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Abstract Research about equivalence has commonly utilized
human participants as experimental subjects. More recently,
computational models have been capable of reproducing per-
formances observed in experiments with humans. The com-
putational model often utilized is called RELNET, and it sim-
ulates training and testing trials of conditional relations using
the matching-to-sample procedure (MTS). The differentiation
between sample stimulus and comparison stimuli, indispens-
able in MTS, implies operational difficulties for simulations.
For this reason, new studies seek to utilize alternative proce-
dures to MTS, which do not differentiate the functions of the
antecedent stimuli. This work evaluated the possibility of de-
veloping a new computational model to simulate equivalence
class formation using the go/no-go procedure with compound
stimuli. In Experiment 1, artificial neural networks were uti-
lized to simulate training of the AB and BC relations as well as
the testing of the AC relation. The results showed that four out
of six runs demonstrated equivalence class formation.
Experiment 2 evaluated whether the additional class training
performed in Experiment 1, which was analogous to the sim-
ulation of pre-experimental experience of human participants,
would be essential for simulating the establishment of equiv-
alence classes. It was found that it was not possible to simulate
equivalence class formation without the additional class train-
ing. Altogether, the experiments show that it is possible to
simulate equivalence class formation using the go/no-go pro-
cedure with compound stimuli and that it is necessary to con-
duct additional class training. The model developed is,
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therefore, an alternative to RELNET for the study of equiva-
lence relations using computational simulations.

Keywords Simulation - Artificial intelligence - Equivalence -
Compound stimulus - Go/no-go procedure

Training conditional relations may produce the emergence of
new relations that have not been directly trained. Such rela-
tions among stimuli possess specific properties denominated
reflexivity, symmetry, transitivity and equivalence. When
there is evidence that all these relations are established, it is
considered that an equivalence class has been formed (Sidman
& Tailby, 1982).

Research about equivalence class formation has commonly
utilized human participants as experimental subjects (Sidman,
1994). More recently, research has been developed utilizing
computational models (artificial neural networks) to simulate
equivalence class formation (e.g., Barnes & Hampson, 1993;
Cullinan, Barnes, Hampson, & Lyddy, 1994; Lyddy &
Barnes-Holmes, 2007; Lyddy, Barnes-Holmes, & Hampson,
2001; Okada, Sakagami, & Yamakawa, 2005; Tovar & Torres,
2012). These models are capable of reproducing performances
observed in humans, having the advantage of providing great-
er control over the experimental variables, creating a stable
and controllable environment that could be difficult to obtain
in experiments with humans and other animals (Lyddy &
Barnes-Holmes, 2007; McClelland, 2009; Tovar & Torres,
2012).

Artificial neural networks are sets of interconnected pro-
cessing units, generally organized in layers. The set of units
that forms the computational representation of the stimuli pre-
sented in a particular trial is called the input layer, and the set
of units that form the representation of the response emission
is called the output layer. The other layers between them are
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called intermediate or hidden. In a feed-forward network ar-
chitecture, the units of the input layer are connected to the
units of the hidden layers, which in turn are connected to the
units of the output layer. Between two units there is a weighed
connection. When a value passes from a unit to another, it is
multiplied by a variable called connection weight. The flow of
information is unidirectional, from the input to the output
layer, in such a way that an input vector is mathematically
transformed into an output vector (see Haykin, 2009). A sim-
ulation of equivalence class formation, therefore, basically
consists of three components: a set of input vectors that rep-
resents stimuli presentation, a set of output vectors that repre-
sents response emission and a learning algorithm that changes
the connection weights so that the input vectors can generate
appropriate output vectors.

The computational model often utilized in equivalence re-
search is called RELNET, which simulates training and testing
trials using the MTS procedure (e.g., Barnes & Hampson,
1993; Cullinan, Barnes, Hampson, & Lyddy, 1994; Lyddy &
Barnes-Holmes, 2007; Lyddy, Barnes-Holmes, & Hampson,
2001). Lyddy and Barnes-Holmes (2007) used computational
simulations to comparatively evaluate the performance of
equivalence class formation using MTS with linear and one-
to-many protocols. Two experimental conditions were simu-
lated. Using the linear protocol, the relations AB and BC were
trained, and it was tested whether the relation CA would
emerge. For the one-to-many protocol, the relations AB and
AC were trained and the emergence of BC and CB tested. As a
result, it was found that the simulations that used the linear
protocol needed approximately twice the time to finish train-
ing. In the testing phase, only the simulations that used the
one-to-many protocol showed emergence of the tested rela-
tions. Together, these results suggested that the one-to-many
protocol is more effective in producing equivalence classes
than the linear protocol. A similar conclusion was also found
by experiments involving humans (e.g., Arntzen & Holth,
1997).

Training and testing phases in computational simulations
are analogous to training and testing phases in experiments
with humans, as both have relations established during train-
ing and new relations evaluated in the testing phase. However,
the procedures are not directly similar. In computational sim-
ulations, the training phase consists in using a learning algo-
rithm to make the input vectors generate output vectors pro-
gressively closer to those desired. Lyddy and Barnes-Holmes
(2007) used the learning algorithm called backward
propagation (Rumelhart, Hinton, & Williams, 1986). In each
iteration, an input vector was passed to the neural network,
which was the computational representation of a MTS trial:
presentation of a sample and three comparison stimuli. This
input vector was mathematically transformed into the output
vector, which was the computational representation of choos-
ing one of the comparison stimuli in that trial. In the

beginning, the output vectors were not generated according
to what was expected. This way, the learning algorithm repeat-
edly altered the connection weights to produce output vectors
closer to those desired. When all input vectors were correctly
producing the expected output vectors, the training phase end-
ed and the learning algorithm was disabled, maintaining the
connection weight constant. During the testing phase, new
input vectors, previously unseen, were passed to the neural
network. These new input vectors corresponded to MTS trials
that evaluated the emergence of new relations. If these input
vectors produced output vectors that revealed established re-
lations that were not directly trained, it was considered that
equivalence class formation was simulated.

In RELNET, the differentiation between sample and com-
parison stimuli occurs in the input layer using a computational
resource denominated sample-marking duplicator. Tovar and
Torres (2012) pointed out that the way this differentiation is
made entails operational problems. In different trials, the units
referring to the sample-marking duplicator remain constant
and determine the output values. Thus, the results presented
in the testing phase are not necessarily determined by the
information about the sample and comparison stimuli in each
trial, but rather by the information about the sample-marking
duplicator. This would decharacterize the network results de-
rived from RELNET as emergent responses. The network’s
operational problem derived from RELNET, therefore, arises
from the need to differentiate in the input vector which is the
sample stimulus and which are the comparison stimuli, a
characteristic indispensable in the MTS procedure. For this
reason, Tovar and Torres (2012) indicated as a possible solu-
tion the development of a new computational model that
would simulate equivalence class formation using some alter-
native procedure to MTS. This new model should not differ-
entiate sample and comparison stimuli. The authors suggested
the yes-no and the go/no-go with compound stimuli proce-
dures as possible alternatives to the use of MTS in computa-
tional simulations.

Using the yes-no procedure, Tovar and Torres (2012) eval-
uated the possibility of simulating equivalence class formation
without differentiating sample and comparison stimuli func-
tions. In each trial, a set of values was attributed to the input
layer units (input vector), which represented the presentation
of two stimuli, without specifying their functions or spatial
locations. At the end of the trial, the output layer units gener-
ated a set of values (output vector) that corresponded to the
representation of the yes response or the no response. To sim-
ulate the pre-experimental history of human participants, an
additional class training was conducted in which the relations
XY, YZ and XZ were established, as performed by Lyddy and
Barnes-Holmes (2007). In the training phase, the relations AB
and BC for two sets of stimuli were also established using the
backward propagation learning algorithm (Rumelhart,
Hinton, & Williams, 1986). In the testing phase, the
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emergence of the AC relation was evaluated. As a result, it
was found that five out of six runs demonstrated emergence of
the AC transitivity relation and therefore presented equiva-
lence class formation. In order to evaluate the importance of
simulating pre-experimental knowledge in this new model,
the authors repeated the simulation procedure excluding the
steps referring to the additional class training. Upon removal
of the additional class training, it was not possible to simulate
equivalence class formation.

The model developed by Tovar and Torres (2012) did not
need to utilize a similar resource to the sample-marking dupli-
cator, characteristic of the networks derived from RELNET,
once it did not differentiate sample and comparison stimuli.
The output vectors were generated exclusively by the
information about the stimuli present in each trial in such a
way that the results obtained in the testing phase represented
emergent responses. Therefore, the model proposed by Tovar
and Torres (2012) can be considered a valid alternative to
RELNET for studies involving simulations of equivalence
class formation.

However, the yes-no procedure may generate undesir-
able effects in experiments with humans because the use
of the yes and no labels can make the participants re-
spond no in all the transitivity and equivalence test tri-
als, given that the tested relations were not presented in
the training phase (Fields, Reeve, Varelas, Rosen, &
Belanich, 1997; Fields, Doran, & Marroquin, 2009).
Ideally, it would be desirable for computational simula-
tions to make use of a procedure that, in humans, did
not present the type of problem pointed out by Fields
et al. (1997) and also did not differentiate sample and
comparison stimuli.

Another alternative procedure to MTS, which also does not
differentiate sample and comparison stimuli, is the go/no-go
procedure with compound stimuli (e.g., Debert, Matos, &
Mcllvane, 2007; Perez, Campos, & Debert, 2009; Debert,
Huziwara, Faggiani, De Mathis & Mcilvane, 2009; Campos,
Debert, Barros & Mcllvane, 2011; Grisante et al., 2013). The
main difference between the procedures yes-no and go/no-go
with compound stimuli is the response required by the partic-
ipant. In the go/no-go procedure with compound stimuli, the
participant must emit the response topography previously de-
fined by the experimenter as being the go response (e.g.,
clicking with the mouse, pressing a key, etc.) to compounds
with elements from the same class, and the participant must
emit the response defined as no-go, which would be any other
response except the response defined as go, to compounds
with elements from different classes. Considering that ideally
it is desirable to work in computational simulations with pro-
cedures that have proven to be successful with humans, it
would be advantageous to evaluate the possibility of simulat-
ing equivalence class formation with the go/no-go procedure
with compound stimuli.

This work aimed to evaluate the possibility of utilizing
artificial neural networks to simulate equivalence class forma-
tion using the go/no-go procedure with compound stimuli.

Experiment 1

Experiment 1 evaluated the possibility of utilizing artificial
neural networks to simulate equivalence class formation with
the go/no-go procedure with compound stimuli. The Tovar
and Torres (2012) method was taken as the basis for the de-
velopment of a new computational model, adapted to the go/
no-go procedure with compound stimuli.

Method

The programming of the artificial neural network was per-
formed utilizing the C Programming Language (Ritchie,
Kernighan, & Lesk, 1975) and the Fast Artificial Neural
Network Library (Nissen, 2003). Figure 1 presents a scheme
of the neural network architecture developed. As Tovar and
Torres (2012) had done, the units of the input layer were
disposed to avoid two stimuli of the same class being adjacent.

Each unit of the input layer corresponded to a specific
experimental stimulus. The activation of a unit with value 1
represented the presence of its corresponding stimulus in the
trial, while the activation with value 0 represented its absence.
The unit in the output layer made the representation of the
emission of the go or no-go responses. During training, the
output vector 1 was considered as the representation of the go
response, whereas the output vector 0 was considered as the
representation of the no-go response.

Figure 2 illustrates the computational representation of two
trials regarding stimuli presentation and response emission. To

Hidden Layer Output Layer

Fig. 1 Network architecture of the computational model
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Fig. 2 TIllustration of two trials
regarding stimuli presentation and
response emission. On the upper
part are the real-world events
related to each trial. On the
bottom part are the corresponding
computational representations for
each simulated event. Left:
Presentation of the stimuli A1B1
and the emission of the go
response. Right: Presentation of
the stimuli A1B2 and the emis-
sion of the no-go response

AlBI

Presentation of a
circle (Al) and a
triangle (B1).

Real world events to be simulated

Go Al1B2 No-go

No mouse click
on the screen.

Presentation of a
circle (Al) and a
square (B2).

Mouse click on
the screen.

Corresponding computational representation

Input: Output: ! Input: Output:
100000010 1 i 101000000 0
A1ZB2XClYC2B1A2 Go i A1ZB2XClYC2B1A2 No-go

simulate the presentation of A1B1, the input vector activated
the units that referred to Al and B1 with value 1 and all the
others with value 0. In the input layer, the first and eighth units
corresponded to Al and B1, respectively, so the input vector
that represented A1B1 presentation was 100000010. Next, the
unit in the output layer should ideally print the output vector 1,
representing that the go response was emitted. In the same
way, A1B2 presentation was represented by the input vector
101000000, since the first and third units of the input layer
corresponded to Al and B2, respectively. Then, the printed
output vector would ideally be 0, representing that the no-go
response was emitted.

An input vector became an output vector by a series of
mathematical computations (see Haykin, 2009). The value
of each unit in the input layer was passed to the units in the
hidden layer, multiplied by the connection weight between
them. Each connection between two units (lines in Fig. 1)
had a different weight. The resulting values in each unit of
the hidden layer were then adjusted to be in the interval be-
tween 0 and 1 by an activation function called sigmoid. This
process was repeated to pass the values from the hidden to the
output layer, generating an output vector.

Two sets of stimuli were utilized for training and testing
conditions. The additional class training utilized three stimuli
(X, Y and Z) as in Tovar and Torres (2012). This training
would correspond to the pre-experimental history simulation
of a human participant with linguistic capacities (Lyddy &
Barnes-Holmes, 2007). The relations XY, YZ and XZ were
established. The transitivity relation (XZ) was directly trained
to ensure establishment of the equivalence class XYZ. Using
the second set of stimuli, the relations A1B1, A2B2, B1C1
and B2C2 were trained for the go response, as well as the

relations A1B2, A2B1, B1C2 and B2CI1 for the no-go re-
sponse, as shown in Fig. 3.

The input vectors and their corresponding output vectors
considered correct during the training phase, or expected dur-
ing the testing phase, are presented in Table 1. Each input
vector generated an output vector. During training, when the
generated output vector did not correspond to the value con-
sidered correct in the trial (right side of Table 1), the connec-
tion weights between units were altered to produce output
vectors closer to those desired on following trials. Thus, the
connection weights, to which random values between 0 and 1
were initially attributed, would assume optimized values that
progressively produced output vectors closer to those desired.
The changes in the connection weights were made by the
backward propagation algorithm (Rumelhart, Hinton, &
Williams, 1986), with a learning rate of 0.3 and zero learning
momentum—parameters that determine the magnitude of the
change in the connection weights (see Haykin, 2009). The
backward propagation consisted of a computational procedure

Al <= Bl <= CI

Fig. 3 Trained relations (solid line) and tested relations (dashed line)
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Table 1 Input vectors and their

corresponding output vectors Phase Compound Input vectors Output vectors
considered correct during the
training phase or expected during Al z B2 X Cl1 Y C2 Bl A2 Go/no-go
the testing phase
Training XY 0 0 0 1 0 1 0 0 0 1
Training YZ 0 1 0 0 0 1 0 0 0 1
Training XZ 0 1 0 1 0 0 0 0 0 1
Training AlBI1 1 0 0 0 0 0 0 1 0 1
Training Al1B2 1 0 1 0 0 0 0 0 0 0
Training  BICl1 0 0 0 0 1 0 0 1 0 1
Training  BIC2 0 0 0 0 0 0 1 1 0 0
Training  A2B2 0 0 1 0 0 0 0 0 1 1
Training ~ A2BI1 0 0 0 0 0 0 0 1 1 0
Training  B2C2 0 0 1 0 0 0 1 0 0 1
Training  B2Cl1 0 0 1 0 1 0 0 0 0 0
Test AlCI 1 0 0 0 1 0 0 0 0 0.85~1.00
Test AlC2 1 0 0 0 0 0 1 0 0 0.00~0.15
Test A2C2 0 0 0 0 0 0 1 0 1 0.85~1.00
Test A2C1 0 0 0 0 1 0 0 0 1 0.00~0.15

analogous to the learning process involved in experiments
with humans. The training phase ended when the stopping
criterion RMS <0.0025 (root mean square) was met, meaning
that all input vectors of the training phase were generating
output vectors that were sufficiently close to the correct ones,
with minimum error.

In the testing phase, the backward propagation algorithm
was deactivated, maintaining the connection weights constant.
At this point, the emergence of the relations A1C1 and A2C2
for the go response was evaluated, and of the relations A1C2
and A2C1 for the no-go response. Adapting the criterion uti-
lized by Tovar and Torres (2012), an error of 0.15 was toler-
ated from the ideally expected output vector. Values between
0.85 and 1 were considered as the representation of the go
response. Inversely, values between 0 and 0.15 were consid-
ered as the representation of the no-go response. Intermediate
values, between 0.15 and 0.85, were considered as absence of
consistency in the emission of one of the responses in partic-
ular. Symmetry tests were not conducted because there was no
representation for the spatial location of stimuli, as done by
Tovar and Torres (2012). Thus, a relation (e.g., A1C1) and its
symmetric relation (e.g., C1A1) had the same input vectors.

The training and testing steps were repeated in six runs,
which, for the purpose of simulation, would be equivalent to
six human participants.

Results

The training criterion was met after 526 epochs on average.
Considering that 11 relations were trained in each epoch, the
criterion for changing phase was met, on average, after 5,781
iterations. Figure 4 shows the activation values for each

compound presented in the testing phase, in each run. The
go response corresponds to values equal to or greater than
0.85 (upper dashed line), while the no-go response corre-
sponds to values equal to or less than 0.15 (lower dashed line).

Four out of six runs met the criteria for the emergence of
the AC relation, indicating the formation of the equivalence
classes A1B1C1 and A2B2C2. The forth run satisfied neither
the criterion for the go response for A2C2 nor that of the no-go
response for A1C2 and A2C1. The fifth run met the criterion
for the go response for A1C1 and A2C2, but did not meet that
of the no-go response for A1C2 and A2C1.

Discussion

Experiment 1 evaluated the possibility of utilizing artificial
neural networks to simulate equivalence class formation using
the go/no-go procedure with compound stimuli. It was found
that four out of six runs satisfied the criteria for equivalence
class formation. The result that not all runs met the criteria
resembles the experiments in which the go/no-go procedure is
utilized with humans, given that not all participants demon-
strate equivalence class formation (e.g., Debert, Matos, &
Mcllvane, 2007; Perez, Campos, & Debert, 2009; Debert,
Huziwara, Faggiani, De Mathis, & Mcilvane, 2009;
Campos, Debert, Barros, & Mcllvane, 2011; Grisante et al.,
2013).

The results obtained were similar to those found in Tovar
and Torres (2012), which simulated equivalence class forma-
tion utilizing the yes-no procedure, which also did not differ-
entiate sample and comparison stimuli functions. Thus, the
results of the current work aggregate to those of Tovar and
Torres (2012) as evidence that it is possible to develop
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Fig. 4 Activation values for each compound presented in the testing phase, in each run. The upper dashed line is the minimum threshold for the
representation of the go response, and the lower dashed line is the maximum threshold for the representation of the no-go response

computational models to simulate equivalence class formation
without the need to attribute specific functions to the anteced-
ent stimuli.

All runs of Experiment 1 underwent the additional
class training, as commonly takes place in experiments
involving simulations of equivalence class formation
(e.g., Barnes, & Hampson, 1993; Cullinan, Barnes,
Hampson, & Lyddy, 1994; Lyddy & Barnes-Holmes,
2007; Lyddy, Barnes-Holmes, & Hampson, 2001;
Tovar & Torres, 2012). It has been reported that the
additional class training is indispensable for simulations
using MTS (Barnes & Hampson, 1993) and yes-no
(Tovar & Torres, 2012) procedures. However, it is still
not known if the additional class training would also be
a necessary step for simulations using the go/no-go pro-
cedure with compound stimuli. It would be important to
evaluate whether, in the absence of this training, the

results of the simulations utilizing the model developed
in the present study would remain the same, or if, in
the same manner as with other procedures, the addition-
al class training would prove essential to the simulation
of equivalence class formation.

Experiment 2

Studies that simulated equivalence class formation using MTS
and yes-no procedures noted that the additional class training
is an indispensable step (e.g., Barnes & Hampson, 1993;
Tovar & Torres, 2012). It is discussed that the additional class
training is an analog to the pre-experimental experience that
human participants have (e.g., Lyddy & Barnes-Holmes,
2007; Tovar & Torres, 2012). It is necessary to evaluate
whether this training is also important when the simulations
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are made using the go/no-go procedure with compound
stimuli.

Experiment 2 aimed to evaluate the possibility of simulat-
ing equivalence class formation using the go/no-go procedure
with compound stimuli without performing the additional
class training.

Method

The same training and testing procedures as in Experiment 1
were performed, except that there was no additional class
training. The network architecture utilized is represented in
Fig. 5. It was altered in order not to contain units referring to
the stimuli X, Y and Z.

The trained and tested relations are presented in Fig. 6.

The input vectors and their corresponding output vectors
considered correct during the training phase, or expected dur-
ing the testing phase, are represented in Table 2. The vectors
were the same as those in Experiment 1, differing only in that
they were neither representations for the stimuli X, Y and Z
nor steps related to the additional class training.

Results

Training criterion was met, on average, after 8737 iterations
(or 1092 epochs). Figure 7 shows the activation values for
each compound presented in the testing phase in each run.
Only two out of six runs satisfied the criteria for the emer-
gence of the AC relation, indicating the formation of the
equivalence classes A1BIC1 and A2B2C2. It is noteworthy
that the second, fourth and fifth runs fulfilled the criterion for
the go response for compounds containing elements of differ-
ent classes (A1C2 and A2C1), whereas they satisfied the cri-
terion for the no-go response for compounds containing ele-
ments of the same class (A1C1 and A2C2). This result was the
inverse of what was expected in the transitivity test. In the
sixth run, if the criterion for the no-go response for A2C2
had been met, this execution would also have presented an
inverse pattern to what was expected in the testing phase.

Discussion

Experiment 2 evaluated the effect of the absence of the addi-
tional class training on the results of the equivalence class
formation simulation using the go/no-go procedure with com-
pound stimuli. In the training phase, the criterion for phase
change was met, on average, after 8,737 iterations, a number
significantly greater in comparison with the average of 5,781
iterations required in Experiment 1. The increase in iterations
to fulfill the criterion in Experiment 2 indicates that the addi-
tional class training facilitates the establishment of directly
trained relations. In the testing phase, it was found that only
two out of six runs satisfied the criteria for equivalence class

Fig.5 Network architecture of the model that did not undergo additional
class training

formation. Besides this, three of the runs that did not demon-
strate equivalence class formation presented a response pat-
tern that was inverse to what was expected in the testing phase.
In other words, the criterion for the go response was met for
compounds containing elements from different classes,
whereas the criterion for the no-go response was satisfied for
compounds containing elements from the same class. These
results are very different from those observed in experiments
with humans using the go/no-go procedure with compound
stimuli (e.g., Debert, Matos, & Mcllvane, 2007; Perez,
Campos & Debert, 2009; Debert, Huziwara, Faggiani, De
Mathis, & Mcilvane, 2009; Campos, Debert, Barros, &
Mcllvane, 2011; Grisante et al., 2013). Therefore, the addi-
tional class training is essential to simulate equivalence class
formation when using the go/no-go procedure with compound
stimuli in the same way that it is also necessary for MTS (e.g.,
Barnes & Hampson, 1993) and yes-no (Tovar & Torres, 2012)
procedures.

Tovar and Torres (2012) also found that, when the
additional class training did not occur, some runs pre-
sented a response pattern inverse to what was expected
in the testing phase. The authors raised the hypothesis
that the inverse pattern appeared because, in transitivity
tests, the probability of the occurrence of the yes re-
sponse was the same as that of the no response, when
the additional class training was not performed. This is

Al <= Bl «— Cl

Fig. 6 Trained relations (solid line) and tested relations (dashed line) of
the simulations that did not undergo additional class training



446

Psychol Rec (2016) 66:439-449

Table 2 Input vectors and their corresponding output vectors
considered correct during the training phase, or expected during the
testing phase, for the simulation that did not involve additional class
training

Phase Compound Input vectors Output vectors
Al B2 Cl1 C2 Bl A2 go/no-go

Training Al1BI 1 o o0 o0 1 o0 1

Training A1B2 1 1 0 0 0 0 o0

Training BIC1 o o 1 o0 1 0 1

Training B1C2 0 0 0 1 1 0 O

Training A2B2 o 1 0 0 0 1 1

Training A2BI o o o o0 1 1 0

Training B2C2 o 1 0 1 0 o0 1

Training B2Cl1 o 1 1 0 0 0 o0

Test AlCI 1 0 1 0 0 0 085~1.00
Test AlC2 1 0 0 1 0 0 000~0.15
Test A2C2 0 0 0 1 0 1 085~1.00
Test A2C1 0 0 1 0 0 1 0.00~0.15

because, as pointed out by Fields et al. (2009), in the
case of humans, baseline training with pairs of stimuli
A1BI and BI1Cl, associated with the yes response, es-
tablishes the condition for occurrence of the yes re-
sponse in the presence of A1Cl. However, baseline
training with the pairs A1B2 and B2C1 also establishes
the condition for the no response to occur in the pres-
ence of AICI. Thus, it is possible to explain inverse
pattern emergence when there is no additional class
training. Future studies could investigate this hypothesis.

General Discussion

This work evaluated the possibility of utilizing artificial neural
networks to simulate equivalence class formation using the
go/no-go procedure with compound stimuli. In Experiments
1 and 2, it was found that it is possible to simulate equivalence
class formation using the go/no-go procedure with compound
stimuli. Also, it was observed that the additional class training
is a necessary step of the simulation and likewise happens
when other procedures are used (e.g., Barnes & Hampson,
1993; Cullinan, Barnes, Hampson, & Lyddy, 1994; Lyddy &
Barnes-Holmes, 2007; Lyddy, Barnes-Holmes, & Hampson,
2001, Tovar & Torres, 2012). As the model developed in the
present study does not differentiate sample and comparison
stimuli, it was not necessary to utilize a computational re-
source similar to the sample-marking duplicator used in the
networks derived from RELNET (e.g., Barnes & Hampson,
1993). Since the output vectors were generated only by the
information about the stimuli presented, the results obtained in

the testing phase represented emergent responses. Therefore,
it can be affirmed that the model developed is an alternative to
RELNET for the study of equivalence relations using compu-
tational simulations.

The present study provided the methodological novelty of
utilizing a single unit in the output layer. In the yes-no proce-
dure, the two possible responses are independent and therefore
each one needs an independent computational representation.
It is required to make the representation of two distinct
responses, a yes response and a no response. For this reason,
Tovar and Torres (2012) developed a network architecture in
which the output layer had two units. The computational rep-
resentation of the yes response was made by the output vector
(1, 0), that is, the activation of the yes unit with value 1 and the
activation of the no unit with value 0. The computational
representation of the no response was made in reverse by the
output vector (0, 1), that is, the activation of the yes unit with
value 0 and the activation of the no unit with value 1.
Although this network architecture is conceptually correct,
given the independence between the yes and no responses,
computationally there is redundancy: whenever the yes unit
is activated with value 1, it is expected that the no unit is
necessarily activated with value 0, and, inversely, whenever
the yes unit is activated with value 0, it is expected that the no
unit is activated with value 1. Therefore, the existence of two
units in the output layer is computationally redundant. It
would be more parsimonious and would simplify the compu-
tational training procedure if, in the output layer, there were
only one unit. This was possible when developing a network
architecture utilizing the go/no-go procedure with compound
stimuli. In this procedure, the two possible responses, go and
no-go, are dependent on each other, given that, conceptually,
in a certain trial the no-go response cannot be emitted if the go
response was emitted, and vice-versa. Due to this, it was con-
ceptually correct to propose a network architecture containing
only one unit in the output layer. The activation of the only
unit in the output layer with value 1 was the computational
representation of the go response, and the activation of this
unit with value 0 was the computational representation of the
emission of any response different from go, in other words,
the no-go response. This network architecture containing only
one activation unit in the output layer avoids computational
redundancies and is more parsimonious. Although in simple
network architectures this methodological novelty may not
impact performance, it could make a difference in simulations
using more complex architectures or weak hardware.

During the testing phase, the backward propagation algo-
rithm was deactivated, as commonly occurs in simulations of
equivalence class formation (e.g., Barnes & Hampson, 1993;
Cullinan, Barnes, Hampson, & Lyddy, 1994; Lyddy &
Barnes-Holmes, 2007; Lyddy, Barnes-Holmes, & Hampson,
2001; Okada, Sakagami, & Yamakawa, 2005; Tovar & Torres,
2012). However, in this mode of simulating the testing phase,
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Fig. 7 Activation values for each compound presented in the testing
phase, in each run. There was no additional class training. The upper
dashed line is the minimum threshold for the representation of the go

the connection weights remain constant during all testing tri-
als, preventing variations in the output vectors that are gener-
ated. The results remain the same, irrespective of test charac-
teristics (for example, the order of the relations tested or the
quantity of re-tests conducted). Thus, an important limitation
of'the present model is that it is neither capable of reproducing
results obtained in experiments involving humans, in which it
was found that the order of the relations tested affects the
emergence of equivalence classes (e.g., Adams, Fields, &
Verhave, 1993), nor results in which the emergence of equiv-
alence classes occurs when the testing phase is repeated with-
out additional training steps (e.g., Debert, Matos, & Mcllvane,
2007; Perez, Campos, & Debert, 2009). Another limitation of
the present model is the absence of spatial representation for
the stimuli presented, just as in Tovar and Torres (2012).
Without representing the spatial location, it is not possible to
conduct symmetry tests, as the input vector of a relation and its

response, and the lower dashed line is the maximum threshold for the
representation of the no-go response

symmetric relation are the same. However, such tests are con-
ducted in the majority of studies with humans using the go/no-
go procedure with compound stimuli (e.g., Debert, Matos, &
Mcllvane, 2007; Perez, Campos, & Debert, 2009; Debert,
Huziwara, Faggiani, De Mathis, & Mcilvane, 2009;
Campos, Debert, Barros, & Mcllvane, 2011; Grisante et al.,
2013).

It is suggested that future studies could evaluate the possi-
bility of simulating the training and testing trials of conditional
relations considering the spatial location of the stimuli, but
seeking to avoid computational resources as the sample-
marking duplicator, characteristic of the networks derived
from RELNET. Representation of the stimuli spatial location
would make the simulation more similar to what has been
done with humans using the go/no-go procedure. This would
enable, for example, conducting symmetry tests (Debert,
Matos, & Mcllvane, 2007; Perez, Campos, & Debert, 2009;
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Debert, Huziwara, Faggiani, De Mathis, & Mcilvane, 2009;
Campos, Debert, Barros, & Mcllvane, 2011; Grisante et al.,
2013). It is also suggested that future studies could investigate
the possibility of utilizing some algorithm or other computa-
tional resource that promotes variability of the output vectors
during the testing phase. This could allow simulating, for ex-
ample, the effect of the order in which relations are tested, or
the effect of re-testing, on the probability of equivalence class
formation. Experiments with humans revealed that, in the go/
no-go procedure with compound stimuli, the training structure
has no effect on the equivalence class emergence (Grisante
et al., 2013), unlike what happens in the MTS procedure
(e.g., Adams, Fields, & Verhave, 1993). It is further suggested
that there could be future investigations regarding whether the
model developed in the present study is capable of reproduc-
ing these results obtained with humans using the go/no-go
procedure with compound stimuli, comparing it with the study
of Lyddy and Barnes-Holmes (2007), which simulated the
effects of the training structure on the emergence of equiva-
lence classes using MTS. The present study used the RMS as a
stopping criterion during the training phase, as it is commonly
performed when simulating equivalence class formation (e.g.,
Barnes & Hampson, 1993; Cullinan, Barnes, Hampson, &
Lyddy, 1994; Lyddy & Barnes-Holmes, 2007; Lyddy,
Barnes-Holmes, & Hampson, 2001; Tovar & Torres, 2012).
It is worth mentioning that one alternative to the RMS is a
cross-validation test, such as the k-fold cross-validation (see
Mitchell, 1997). Future studies could investigate whether an
alternative stopping criterion would bring any advantage to
the field. Furthermore, it could be evaluated whether it is
possible to simulate the formation of larger classes. The estab-
lishment of classes containing more than three stimuli would
make it viable to investigate new aspects of the phenomenon
studied, such as using simulations to investigate specificities
of the nodal distance effect. Finally, future studies could eval-
uate the possibility of adapting the present model for the sim-
ulation of behaviors involving contextual control. So far, no
alternatives to RELNET (Barnes & Hampson, 1993) exist for
the simulation of such behavior.
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