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Conjugated linoleic acid or omega 3 fatty acids
increase mitochondrial biosynthesis and
metabolism in skeletal muscle cells
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Abstract

Background: Polyunsaturated fatty acids are popular dietary supplements advertised to contribute to weight loss
by increasing fat metabolism in liver, but the effects on overall muscle metabolism are less established. We
evaluated the effects of conjugated linoleic acid (CLA) or combination omega 3 on metabolic characteristics in
muscle cells.

Methods: Human rhabdomyosarcoma cells were treated with either DMSO control, or CLA or combination omega
3 for 24 or 48 hours. RNA was determined using quantitative reverse transcriptase polymerase chain reaction (qRT-
PCR). Mitochondrial content was determined using flow cytometry and immunohistochemistry. Metabolism was
quantified by measuring extracellular acidification and oxygen consumption rates.

Results: Omega 3 significantly induced metabolic genes as well as oxidative metabolism (oxygen consumption),
glycolytic capacity (extracellular acidification), and metabolic rate compared with control. Both treatments
significantly increased mitochondrial content.

Conclusion: Omega 3 fatty acids appear to enhance glycolytic, oxidative, and total metabolism. Moreover, both
omega 3 and CLA treatment significantly increase mitochondrial content compared with control.

Keywords: PGC-1α, Glycolysis, Oxidative metabolism, Polyunsaturated fatty acids (PUFA), Eicosapentaenoic acid,
Docosahexaenoic acid, CLA
Background
Polyunsaturated fatty acids (PUFAs) play wide-ranging
roles in cell metabolism, signaling and inflammation. Of
these PUFAs, very long chain eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA) found principally
in fish have key roles in metabolism and inflammation
[1-18]. EPA has been shown to reduce triacylglyceride
formation and improve blood lipid profiles through
interactions with sterol-regulatory element binding
protein-1c and liver X receptor alpha [19]. DHA has been
shown to enhance lipid oxidation and insulin sensitivity
in skeletal muscle through AMPK activation [14].
* Correspondence: vaughanr@unm.edu
1Department of Health, Exercise and Sports Science, University of New
Mexico, 1 University Blvd, Albuquerque, NM 87131, USA
2Department of Biochemistry and Molecular Biology, University of New
Mexico Health Sciences Center, 1 University Blvd, Albuquerque, NM 87131,
USA
Full list of author information is available at the end of the article

© 2012 Vaughan et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Combinations of omega 3 are commonly consumed, and
have been shown to increase fat oxidation, reducing body
weight, and prevent weight gain [1,2,4-9,11-15,17,18,20].
Moreover, treatment with combination omega 3 has been
shown to triple the expression of genes encoding regula-
tory factors that control mitochondrial biogenesis and
oxidative metabolism including peroxisome proliferator-
activated receptor co-activator 1 alpha (PGC-1α) in white
adipocytes [7]. Combination omega 3 can now be pre-
scribed to lower triacylglycerides and is currently one
of the most common over-the-counter dietary supple-
ments [21].
Conjugated linoleic acid (CLA), a PUFA found in

grass-fed beef among other sources also plays a role in
lipid metabolism [18,22-28]. CLA, like fish oil, is a popu-
lar dietary supplement marketed for its role in enhan-
cing fat metabolism. CLA is purported to have several
physiological functions, including appetite suppression,
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increased fat mobilization, and increased fatty acid
oxidation [18,23-25]. Recently, the trans-10,cis-12 CLA
but not the cis-9,trans-11 CLA isomer was shown to
significantly increase lipolysis in human adipocytes [23].
CLA was also shown to modify hormone sensitive lipase
and perilipin expression, key components of fatty acid
utilization [23]. Moreover, CLA is purported to reduce
fatty acid synthesis in adipocytes, suggesting that CLA
discourages fat deposition directly contributing to body
composition [22,24]. Interestingly, rodents were shown to
be resistant to diet-induced weight gain following treat-
ment with CLA, and had increased lipid oxidation with
reduced levels of plasma insulin [24]. Rodent models have
also shown significant weight loss when treated with CLA
[24,27]. In addition, treatment of rodents with CLA
reduces weight as well as increases hepatic RNA expres-
sion associated with fatty acid oxidation [26].
Clinically, mitochondrial dysfunction is associated with

reduced capacity for fatty acid oxidation and inversely
related to incidence of type II diabetes and obesity
[29-34]. PGC-1α, an essential stimulator of mitochon-
drial biosynthesis has been shown to increase fatty
acid oxidation through induction of peroxisome
proliferator-activated receptor alpha (PPARα) [35-40].
PGC-1α expression is inversely related to incidence of
type II diabetes and obesity and reduced propensity
for fatty acid oxidation [29-34]. Induction of PGC-1α
has also been shown to heighten metabolic rate through
increased expression of mitochondrial uncoupling proteins
Figure 1 Polyunsaturated fatty acids modify glycolytic metabolism. A
treated with either DMSO control (0.1% final concentration), combination o
hours. B- Baseline ECAR following treatment described above. C- Peak ECA
phosphorylation. D- Peak ECAR following addition of carbonyl cyanide p-[t
agent, in addition to previously added oligomycin. NOTES: * indicates p < 0
control.
[33,39-41]. Irisin, a hormone released by skeletal muscle
following exercise, is induced by PGC-1α expression
and increases metabolic rate through uncoupling pro-
tein 1 induction [42].
The role of PUFAs such as omega 3 and CLA in

glucose metabolism and cellular uptake is less understood.
Induction of PGC-1α has been linked to increased glucose
transport and insulin sensitivity through glucose trans-
porter 4 (GLUT4) [43]. GLUT4 is an insulin dependent
glucose transporter found almost exclusively in skeletal
muscle and adipocytes. An increase in GLUT4 expression
is evidence of increased glucose uptake and glycolytic reli-
ance [44].
While there is evidence supporting a role for PUFAs

in lipid metabolism in hepatocytes and adipocytes, there
is limited evidence evaluating the effects of omega 3
fatty acids and CLA on human skeletal muscle cell me-
tabolism. Because muscle cell metabolism can also play
a significant role in body composition, we investigated
the effects of a combination of docosahexaenoic acid
and eicosapentaenoic acid (combination omega 3) and
CLA on oxidative and glycolytic capacities and related
gene expression, as well as mitochondrial biosynthesis in
human muscle cells.

Results
Glycolytic metabolism
In order to examine effects of combination omega 3 or
CLA treatment on glycolytic capacity in muscle cells, we
- Extracellular acidification rate (ECAR) of rhabdomyosarcoma cells
mega 3 (Ω3) at 25 μM or 50 μM, or CLA at 25 μM or 50 μM for 24
R following addition of oligomycin, an inhibitor of oxidative
rifluoromethoxy]-phenyl-hydrazone (FCCP), a mitochondrial uncoupling
.05, ** indicates p < 0.01, and *** indicates p < 0.001 compared with
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measured extracellular acidification rate (ECAR) follow-
ing treatment with either control, or combination omega
3 or CLA at 25 μM or 50 μM for 24 hours. ECAR was
significantly elevated in cells treated with omega 3 at
25 μM or 50 μM for 24 hours compared with control
(Figure 1A). Treatment with 25 μM CLA did not alter
ECAR while treatment with 50 μM CLA significantly
lowered ECAR (Figure 1A). Combination omega 3 treated
cells exhibited a significantly greater ECAR compared with
control (35% more than control) at baseline (Figure 1B).
Combination omega 3 treated cells also demonstrated
significantly higher total ECAR (27% more than control),
a measure of glycolytic capacity induced by mitochondrial
stress following addition of oligomycin (Figure 1C and D).
NOTE: FCCP was also added as an essential component
of the oxidative stress kit and has no pronounced effect on
glycolytic capacity.

Oxidative metabolism
To examine oxidative capacity, we measured oxygen
consumption rate (OCR) following treatment with either
control, or combination omega 3 or CLA at 25 μM or
50 μM for 24 hours. Oxygen consumption was signifi-
cantly elevated 23% more than control in the omega 3
treated groups at baseline (Figure 2B). Omega 3 treat-
ments did not significantly alter oxygen consumption
following addition of oligomycin (an inhibitor of oxida-
tive metabolism), or following the addition of FCCP
(Figures 2C and D, respectively). Treatment with CLA
Figure 2 Polyunsaturated fatty acids modify oxidative metabolism. A
with either DMSO control (0.1% final concentration), combination omega 3
B- Baseline OCR following treatment described above. C- OCR following ad
D- Peak OCR following addition of carbonyl cyanide p-[trifluoromethoxy]-p
to previously added oligomycin. NOTES: * indicates p < 0.05, ** indicates p
p < 0.01 (significantly less than control).
decreased OCR in a dose dependent fashion during all
stages of the metabolic stress (Figures 2A-D).

Metabolic reliance
Cellular reliance on glycolysis indicated by the ratio of
OCR:ECAR, was significantly suppressed in omega 3 trea-
ted group compared with control (Figure 3A). Following
oligomycin administration, omega 3 at 25 μM showed
significantly greater reliance on glycolysis than the control
(Figure 3C). After the addition of FCCP, treatment with
omega 3 at 25 μM and 50 μM significantly increased cell
reliance on glycolysis compared with control (Figure 3D).
CLA treated groups exhibited an increased reliance on
glycolysis but also showed significantly reduced total
metabolism.

Metabolic rate
Combination omega 3 increased ECAR and OCR com-
pared with control which indicates higher total meta-
bolic rate (Figure 4). Treatment with either 25 or 50 μM
combination omega 3 both significantly increased total
metabolism compared with control, while CLA did not
significantly increase metabolic rate (data not shown).

Gene expression
To evaluate the effects of omega 3 or CLA treatment on
select gene expression, we quantified relative RNA levels
of PGC-1α, GLUT4, and irisin following treatment with
either control, or combination omega 3 or CLA at 25 μM
or 50 μM for 24 hours. Treatment with combination
- Oxygen consumption rate (OCR) of rhabdomyosarcoma cells treated
(Ω3) at 25 μM or 50 μM, or CLA at 25 μM or 50 μM for 24 hours.
dition of oligomycin, an inhibitor of oxidative phosphorylation.
henyl-hydrazone (FCCP), a mitochondrial uncoupling agent, in addition
< 0.01, and *** indicates p < 0.001 compared with control. † indicates



Figure 3 Polyunsaturated fatty acids modify oxidative reliance OCR:ECAR. A- Ratio of oxygen consumption rate (OCR) to extracellular
acidification rate (ECAR) of rhabdomyosarcoma cells treated with either DMSO control (0.1% final concentration), combination omega 3 (Ω3) at 25
μM or 50 μM, or CLA at 25 μM or 50 μM for 24 hours. B- Relative glycolytic reliance at baseline OCR:ECAR following treatment described above
with control normalized to value of 1. C- Relative glycolytic reliance from OCR:ECAR following addition of oligomycin (peak glycolysis), an
inhibitor of oxidative phosphorylation. D- Relative glycolytic reliance with control = 1 from OCR:ECAR following addition of carbonyl cyanide
p-[trifluoromethoxy]-phenyl-hydrazone (FCCP), a mitochondrial uncoupling agent, (peak oxidation) in addition to previously added oligomycin.
NOTES: * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001 compared with control. † CLA had increased OCR:ECAR but had
lower total individual OCR and ECAR compared with control.
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omega 3 at 50 μM for 24 hours significantly induced
PGC-1α (Figure 5A). Treatment with combination omega
3 at 50 μM for 48 hours with a repeated treatment at 24
Figure 4 Relative metabolic rate represented by oxygen
consumption rate (OCR) versus extracellular acidification rate
(ECAR) of rhabdomyosarcoma cells treated with either DMSO
control (0.1% final concentration) or combination omega 3
(Ω3) at 25 μM or 50 μM for 24 hours. NOTES: * indicates p < 0.05.
Combination omega 3 fatty acids increase basal metabolic rate.
hours also significantly induced PGC-1α expression
(Figure 5B). PGC-1α expression was returned to baseline
at 48 hours following a single treatment of combination
omega 3 at 50 μM (Figure 5C). GLUT4 was significantly
induced by both treatments at 50 μM for 24 hours and by
repeated treatment with combination omega 3 at 50 μM
for 48 hours (Figure 5D and E), but was returned to base-
line at 48 hours following a single treatment (Figure 5F).
Irisin was significantly induced by both doses of combin-
ation omega 3 but not by either CLA treatment at 24
hours (Figure 5G). Treatment with omega 3 at 50 μM for
48 hours with repeated treatment significantly induced
irisin (Figure 5H). Irisin was also elevated at 48 hours
following a single treatment with either omega 3 and CLA
(Figure 5I).

Mitochondrial content
Treatment with either combination omega 3, or CLA at
25 μM or 50 μM for 24 hours significantly increased
mitochondrial staining (Figure 6A). Cells treated with
50 μM omega 3 or CLA for 48 hours with a repeat
treatment at 24 hours significantly increased mitochon-
drial staining (Figure 6B). Mitochondrial staining was
returned to normal in cells treated with a single treat-
ment of either combination omega 3, or CLA at 25 μM
or 50 μM for 48 hours (Figure 6C). Following treatment
described above, cells were stained with Mitotracker
and DAPI and viewed for fluorescence. Microscopy



Figure 5 Relative expression of PGC-1α (top row), GLUT4 (middle row) and Irisin (bottom row) following treatment with DMSO control
(final concentration 0.1%), combination omega 3 at 50 μM, or CLA at 25 μM or 50 μM for either 24 hours (left), 48 hours with
repeated treatment at 24 hours (center), or single treatment for 48 hours (right) with control = 1. A- PGC-1α expression following
treatment for 24 hours. B- PGC-1α expression following repeated treatment for 48 hours. C- PGC-1α expression following treatment for 48 hours.
D- GLUT4 expression following treatment for 24 hours. E- GLUT4 expression following repeated treatment for 48 hours. F- GLUT4 expression
following treatment for 48 hours. G- Irisin expression following treatment for 24 hours. H- Irisin expression following repeated treatment for 48
hours. I- Irisin expression following treatment for 48 hours. NOTES: * indicates p < 0.05, ** indicates p < 0.01, and *** indicates p < 0.001
compared with control. Polyunsaturated fatty acids modify metabolic gene expression.
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revealed that cells treated with combination omega 3 or
CLA consistently had greater fluorescence similar to
flow cytometry results. Moreover, treated cells showed
what appear to be greater number and size of mito-
chondrial networks (Figure 6D).

Proliferation assay
Viability was assessed using WST-1 fluorescent prolifera-
tion assay which revealed no difference in cell viability
and proliferation following treatment with omega 3, or
CLA at 25 μM or 50 μM for 24 or 48 hours (Figure 7A
and B).

Discussion
Combination omega 3 significantly increased glycolytic
capacity in muscle cells compared with control without
suppressing oxidative metabolism suggesting that omega
3 increased total metabolisms (Figure 1B and 2B). Com-
bination omega 3 significantly raised baseline oxygen
consumption, a measure of oxidative metabolism and
fatty acid oxidation as previously demonstrated
[2,11,15-17,21]. Combination omega 3 also significantly
decreased the ratio of OCR:ECAR suggesting that
omega 3 fatty acids not only increase glycolytic capacity
but also increase total glycolytic reliance. Treatment
with CLA at 25 μM significantly decreased both glyco-
lytic and oxidative metabolism. A decreased OCR:
ECAR ratio suggests that, although total metabolism is
suppressed, this treatment also induces a shift towards
glycolytic metabolism. CLA at 50 μM did not alter
ECAR, however OCR was reduced, also resulting in a
lower OCR:ECAR ratio indicating a shift towards glyco-
lytic metabolism.
The finding that maximum oxygen consumption is not

increased in any treatment is interesting in light of the
findings of increased mitochondrial content. First, fol-
lowing treatment for 24 and 48 hours, omega 3 signifi-
cantly induced PGC-1α, an essential precursor for
mitochondrial biosynthesis. This finding is supported by
the increase in total mitochondrial content observed by
both flow cytometry and microscopy. This suggests that
both treatments are effective at increasing mitochondrial



Figure 6 Polyunsaturated fatty acids increase mitochondrial content. A-Flow cytometry using mitochondrial staining of rhabdomyosarcoma
cells treated with either DMSO control (0.1% final concentration), combination omega 3 (Ω3) at 25 μM or 50 μM, or CLA at 25 μM or 50 μM for
24 hours. B- Flow cytometry using mitochondrial staining following similar treatment described above for 48 hours with repeat treatment at 24
hours. C- Flow cytometry using mitochondrial staining following a single treatment described above for 48 hours. D- Immunohistochemistry of
cells treated as described in Figure 4A and stained with Mitotracker (green) and DAPI (blue) with 0.1% DMSO control (left), Ω3 50 μM (middle)
and CLA 50 μM (right). Red line indicates 50 μm and the red arrow indicates mitochondrial networking. NOTES: * indicates p < 0.05, ** indicates
p < 0.01, and *** indicates p < 0.001 compared with control.
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number, density and networking without influencing
mitochondrial activity. Omega 3 treatment for 24 and 48
hours also significantly induced Irisin, a down-stream
target of PGC-1α shown to enhance metabolic rate in
rodents following exercise [42]. Moreover, omega 3 also
increased GLUT4 expression, an insulin dependent glu-
cose transporter exclusive to muscle cells and adipo-
cytes, supporting the observation of increased glycolytic
capacity.
The timing and duration of treatment played a signifi-

cant role on mitochondrial changes. Treatment for 48
hours with repeated treatment at 24 hours also caused
significantly greater mitochondrial staining compared
with control. Remarkably, a single treatment for 48
hours has no significant effect on mitochondrial staining
and a limited effect on gene expression; only Irisin
expression was significantly greater than control follow-
ing a single treatment for 48 hours. This observation
supports the notion that while fish oils have many docu-
mented powerful effects, regular treatment may be ne-
cessary to sustain the potentially beneficial properties
[2,11,15-17,21].

Conclusion
Fish oil supplements and other polyunsaturated fatty
acids including CLA are marketed heavily for their
effects on metabolism. This work identified several
effects that omega 3 fatty acids EPA and DHA as well as
CLA (available over the counter to consumers) have on
metabolism and mitochondrial characteristics in human
muscle cells. Combination omega 3 and CLA increased
the ratio of glycolytic metabolism to oxidative



Figure 7 Cell viability. Measured by group mean log fluorescence from WST-1 end-point viability and proliferation assay following treatment of
rhabdomyosarcoma cells with either DMSO control (0.1% final concentration), combination omega 3 (Ω3) at 25 μM or 50 μM, or CLA at 25 μM or
50 μM for 24 (A) or 48 hours (B).
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metabolism. However, with CLA treatment, the ratio is
altered because of a decrease in oxidative metabolism ra-
ther than an increase in glycolytic metabolism, suggest-
ing lower overall metabolism. We hypothesize that the
clinical metabolic benefits of CLA consumption are due
to the CLA-induced apoptosis of adipocytes in mam-
mals, which liberates and increases fatty acid oxidation
elsewhere in the body [45,46]. Omega 3 treatment sig-
nificantly increased basal oxidative metabolism as well
as basal and peak glycolytic metabolism. Because glyco-
lytic metabolism is much less efficient, this shift likely
results in greater glucose uptake. This is supported by
up-regulation of the GLUT4 transporter. Based on these
studies, combination omega 3 appears to be a potent
stimulator of metabolism in muscle cells. More work is
needed to identify the full capabilities of these bioactive
lipids and the many other effects they likely have on
metabolism.

Materials and methods
Cell culture and treatments
Homo sapiens rhabdomyosarcoma cells were purchased
from ATCC (Manassas, VA). Cells were cultured in Dul-
becco’s Modified Eagle’s Medium (DMEM) containing
4500mg/L glucose and supplemented with 10% heat-
inactivated fetal bovine serum (FBS) and 100U/mL peni-
cillin/streptomycin, in a humidified 5% CO2 atmosphere
at 37°C. Trypsin-EDTA at 0.25% was used to detach the
Table 1 Forward and reverse primer sequences used for qRT-
Technologies (Coralville, IA)

Gene Forward primer 50→ 30

PGC-1α ACCAAACCCACAGAGAACAG

GLUT4 AAGAATCCCTGCAGCCTGGTAGA

Irisin AGGTGCTTTACCGCTGTACCTTCA

TBP CACGAACCACGGCACTGATT
cells for splitting and re-culturing. All reagents were
from Sigma (St. Louis, MO). Stock combination DHA:
EPA with ratio of 1:2.5 (combination omega 3) or CLA
from General Nutrition Center (Pittsburg, PA) was dis-
solved in DMSO to make treatment solutions; final con-
centration of DMSO 0.1% for all treatments. Cells were
treated with either 25 μM or 50 μM omega 3 or 25 μM
or 50 μM CLA and incubated for 24 or 48 hours (deter-
mined through pilot experiments) as described above.

Quantitative real time polymerase chain reaction (qRT-
PCR)
Cells were seeded overnight in 6-well plates at a density of
1 × 106 cells/well and treated as described above. Follow-
ing incubation, the total RNA was extracted using RNeasy
Kit from Qiagen (Valencia, CA), per manufacturer’s proto-
col. Total RNA was quantified by Nanodrop spectropho-
tometry. cDNA was synthesized from 5000 ng total RNA
using the Retroscript™ RT kit from Ambion (Austin, TX)
according to manufacturer’s instructions. PCR primers
were designed using Primer Express software from Invi-
trogen (Carlsbad, CA) and synthesized by Integrated DNA
Technologies (Coralville, IA). Amplification of Irisin,
GLUT4, and PGC-1α were normalized to the housekeep-
ing gene, TATA Binding Protein (TBP). Table 1 sum-
marizes the forward and reverse primers for TBP, Irisin,
GLUT4, and PGC-1α. qRT-PCR reactions were performed
in triplicate using the LightCycler 480 real-time PCR
PCR measurements synthesized by Integrated DNA

Reverse primer 50→ 30

GGGTCAGAGGAAGAGATAAAGTTG

A CCACGGCCAAACCACAACACATAA

AGAGAGGGCCAGATGTTTGTTGGA

TTTTCTTGCTGCCAGTCTGGAC
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system from Roche Applied Science, (Indianapolis, IN).
SYBR Green based PCR was performed in triplicate using
5000 ng of cDNA per sample; final primer concentrations
were 10 μM in a total volume of 30 μl. The following
cycling parameters were used: 95°C for 10 minutes fol-
lowed by 45 cycles of 95°C for 15 seconds, and 60°C for
one minute. Relative expression levels were determined by
the ΔΔCp method and compared to the lowest expressing
group [47].

Flow cytometry
Cells were plated into 6-well plates at a density of 1.2 × 106

cells/well treated in triplicate and incubated as previously
described for 24 or 48 hours. The cells were pelleted, the
media was removed and the cells were suspended in pre-
warmed media with 200 nM Mitotracker Green from Life
Technologies (Carlsbad, CA) and incubated for 45 minutes
(per manufactures’ protocol) and were incubated as previ-
ously described. The cells were pelleted, the media with
Mitotracker was removed and the cells were suspended
in pre-warmed media. Group mean fluorescence was
measured using Facscalibur filtering at 488nm.

Microscopy
Chamber-slides from BD Bioscience (Sparks, MD), were
seeded with 5000 cells/well and treated in triplicate and
incubated as previously described for 24 hours. The cells
were then stained with either Mitotracker from Invitro-
gen (Grand Island, NY) for 45 minutes, and fixed in
3.7% formaldehyde in pre-warmed media. Cells were
mounted with Prolong Gold with DAPI from Invitrogen
(Carlsbad, CA) and cured overnight. Cells were imaged
using the Axiovert 25 microscope with AxioCam MRc
from Zeiss (Thornwood, NY).

Metabolic assay
Cells were seeded overnight in 24-well culture plate from
SeaHorse Bioscience (Billerica, MA) at density 5 × 105

cells/well. Cells were treated and incubated for 24 hours
as described above. Following treatment, culture media
was removed and replaced with XF Assay Media from
SeaHorse Bioscience (Billerica, MA) containing 4500mg/L
glucose free of CO2 and incubated at 37°C. Per manufac-
tures’ protocol, SeaHorse injection ports were loaded
with oligomycin, and inhibitor of oxidative metabolism
and maximizes glycolytic metabolism (final concentra-
tion 1.0 μM), carbonyl cyanide p-[trifluoromethoxy]-
phenyl-hydrazone (FCCP), an uncoupler of electron
transport maximizes oxidative metabolism (final con-
centration 1.25 μM), and rotenone in 1.0 μM final concen-
tration. Extracellular acidification, a measure of glycolytic
capacity, and oxygen consumption, a measure of oxidative
metabolism was measured using the SeaHorse XF24
Extracellular Analyzer from SeaHorse Bioscience (Billerica,
MA). SeaHorse XF24 Extracellular Analyzer was run using
8 minute cyclic protocol commands (mix for 3 minutes,
let stand 2 minutes, and measure for 3 minutes) in
triplicate.

Proliferation assay
Cells were seeded in 96-well plates at density 5,000 cells/
well and grown over night. Cells were treated and incu-
bated as previously described for 24 or 48 hours. Media
and treatment were removed at each time point and media
containing 10% WST1 assay was added to each well and
were incubated as previously described. Fluorescence was
measured 1 hour following WST1 addition using Wallac
Victor3V 1420 Multilabel Counter from PerkinElmer
(Waltham, MA).

Statistics
RNA gene expression, WST1 assay, cell metabolism, and
flow cytometry were analyzed using ANOVA and pair-
wise comparisons comparing treatments with control.
Values of p < 0.05 indicated statistical significance in all
tests used and Bonferroni’s correction for error from
multiple pairwise comparisons was used.
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