNA degradation has on fusion detection when using
poly-A selected RNA libraries.

Fig. 3 Estimation of fusion sensitivity as a function of distance of breakpoint from the 3′ end. a Diagram showing the strategy used to estimate
the probability of detecting a fusion (i.e. sensitivity) at different distances from the 3′ end by enumerating the proportion of genes having a
coverage ≥10x. A indicates that there are more than 10 reads at that particular position for that gene while a X indicates that there are not. b
Sensitivity as a function of the distance from the 3′ end for the UHR sample at varying levels of degradation. Loess trend is shown for each
sample and 95 % confidence intervals are shown in gray. c Estimated sensitivity (log scale) for five different fusions present in UHR that occur at
different distances from the 3′ end at different RIN values. If the fusion was detected at the particular degradation level it is shown as a square
and if it is not detected it is shown as a circle. Linear trend line is shown for each fusion and 95 % confidence intervals are shown in gray
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We found that both the RNA degradation level and
the distance from the 3′ end of a gene, negatively impact
the read coverage profile in RNA-seq. Furthermore, the
median transcript coverage decreases exponentially as a
function of the distance from the 3′ end and there is a
linear relationship between the coverage decay rate and
the RNA integrity number (RIN).
We identified a set of 545 genes that are putatively in-

volved in fusions events. Using this gene set we calcu-
lated the probability of detecting a gene fusion
(“sensitivity”) as a function of the distance of the fusion
breakpoint from the 3′ end by calculating the fraction of
expressed genes whose coverage was ≥10x at that dis-
tance from the 3′ end of the gene. The fusion detection
sensitivity is negatively impacted by the sample degrad-
ation (measured by either the RIN value or the coverage
decay rate) and the distance of the fusion breakpoint
from the 3′ end of the fusion gene. Such effect, however,
was not observed for fusions with breakpoints close to
the 3′ end of genes, regardless of degradation level.
The fusion detection sensitivity can be affected by the

choice of the aligner and the number of minimum sup-
porting reads used to call a fusion event. In order to
minimize the influence of a the combination of aligner
and fusion detection tool parameters we provide a tool,
Fusion Sense (http://bioinformaticstools.mayo.edu/re-
search/fusion-sense), which given an alignment file in
BAM format and a minimum coverage threshold, calcu-
lates the fusion detection sensitivity. Users are encouraged
to use different aligners and coverage thresholds to miti-
gate the effect of the alignment tool and parameters used.
Methods that avoid the use of poly-A selection (e.g.

RiboMinus™) do not suffer from the bias presented in
this study [11, 20]. Nonetheless, the TruSeq method-
ology (which utilizes poly-A selected mRNA) is a com-
monly used method and large publically available RNA-
seq reference datasets such as TCGA [9] and GTEX [10]
have used this methodology. For example, the median
RIN for samples from the TCGA for ovarian cancer was
8.4 [28], with close to 30 samples with a RIN below 7.0.
Similarly a recent study [15] showed that brain samples
from the GTEX study had a median RIN value of 7.2, in-
cluding about 20 samples with a RIN below 6. Our study
reveals that gene fusions with breakpoints distant from
the 3′ end might be underrepresented in these datasets
and extensive characterizations of these samples is left
as future work.

Using poly-A pull down libraries for fusion finding in the
clinical setting
Clinical RNA-Seq assays that utilize poly-A selected
RNA should provide some information in the report on
the likelihood that particular gene fusions would be de-
tected based on the level of degradation of the patients

specimen. The degree of RNA degradation can be mea-
sured before library preparation with techniques such as
the Agilent Bioanalyzer that provide RIN numbers.
However, RNA quality can be better assessed after se-
quencing [14, 15]. In this paper we calculate this infor-
mation by measuring the sample’s RNA decay rate.
For example, for a particular sample with a RIN of 6.0

and a decay rate similar to our UHR sample, the likeli-
hood of detecting a gene fusion with a breakpoint at 1,
3, and 5 kb from the 3’end of the transcript would be 95,
45 and 20 % (Fig. 3b). So, if a clinician had sent such a
sample from a patient suspected of having a TMPRSS2-
ERG fusion (whose breakpoint occurs at around 5 kb
from the 3′ end) and was interested in knowing if this
gene fusion was present, the physician would understand
the high risk of a false negative result (>50 %) given the
degradation level of such specimen.
Our method can only be used to assess the sensitivity

of fusion detection for a particular sample; however it
does not increase the fusion sensitivity for such cases. It
would be feasible to design fusion detection algorithms
that decrease the read evidence needed as a function of
the degradation and the distance of the breakpoint from
the 3′ end and this is left as future work.

Conclusions
In our present study, we found that when using poly-A
pulldown techniques for library preparation in RNA-seq,
the fusion detection sensitivity is negatively impacted by
both sample degradation and distance of the fusion
breakpoint from the 3′ end. We developed software that
produces graphs that depict the effect on fusion sensitiv-
ity of sample degradation and 3′ end breakpoint dis-
tance. Such graphs can be useful in assessing the fusion
detection sensitivity of RNA-seq in both research and
clinical settings.

Methods
Samples
The 20 normal and tumor specimens involved in this
study were collected and processed as part of the develop-
ment and verification of a clinical test. All samples were
de-identified and the publication of resultant data was ap-
proved by the Mayo Clinic Institutional Review Board.
Total RNA was extracted from solid tumor tissue and
whole blood using the Qiagen® miRNeasy Micro and Mini
kits, respectively. Cell lines for this study were created
from residual patient tumor tissue except Kasumi-1,
KU812, (ATCC®) and Karpas 299 (Sigma-Aldrich®) which
were obtained commercially. UHR (Universal Human
Reference RNA) was purchased from Agilent (Santa Clara,
CA). UHR is a mixture of cell lines derived from breast
adenocarcinoma, hepatoblastoma, cervix adenocarcinoma,
testis embryonal carcinoma, gliobastoma, melanoma,
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liposarcoma, histiocytic lymphoma, lymphoblastic
leukemia and plasmocytoma. FASTQ sequencing files for
Human U-251 MG brain glioblastoma cell lines (GBM)
[11] were obtained from SRA under accession SRP023548.

Controlled degradation experiments
Two micrograms of human universal reference RNA
(UHR) (Agilent Technologies, Santa Clara, CA) and 1ug
of RNA extracted from KU812 cell line (purchased from
ATCC) were degraded at 74 °C for 1 to 11 min in 1 min
intervals, using the NEBNext® Magnesium RNA Frag-
mentation Module Kit (NEB, Ipswich, MA). RNA was
then purified and concentrated with RNeasy MinElute
Cleanup Kit (Qiagen, Valencia, CA).

Library preparation and next generation sequencing
RNA quality [RNA Integrity Number (RIN)] was assessed
on an Agilent 2100 Bioanalyzer with the RNA 6000 Nano
Kit and quantified with a Qubit® 2.0 fluorometer with the
Qubit® RNA BR Assay Kit. The TruSeq® RNA Sample
Preparation v2 Kit (Illumina, San Diego, CA) was used for
isolation of polyadenylated mRNA with oligo-dT beads,
second strand cDNA synthesis and NGS library prepar-
ation. Paired-end, 101 bp sequencing was performed on a
HiSeq 2500 (Illumina) instrument in Rapid Run mode.
Base calling was performed by the instrument computer
using Illumina Real Time Analysis (RTA) software that is
integrated with HiSeq Control Software (HCS) and pro-
vides a summary of quality statistics as per Illumina’s ac-
ceptance criteria for sequencing. CASAVA 1.8.2 was used
for de-multiplexing and conversion of base calls to paired-
end FASTQ files. Sequencing reads for the samples de-
scribed are available from the Gene Expression Omnibus
(GEO) under accession number GSE80126.

Alignment and fusion detection methods
Individual coverage statistics for the samples analysed
are available in Additional file 3: Table S1. RNA-seq data
was analyzed using the MAP-RSeq [29] pipeline v 1.2
which is based on TopHat 2.0 [30] and a modified ver-
sion of TopHat-Fusion 2.0.6 [4]. Reads were aligned to
the human reference GRCh37 without alternative haplo-
types. During alignment, TopHat was supplied with
transcript models from UCSC (March 2012 version)
available from Illumina’s iGenomes Project. Fusions re-
ported required a minimum of 5 total read fusion events
and to be within the exon-exon boundary of at least one
of the genes from the 545 gene set. We also used STAR
[16] 2.4.2a and STAR-fusion 0.6 and consider fusions
with at least 5 supporting reads that were annotated as
“ONLY_REF_SPLICE” and for which at least one of gene
fusion partners was in the 545 gene set.

Read coverage decay calculation
For the UHR samples read coverage was normalized to 50
million reads per sample. The utility DepthOfCoverage
from the Genome Analysis Toolkit (GATK) v.1.6.7 was
used to query the alignment files to obtain read depth
coverage information. Coverage was normalized to cover-
age per million reads for each sample but refer to as “cover-
age” below. Only genes with coverage > 10x at a position
300 bases from the 3′ end were considered. The number of
reads for each of these genes was measured starting at a
position 300 bases from the 3′ end and every 100 bases
after that. We denote by c(x) the median coverage for these
genes at a distance x from the 3′ end. A linear model
log(c(x)) =mx + b was built in R (version 3.1) and the decay
rate per kilobase d was defined as d =m × 1000. Decay rate
values and R2 are available in Additional file 3: Table S2 for
the UHR and U251 samples. A similar model was con-
structed by considering only genes from the 545 gene set.
This was done for a set of 20 samples where decay rates
and R2 are reported in Additional file 3: Table S4. To model
the effect of the decay rate and the RIN value we defined a
linear model d =m′ × RIN + b ' in R (version 3.1) and the
equations and the coefficients of the linear model and R2

are reported in the results section.

Additional files

Additional file 1: Figure S1. Read coverage profile for BCR and ABL in
chemically degraded RNA from a KU812 cell line. A) Integrative Genomics
Viewer (IGV) screenshot for the coverage profile across the ABL1 gene for
KU812 cell line at different levels of degradation. All samples were
normalized to the same level of sequencing depth (13 million reads). The
lower part of the figure shows an amplified view of exon 2 and exon 11.
B) IGV screenshot for the coverage profile across the BCR gene for KU812
cell line at different levels of degradation. The lower part of the figure
shows an amplified view of exon 15 and exon 23. (TIF 933 kb)

Additional file 2: Figure S2. Read coverage profile as a function of the
distance from 3′ end for chemically degraded UHR and RNA isolated
from cell lines. A) Box plot of the number of reads (in log scale) of a
chemically degraded UHR sample at different RIN values (8.6, 8.4, 7.6, 5.9,
4.9 and 3.9) as a function of the distance from the 3′ end for all
expressed genes. B) Median coverage per million reads (in log scale) as
function of the distance from the 3′ end for RNA isolated from a U251
MG brain glioblastoma cell line at different RIN values (10,8,6,4). Individual
linear trend lines are shown for each sample and 95 % confidence
intervals are denoted in gray. Notice that there were replicates for each
cell line at different RIN values. C) Increase in sequencing depth needed
to achieve the coverage of an intact sample as a function of the distance
from the 3′ end for the chemically degraded UHR sample at different RIN
values (8.6, 8.4, 7.6, 5.9, 4.9 and 3.9). The increase in sequencing depth is
calculated as the median coverage per million reads of an intact UHR
(which is approximated by the median coverage per million reads of a
UHR with a RIN = 8.6 at a distance of 300 bp from the 3′ end) divided by
the median coverage per million reads of UHR at a particular RIN and
distance from the 3′ end. (TIF 2280 kb)

Additional file 3: Table S1. Total read depth, percent of reads mapping
to the human genome and average read depth on exome region for
samples used. Table S2. RIN values, decay rates and R2 and p values for the
model log(median coverage) = decay rate/1000 × distance+ offset for
chemically degraded cell lines. UHR was chemically degraded in-house and
U251 was available from the literature (9). Table S3. List of genes involved in
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fusions. Information for each gene includes gene symbol, transcript id and
gene description. Table S4. RIN values, decay rates and R2 and p values for
the model log(median coverage) = decay rate/1000 × distance + offset, where
median coverage is only calculated for expressed genes in the fusion list, for
normal and tumor tissue samples with different levels of RNA degradation.
Sample type (either tissue or cell line), histology and anatomical site is pro-
vided. Table S5. Number of fusion supporting reads per 50 million reads for
different fusions occurring in UHR at different levels of RNA degradation. The
distance of the breakpoint from the 3′ end is also provided. Table S6. List of
fusions detected in tumor samples from Additional file 3 Table S3. The
sample type, histologic diagnosis, RIN value, distance of the gene fusion
breakpoint from the 3′ end, estimated sensitivity for the corresponding
distance from the 3′ end to the breakpoint (calculated as in Fig. 3a) are also
provided. For fusions whose distance is over 5 kb, we included the estimated
sensitivity at 5 kb and denoted with the symbol *. (DOCX 69 kb)

Additional file 4: Figure S3. Statistics of genes involved in fusions. A)
Cumulative distribution of the length for all genes and for genes involved in
fusions. B) Plot of decay rates in UHR at different degradation values calculated
across all genes (x-axis) and across only genes involved in fusions. Linear trend
line is shown and 95 % confidence intervals are depicted in gray. The formula
for the linear trend is y= 1.12x − 0.04. (TIF 535 kb)

Abbreviations
CML: Chronic myelogenous leukemia; NGS: Next generation sequencing;
RIN: RNA integrity number; UHR: Universal Human Reference RNA
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