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1 Introduction

Holographic methods [1]–[5] are a powerful tool for addressing hitherto unsolvable problems

in field theory by connecting strongly coupled gauge theories with weakly coupled gravity

backgrounds in higher dimensions. These methods rely on embedding probe branes of

various dimensions in appropriate graviational and flux backgrounds. The shape of those

branes is determined, at the classical level, by extremizing the Dirac-Born-Infeld (DBI)

action that describes them. In many examples, the probe branes are supersymmetric

and therefore the classical shape of the embedding is guaranteed to be stable under small

fluctuations. However, many other important applications (see for example [6]–[15]), which

are of great phenomenological interest, require the study of nonsupersymmetric probes.

Hence one needs to compute explicitly the mass spectrum of fluctuations, in order to see

whether there is a tachyonic mode, signifying perturbative instability, or not.

The computation of the mass spectrum is performed in the following way. First, one

finds the linearized equations of motion for small fluctuations around the classical solution

of interest. To solve those equations, one then usually uses an ansatz, which factorizes into

a multiplier dependent on the 4d space-time coordinates and another multiplier dependent

on a radial coordinate of the background metric. The 4d space-time dependent factor

admits a plane wave ansatz. Then, after performing a certain field redefinition, one can

reduce the problem to solving a Schrodinger-like equation in the radial direction, with the

role of the energy eigenvalue being played by the square of the mass m characterizing the

flucutation (for an example of this procedure, see [14]). Solutions with m2 > 0 belong to

the physical mass spectrum of the theory, whereas the presence of modes with m2 < 0

indicates perturbative instability.
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Usually, it is rather difficult to solve the appropriate Schrodinger equation analytically;

it is only possible to study it with numerical techniques. To facilitate the investigation of

the question of stability, although not the problem of finding the full mass spectrum, we

develop a method relying entirely on the investigation ofm = 0 solutions of the Schrodinger

equation. Often, finding such solutions is much simpler than solving the complete mass

eigenvalue problem. In fact, as we will point out below, once a classical solution has

been found, obtaining the m = 0 fluctuations around it is straightforward by analytical

means. The existence of zeros of those fluctuations, as functions of the radial variable, then

indicates perturbative instability.

In the next section we will show that zero mass fluctuations around classical solutions

do encode the information about whether there are tachyonic modes in the spectrum of

shape fluctuations or not. This is an expanded explanation, based on the more concise

arguments presented in appendix B of [18]. In section 3, we show that the analytic form

of zero mass fluctuations can be obtained directly from the classical solution under con-

sideration, by differentiating it with respect to its integration constants. In section 4, we

illustrate our method by applying it to three models that are of phenomenological interest:

the Kuperstein-Sonnenschein model of chiral symmetry breaking [6], the Sakai-Sugimoto

construction of holographic QCD [7] and the walking technicolor model of [12, 13]. In the

last section, we summarize our results.

2 Stability from fluctuations with vanishing mass

We begin by briefly reviewing the basic set-up for the models of interest. To build a

gravitational dual of a strongly coupled gauge theory, one considers a background sourced

by a stack of Dp branes. This gives rise to the color degrees of freedom. Adding flavor

ones is achieved usually by introducing some Dq probe branes into that background.1 The

ten-dimensional metric describing a stack of Nc coincident Dp branes, with p = 0, 1, . . . , 6 ,

is of the form [19]:

ds210d = H−1/2(y) dx2(p+1) + H1/2(y) dy2(9−p), (2.1)

where x0, . . . , xp are the p + 1 worldvolume coordinates and dx2(p+1) ≡ −dx20 + . . . + dx2p ,

while the y1, . . . , y9−p are the coordinates of the 10 − (p + 1) transverse directions and

dy2(9−p) ≡ dy21 + . . . + dy29−p. Also, H(y) is a harmonic function on the transverse space,

containing the parameter Nc. Note that one can trivially write the transverse space line

element in spherical coordinates:

dy2(9−p) = dr2 + r2dΩ2
8−p . (2.2)

To obtain the dual of an effective lower (than p + 1) dimensional gauge theory, one first

needs to take a certain decoupling limit [1, 5] and then wrap the Dp branes on a compact

1Taking into account the full backreaction of the flavor branes is a very hard technical problem. To date,

there is only rather modest progress toward solving it, in rare cases and/or with specific approximations.

We will not discuss this issue further here.
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manifold of appropriate dimension. For example, to obtain a four-dimensional gauge theory

from a stack of D4 branes, one has to wrap them on an S1. Similarly, when considering

D5 branes, one needs to compactify them on an S2, in order to end up, at low energies,

with an effective four-dimensional description. These two steps, namely performing the

decoupling limit and the subsequent compactification, lead to a metric of the form:

ds2 = f1(U) dx2(k) + f2(U) dU2 + ds29−k(U) , (2.3)

where U is r up to a constant factor, dx2(k) is the line element of the effective k-dimensional

theory we want to study and f1,2(U) are functions that differ from case to case. For many

examples, including the Sakai-Sugimoto model [7], the line element ds29−k(U) is of the form:

ds29−k = f3(U) dx2(p+1−k) + f4(U) dΩ2
8−p , (2.4)

where dx2(p+1−k) corresponds to the compactified worldvolume dimensions and the functions

f3,4(U) are case specific. There are more involved examples, though, in which one needs to

perform certain ‘twisting’ while compactifying. This leads to a more complicated expression

for ds29−k, containing mixing between the two terms of (2.4) as well as additional warp

factors; see equation (6) of [16], for instance. However, for later purposes, it is important

to underline that in all cases the background metric does not have a mixed component

between the U coordinate and the coordinates {xi}|i=0,...,k−1. This property is inherited

from (2.1) and, more precisely, from the lack of a mixed dxdr term there.

As already mentioned, the gauge theory of interest lives in the (x0, . . . , xk−1) spacetime

dimensions of the above background. To add flavor degrees of freedom in this theory, we

embed some Dq probe branes in the background. Those probes are described by the usual

DBI action:

SDBI = −T
∫

d q+1σ e−φ
√

− det(gab + 2πα′Fab) , (2.5)

where a, b = 0, . . . , q are worldvolume indices, T is the brane tension, φ is the string dilaton,

gab is the metric induced on the worldvolume and Fab is the worldvolume field strength.

For the class of holographic models we consider, the probe branes always extend along

x0, . . . , xk−1, U and some number of compact directions. Integrating out that compact

space, one is left with an effective action of the form:

S =

∫

dkx dU L . (2.6)

Since we are primarily interested in four-dimensional effective theories, we will focus on

the k = 4 case from now on, although our considerations easily generalize to k 6= 4. Also,

to underline the fact that in many examples the most suitable worldvolume radial variable

may be a nonlinear function of the original spacetime radial variable, we introduce a new

radial variable z = z(U) and therefore the effective action acquires the schematic form:

S =

∫

d4x dz L̂ . (2.7)

Another important assumption is the following. The world volume field strength Fab does

not have a nontrivial background. In other words, the only contribution to it comes from
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fluctuating its potential. This is certainly the case for the D8 probe branes in the Sakai-

Sugimoto model [7] and the D7 probes in the Kuperstein-Sonnenschein model [6], as well

as for the probes in all the literature on holographic models of technicolor; see [9]–[14], for

example. The motivation for this assumption is that a generic nonvanishing background

for Fab would lead to some kind of a monopole background in the four-dimensional effective

theory. And this is not what the above models aimed to study. Nevertheless, it may be

possible to consider a nontrivial Fab background that extends only along the compactified

Dq directions, as well as possibly z. In fact, it may be that such a worldvolume flux

is needed in order to stabilize certain embeddings, as mentioned in [18]. We leave the

investigation of nonvanishing worldvolume flux for the future. Instead, our goal here will

be to study the stability of probe brane embeddings under fluctuations of their shape (and

with no worldvolume flux included). Therefore, the effective action of interest for us is of

the form:

S = const

∫

d4x dz
√

− det gâb̂ , (2.8)

where â, b̂ = x0, . . . , x3, z .

Let us denote by ψ1, . . . , ψ9−q the coordinates transverse to the probe brane world-

volume. For simplicity, we will consider only one such coordinate ψ in the following. To

describe the embedding of the worldvolume into the background spacetime (2.3), we need

an ansatz for the dependence of ψ on the worldvolume coordinates. As in all of the existing

literature in this area (see, for example, [6, 7], as well as [9]–[11]), we will assume that the

classical embedding function depends only on z, but not on xµ. Its form is then easily

determined by solving the equation of motion of (2.8). The fluctuations δψ(z, xµ) around

that classical shape ψcl(z) give rise to the scalar mesons in these models. Our goal will be

to develop an efficient short-hand method for establishing when the spectrum of δψ(z, xµ)

has a negative mass-squared mode and thus implies that the original embedding is not

stable. Note that, had we allowed the classical solution to be a function of xµ as well,

then we would not have had a standard four-dimensional Lagrangian (in xµ spacetime) for

the fluctuations as it would have depended on xµ explicitly (as a result of substituting the

expression for the classical solution) and not just implicitly via the fluctuation fields.2 Let

us also remark that if there are several fields ψ (and thus several δψ’s), but no mixed terms

to second order in their fluctuations, one gets several copies of the considerations we will

develop here for a single field. This is the case in all of the examples in [6] and [13]–[15],

whereas in [7] there is only one transverse coordinate. In principle, though, it is possible to

have mixed terms between different δψ fields, even to second order, for more complicated

embeddings. It would be interesting to see whether the presence of such terms could lead

to anything new. We leave that question for the future.

To obtain the equation of motion for δψ(z, xµ), one first substitutes the decomposition

ψ = ψcl(z) + δψ(z, xµ) into (2.8). The result is an action of the form:

S =

∫

dxd4x
√

F1[ψ(z, xµ), ∂zψ(z, xµ), z] + F2[ψ(z, xµ), z] [∂νψ(z, xµ)∂νψ(z, xµ)] , (2.9)

2Nevertheless, it might be interesting, for some other applications, to explore classical embeddings that

depend on xµ. Such a possibility arises when one imposes xµ-dependent boundary conditions.
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where we have taken into account that, as usual in this area, we will work only to second

order in fluctuations and also that the background metric does not have a non-vanishing

(zµ) component, as explained above. This form of the action will be enough for our needs

in section 3 below. However, before that, it will be very useful to make connection with the

previous literature, in which a Schrodinger form of the field equation was discussed. For

that purpose, let us specify a bit more the form of the action that one obtains from (2.8),

still keeping only up to second order in fluctuations under the square root. Namely, we have:

S =

∫

dzd4x

√

F
(1)
1 (ψcl+δψ, z) + F

(2)
1 (ψcl+δψ, z) [ψ

′

cl+δψ
′]2 + F2(ψcl+δψ, z)∂µδψ∂µδψ ,

(2.10)

where for convenience we have introduced the notation ′ ≡ ∂z. The Euler-Lagrange equa-

tion for δψ, obtained from the expansion to quadratic order of (2.10), contains both δψ′′

and δψ′. One can transform it to Shrodinger form, i.e. remove the first derivative term, by

a coordinate transformation z → ẑ followed by a ẑ-dependent field redefinition δψ → δψ̂.3

For simplicity of notation, we will drop the hats in the following.

The Schrodinger equation for the fluctuations has the form:

− δψ′′(z) + V (z) δψ(z) = m2 δψ(z) , (2.11)

where we have suppressed the xµ argument of δψ since it is only a spectator here. Let

us recall a few, more or less well known, facts about the solutions of this equation. First,

note that it is enough to study the range z > 0, since the fluctuations can be split into

symmetric and anti-symmetric ones w.r.t. to the point z = 0. The range of z can be

either infinite or finite, in case a physical cutoff zΛ is imposed. The potential V (z) is

assumed to be bounded, except possibly at z = 0. If the potential behaves as |V (z)| ∼ z−λ

with λ < 1, then there are two complete sets of orthogonal solutions, one satisfying a

Dirichlet boundary condition and the other satisfying a Neumann boundary condition. If

the singularity of the potential is stronger, i.e. 2 > λ ≥ 1, then one has only the complete

system with Dirichlet boundary conditions. The other set of solutions is finite at z = 0,

but has a singular derivative at that point. Nevertheless, we will loosely refer to the latter

solutions as satisfying Neumann boundary conditions even for 1 ≤ λ < 2, which are the

only cases we will consider in this paper. The case λ = 2 is more complicated and will not

be discussed here. All of the statements in this paragraph can be read off from the exact

solution of (2.11) for m = 0 and V (z) = −v0 z−λ with v0 = const > 0, which is:

ψ0(z) =
√
z

[

cJ J1 / (2−λ)

(

2 z1−λ / 2√v0
2− λ

)

+ cY Y1 / (2−λ)

(

2 z1−λ / 2√v0
2− λ

)]

. (2.12)

3In [14], there was no need of a transformation z → ẑ since the coefficients of the m2 and of the two-

derivative terms had the same z-dependence. In more general examples, though, those coefficients can

be different functions of z. In such cases, one needs the transformation dẑ =
√

b(z) dz, where b(z) =
F2

[

F
(1)
1 +F

(2)
1 ψ′2

cl

]

F
(1)
1 F

(2)
1

. Clearly, for this to be possible, b(z) has to be positive-definite. It is, in fact, easy to verify

that this is always the case by using the defining properties of the original background metric, namely that

all spatial distance-squareds have to be positive-definite (which, for example, implies the positivity of the

zz metric component) and that all spatial subspaces have to have non-degenerate volume forms (which

implies the positive-definiteness of the relevant subdeterminants).
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2.1 Positivity of ground state energy for low enough cutoff

Let us consider (2.11), but with an auxiliary potential Vζ(z), defined as Vζ(z) = V (z) for

z < ζ and Vζ(z) = ∞ for z ≥ ζ, instead of the potential V (z). It is easy to realize that at

sufficiently low cutoff ζ the ground state energy for this problem is positive, i.e. we have

m0
2 > 0. To show this, it is sufficient to consider attractive potentials, since a potential

that is repulsive near z = 0 always has a positive spectrum at small ζ.

For attractive potentials, the above statement ca be proven by scaling arguments.

Indeed, such a potential can be replaced, at sufficiently low ζ, by its asymptotic form

Vζ(z) ≃ − v

zλ
, (2.13)

where the constant v > 0. Then, if we rescale the coordinate by introducing x = z / ζ with

the range of x being 0 ≤ x ≤ 1, we arrive at the equation:

− δψ′′(x)− v0 ζ
2−λ

xλ
ψ(x) = (mζ)2 ψ(x). (2.14)

Then, for λ < 2, the potential term vanishes in the limit of ζ → 0 and the spectrum reduces

to that of a rectangular box potential with both the Dirichlet and Neumann spectra having

positive eigenvalues m2, which go to +∞ as ζ−2.

2.2 Dependence of ground state energy on cutoff value

Let us denote by ζ1, ζ2 two cutoffs satisfying ζ2 > ζ1. Then, clearly, in the interval

ζ1 < z < ζ2 we have Vζ1(z) = ∞ > Vζ2(z) and, furthermore, Vζ1(z) ≥ Vζ2(z) for every z.

Let us also denote the ground state eigenfunctions by ψζ1 and ψζ2 and the ground state

energy eigenvalues by mζ1
2 and mζ2

2. Since ψζ1(z) = 0 for z > ζ1, but ψζ1(z) = ψζ2(z)

and Vζ2(z) = Vζ1(z) for z < ζ1, we can write:

mζ1
2 =

∫ ζ2
0 dz

{

[

ψ′

ζ1

]2
+ Vζ2(z) [ψζ1 ]

2

}

∫ ζ2
0 dz [ψζ1 ]

2
. (2.15)

Now, the right hand side of (2.15) can also be regarded as a variational estimate for mζ2
2.

However, this does not give the best estimate. Indeed, the right hand side of (2.15) is

lowered upon replacing ψζ1 by ψζ2 . Thus, the corresponding eigenvalues satisfy mζ1
2 >

mζ2
2. This shows that the ground state eigenvalue decreases when the cutoff ζ is increased.

In other words, the ground state energy is a monotonically decreasing function of the cutoff.

2.3 Relation between zero-mass fluctuations and stability

Let us now consider zero mass fluctuations, satisfying Dirichlet or Neumann boundary

conditions at z = 0. Then, according to section 2.1, the ground state energy is positive at

a sufficiently small cutoff ζ. According to section 2.2, the ground state energy decreases

monotonically with increasing the cutoff. Hence, there are two possibilities: (1) the ground

state energy stays positive up to a physical cutoff zΛ (zΛ can be finite or infinite), in which

case there are no tachyons and the classical solution is perturbatively stable; (2) the ground

– 6 –



J
H
E
P
0
1
(
2
0
1
4
)
1
4
3

state energy has a zero at a critical cutoff zc. If zΛ > zc, then the ground state energy

must be negative. The appearance of a tachyon in this spectrum signifies that the classical

solution is perturbatively unstable.

Let us denote by ψ0(z) a solution of (2.11) with m = 0, satisfying either Dirichlet

or Neumann boundary conditions at z = 0. If ψ0(zc) = 0 and ψ0(z) 6= 0 for z < zc,

then at every physical cutoff ζ > zc (including ζ = ∞) the classical solution is unstable.

On the other hand, for every cutoff, such that ζ ≤ zc, the classical solution is stable. In

other words, the question of stability of classical solutions is reduced to the search for zeros

of massless solutions of the equation (2.11), satisfying Dirichlet or Neumann boundary

conditions.

3 Massless fluctuations from classical solutions

Depending on the complexity of the potential V (z), finding analytic solutions of (2.11)

can be difficult, even if one considers solutions with m = 0. In this section we will show

that, once the general classical solution is found, finding the analytic expression for m = 0

fluctuations around it is straightforward.

As recalled in section 2, the DBI action we study has the form:

S =

∫

dz d4x
√

F1[ψ(z, x), ψ′(z, x), z] + F2[ψ(z, x), z] [∂µψ(z, x)∂µψ(z, x)] , (3.1)

where xµ are the four-dimensional space-time coordinates. As explained in the previous

section, the classical configurations of interest are the extrema of this action, which are

independent of xµ. Clearly, when searching for them, one can drop the second term under

the square root in (3.1), thus reducing the problem to finding extrema of the action

S =

∫

dz
√

F1[ψ(z), ψ′(z), z] . (3.2)

Now let us consider small fluctuations around a classical solution ψ(z). For that

purpose, we need to make the substitution

ψ(z, x) → ψ(z) + δψ(z, x) (3.3)

in (3.1). The next step is to find the linearized equation of motion for the fluctuation

δψ(z, x). To do this, we expand the DBI action to second order in δψ(z, x). The only

term of this effective action, which depends on derivatives with respect to xµ, is the kinetic

term. Writing out the latter explicitly, the action has the form

S =

∫

dz d4x

[

F2(ψ(z), z) ∂µψ(z, x)∂
µψ(z, x)

√

F1(ψ(z), ψ′(z), z)
+ . . .

]

, (3.4)

where the ellipsis refers to all the rest of the terms, other than the kinetic one. Expanding

ψ(z, x) in plane waves, we find that the kinetic term for a mass eigenstate reduces to:

SK = m2

∫

dz d4x
F2(ψ(z), z)ψ

2(z)
√

F1(ψ(z), ψ′(z), z)
. (3.5)
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Clearly, the action (3.5) vanishes for m = 0. So we arrive at the (natural) conclusion that,

at the linearized level, the massless fluctuations satisfy the same equation of motion as

the classical solutions. Therefore, adding a small m = 0 fluctuation to a classical solution

results in another classical solution.

Now, classical solutions satisfy second order differential equations and are, thus,

parametrized by two integration constants. Hence, the only variations of a classical so-

lution, that lead to another classical solution, are obtained by the variation of those in-

tegration constants. In particular, small variations of a classical solution correspond to

infinitesimal changes of the integration constants.

To write down the mathematical expression encoding the above statement, let us

introduce some useful notation. First, we denote the two integration constants for classical

solutions by λ1,2. Also, to underline the dependence of such solutions ψcl(z) on λ1,2, let

us write explicitly ψcl(z, λ1, λ2). Then, the general solution of the linearized fluctuation

equation for the m = 0 case can be written as:

δψ0(z, λ1, λ2) = c1 ∂λ1
ψ(z, λ1, λ2) + c2 ∂λ2

ψ(z, λ1, λ2) , (3.6)

where c1 and c2 are arbitrary constants.

Clearly, there are two linearly independent solutions δψ0(z, λ1, λ2), of which, with

an appropriate choice of c1 and c2, one combination satisfies Dirichlet and the other one

satisfies Neumann boundary conditions at z = 0. Let us denote those combinations by

δψD
0 (z, λ1, λ2) and δψN

0 (z, λ1, λ2), respectively. According to the results of the previous

section, a zero of these functions in the physical range of z is a sign of instability of the

classical solution ψcl(z, λ1, λ2). Thus, to find whether a classical solution is stable or not,

one only needs to investigate how it depends on its integration constants. In the next

section, we will discuss applications of these results for several interesting examples.

4 Examples

In this section, we will illustrate the great efficiency of the method, developed above, by

applying it to several examples that are of significant phenomenological interest. We want

to underline that the power of our method is in the following: to establish perturbative

stability (or show perturbative instability) of a configuration of nonsupersymmetric probe

branes, embedded in a nontrivial gravitational and flux background, one does not have to

compute the whole scalar spectrum, arising from fluctuations of the embedding. Instead, it

is enough to only investigate the massless modes in this spectrum. Furthermore, whenever

the classical solution is known analytically, it is sufficient to study its derivatives with

respect to the two integration constants it contains. The absence (presence) of zeros of

those derivatives then signifies stability (instability) of the solution under consideration.

4.1 D7-D7 branes in a deformed conifold background

In [6], Kuperstein and Sonneschein studied a model of flavor chiral symmetry breaking,

obtained by embedding D7-D7 branes in a deformed conifold. The embedding is described

– 8 –
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by two functions, θ(r) and φ(r), of a radial variable r. The relevant DBI Lagrangian

acquires the form:

L ∼ r3
[

1 +
r2

6

(

θr
2 + sin2 θ φr

2
)

]1/2

. (4.1)

One can readily solve the Euler-Lagrange equation for the above Lagrangian. The

solution is given by the classical configuration θcl = π/2 and

φcl(r) =

√
6

4
cos−1

[

(r0
r

)4
]

, (4.2)

where r0 is an integration constant.4 Hence, the results of the previous section imply

the form

δφ0 = c ∂r0φ(r) ∼
c√

r8 − r08
(4.3)

for zero mass fluctuations of the field φ, with c being a constant. Clearly, (4.3) is singular

at r = r0, i.e. at the point where the D7 and D7 branes merge and where one has to

impose boundary conditions. This signifies the need of a change of coordinates, in order

to properly describe the physics of the fluctuations around the classical solution.

A suitable choice are the Cartesian coordinates y and z defined as [6]:

y = r4 cos
(

4φ /
√
6
)

,

z = r4 sin
(

4φ /
√
6
)

. (4.4)

It is easy to see that, in terms of the variable y, the classical solution (4.2) acquires the

form: ycl = r40. Hence any fluctuation of y is transverse to the D7-D7 embedding. On the

other hand, z is a worldvolume coordinate. So, in order to study transverse fluctuations,

we consider y and θ as functions of z. The relevant DBI action has the form:

L ∼
√

3 sin2 θ (y − z y′)2 + 3 (z + y y′)2 + 8 (z2 + y2)2 θ′2
√

z2 + y2
. (4.5)

Substituting the classical value θ = π / 2, the Lagrangian reduces to:

Lπ/2 ∼
√

1 + y′2. (4.6)

Then the solution of the equation of motion for y(z) is

y(z) = a+ b z , (4.7)

where a and b are integration constants. The derivatives of y(z) with respect to a and

b provide the two zero mass fluctuations δy1 = 1 and δy2 = z, which satisfy Neumann

and Dirichlet boundary conditions at z = 0, respectively. These fluctuations do not vanish

anywhere in the physical range of z, −∞ < z < ∞ (except for the trivial zero of the

Dirichlet solution). Hence, the classical solution is stable with respect to fluctuations in

the y direction.

4As in [6], we have chosen the value of φ at the tip to be zero.
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Finding the massless fluctuations of θ is slightly more complicated. The reason is that

we have not been able to find an analytic expression for the general solution of the Euler-

Lagrange equation for this field. Nevertheless, we can investigate zero mass fluctuations

δθ around the classical solution θcl = π/2. Using that ycl = r40, we obtain the following

linearized equation of motion for δθ:

(

r0
8 + z2

)

δθ′′ = 2 z δθ′ +
3 r0

8

r08 + z2
δθ. (4.8)

The general solution of (4.8) is:

δθ = cD sin

[ √
3

2
√
2
tan−1

(

z / r0
4
)

]

+ cN cos

[ √
3

2
√
2
tan−1

(

z / r0
4
)

]

, (4.9)

where the terms with cD and cN satisfy Dirichlet and Neumann and boundary conditions

at z = 0 respectively. Clearly, this solution is regular and does not vanish at any z 6= 0

point. Thus, the D7-D7 embedding under consideration is perturbatively stable. Of course,

this result was obtained via direct mass-spectrum calculations in [6]. Nevertheless, the new

derivation presented here illustrates the power of our method.

4.2 Sakai-Sugimoto model: D8-D8 probes in D4 background

The second example we consider is the Sakai-Sugimoto holographic dual of large Nc

QCD [7]. This model is based on a U-shaped D8-D8 flavor branes embedding in a D4

brane background. Now there is only one direction, transverse to the flavor brane probes,

namely a sphere parametrized by a coordinate τ . The radial coordinate is denoted by U [7].

So the D8-D8 position in the transverse space is described by a function τ(U).

The classical solution for the embedding function τ(U) can be obtained easily by

noticing that the DBI Lagrangian does not depend explicitly on the variable τ . Hence,

the system is conservative and the classical solution can be obtained from the first integral

∂τ H = 0. The result is:

τ(U) = τ0 + U0
4 f(U0)

1/2

∫ U

U0

(

R

U

)3/2 dU

f(U)
√

U8 f(U)− U0
8 f(U0)

, (4.10)

where f(U) = 1−UKK
3 /U3 and U0 > UKK . While UKK is a physical scale parameter, τ0

and U0 ≥ UKK are integration constants. If one choses τ0 = 0, then the initial condition

is τ(U0) = 0. The work [7] considered the case U0 = UKK , while [9] studied U0 > UKK

albeit in a different phenomenological application of that model. Those papers showed

perturbative stability by computing explicitly the mass spectrum, thus proving that it

does not contain tachyonic modes.5

Now we will recover the same result by applying the new method developed here.

According to the previous two sections, to find whether the classical solution is stable or

not, we need to calculate its derivatives with respect to the two integration constants τ0

5In fact, the work [9] studied only the (axial-)vector spectrum, but not the scalar one. Hence, the

question of stability of the U0 > UKK case was not settled.

– 10 –



J
H
E
P
0
1
(
2
0
1
4
)
1
4
3

and U0. The derivative with respect to τ0 is the fluctuation δτN (U) = 1, which satisfies a

Neumann boundary condition at U = U0. Obviously, it does not have zeros as a function

of U . Finding the derivative with respect to U0 is more demanding. For a generic choice

of U0, [7] only showed that dτ / dU0 < 0 in the limit U → ∞. This does not rule out an

instability, if the sign of the derivative were to change at a smaller value of U . We will

investigate this issue with our new method.

Unfortunately, we cannot write down the general analytic form of ∂U0
τ(U). But we will

be able to analyze explicitly two special cases. The first is when one chooses the integration

constant U0 such that U0 ≫ UKK . In this case, one can approximate f(U) ≃ 1. Then one

can evaluate the integral in (4.10) in terms of a hypergeometric function. Calculating the

derivative with respect to U0 and using for convenience the rescaled variable V = U /U0,

we find:

δτ(U) = ∂U0
τ(U) ∼ 1

V 9/2 2F1

(

1

2
,
9

16
;
25

16
;
1

V 8

)

− 9
√

V (V 8 − 1)
− 9

√
π Γ(9 / 16)

Γ(1 / 16)
. (4.11)

This expression is dominated by the manifestly negative second and third terms at V →
1 and V → ∞, respectively. The derivative of this expression with respect to U is

36U13/2 (U8−1)3/2 > 0. Therefore, δτ(U) is a monotonically rising function and is negative

everywhere. Consequently, the classical solution (4.10) for the Sakai-Sugimoto D4 /D8/D8

system is stable for U0 ≫ UKK .

Another special case, that is tractable analytically, is given by choosing U0 in a small

neighborhood of UKK . In other words, we take the integration constant to be such that

U0 − UKK ≪ UKK . Notice that the integral in (4.10) is divergent for U0 = UKK . Nev-

ertheless, it is possible to determine the sign of the leading term. As a first step, we

integrate (4.10) by parts, in order to make the integral non-singular at the lower limit.

This gives:

τ(U) ∼ U0
4 f(U0)

1/2

∫ U

U0

dU

(

136U6 + 25U6
KK − 143U3 U3

KK

)
√

U8 f(U)− U0
8 f(U0)

U7/2
(

5UKK
6 + 8U6 − 13U3 U3

KK

)2 .

(4.12)

The derivative of the integral in (4.12) with respect to U0 is singular for U0 → UKK . The

singular behavior comes from the region in which U − U0 = O(U0 − UKK). Therefore,

to calculate the leading order contribution, it is sufficient to take the derivatives of the

singular multipliers, such as f(U0)
1/2 and

√

U8 f(U)− U0
8 f(U0), and then to substitute

U → UKK in the non-singular multipliers. As a result, we obtain:

∂U0
τ(U) ∼

∫ U

U0

dU
∂U0

[

f(U0)
1/2
√

U8 f(U)− U0
8 f(U0)

]

(

5UKK
6 + 8U6 − 13U3 U3

KK

)2 . (4.13)

Let us now introduce the small parameter ∆ = (U0 − UKK) /UKK . Also, it will be

convenient to change variables U → u via U = UKK [1 + ∆(1 + u)]. Then, substituting

U0 = (1 +∆)UKK , we find that the leading order contribution in a power series in ∆ is:

∂U0
τ(U) ∼ − 1

∆

∫ u

0
du

1− u

(1 + u)2
√
u
= − 2

∆

√
u

1 + u
∼ − 1

U0 − UKK

√
U − U0

U − UKK
< 0 . (4.14)
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This implies that δτ(U) < 0 for all U > U0, which proves the stability of the classical

solution for the D8-D8 embedding in the parameter space region U0−UKK ≪ UKK as well.

4.3 Walking technicolor model: D7-D7 branes in D5 background

Another interesting example is the model of dynamical electroweak symmetry breaking,

obtained by embedding D7-D7 probes [12] in the gravitational background of [16, 17] that

is dual to a walking gauge theory. In [18], we applied a part of our method to this model.

This application provides a useful complement to the previous two examples and so we will

briefly review it here.

The relevant DBI Lagrangian takes the form:

LDBI ∼ e2 ρ
√

4

3
β e4 ρ + θρ2 + sin2(θ)ϕρ

2 , (4.15)

where β is a small parameter characterizing the length of the energy region in which the

gauge coupling is walking. The variable ρ ≥ 0 parameterizes the radial direction and is

larger than 1 in the walking region. The embedding in the transverse space is described by

the angular variables θ and ϕ as functions of ρ; we have denoted dθ
dρ ≡ θρ and dϕ

dρ ≡ ϕρ. It

is easy to see that the constant choice θ = π
2 satisfies the equation of motion for the field

θ(ρ). It is also easy to show that fluctuations δθ around this classical solution are stable.6

Therefore, we will concentrate on studying the field ϕ(ρ), while setting θ = π
2 .

The classical solution for ϕ(ρ) is a nontrivial function. Due to that, the transverse

direction with respect to the D7-D7 embedding is a combination of both ϕ and ρ. Hence,

to capture the full fluctuation spectrum, one should change coordinates, as explained in [18].

A suitable choice is the following [18]:

y =
e2 ρ

cosh (ψ)
,

z = e2 ρ tanh (ψ) , (4.16)

where we defined ψ = ϕe−2 ρ0
√

3 / β for convenience. Note that these coordinates satisfy

the Cartesian-like relation

y2 + z2 = e4 ρ . (4.17)

Now the classical solution is given by ycl = e2 ρ0 with z arbitrary; see [18]. Clearly then, z

runs along the classical embedding, whereas fluctuations of y are transverse to it. Hence,

to study the transverse fluctuations, we need to consider the field y(z) and expand it as

y(z) = ycl + δy(z).

The linearized equation of motion for massless δy(z) fluctuations acquires the form:

(

e4 ρ0 + z2
)2
δy′′ + z

(

e4 ρ0 + z2
)

δy′ + 2 e4 ρ0 δy = 0. (4.18)

The general solution of (4.18) is:

δy = cD
z√

z2 + e4 ρ0
+ cN

[

−1 +
z√

z2 + e4 ρ0
log
(

e−2 ρ0
(

z +
√

z2 + e4 ρ0
))

]

, (4.19)

6To second order, the fluctuations of θ and ϕ decouple.
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where the coefficients of cD and cN satisfy Dirichlet and Neumann boundary conditions

at z = 0, respectively. The second term vanishes at the point z = e2 ρ0 zc, where we

have denoted by zc ≃ 1.5 a certain critical value. Therefore, according to the results of

the previous sections, for sufficiently large cutoff zΛ > e2 ρ0 zc the spectrum of excitations

contains a tachyon and the system is unstable.

We should note that an instability in this model was first indicated in [15], in the

context of evaluating numerically the mass spectrum of scalar fluctuations.7 Our result for

zc, which is determined from the single root of the Neumann term of (4.19), agrees with

their numerical estimate for the critical value of the cutoff.

5 Summary

We developed a simple method for the investigation of perturbative stability of nonsuper-

symmetric probe branes embedded in nontrivial gravitational and flux backgrounds. The

method relies on the key statement that zeros of massless fluctuations, around a given

classical configuration, indicate the presence of an instability (in the form of a tachyonic

mode in the fluctuation spectrum). Therefore, it is enough to investigate the behavior of

the zero mass fluctuations. Furthermore, the analytic form of the latter can be derived

directly from the classical solution under consideration, by taking derivatives with respect

to its integration constants.

We illustrated our method by applying it to three examples of phenomenological in-

terest: the model of chiral symmetry breaking of [6], the holographic dual of strongly

coupled large Nc QCD proposed in [7], as well as its modification considered in [9], and

the dynamical electroweak symmetry breaking model of [12, 13]. In all of these cases, we

recovered, and in the case of [9] extended, the previously known results regarding the issue

of stability. However, we did not need to compute the full scalar mass spectrum. This

is rather important, as quite often the computation of this spectrum is only feasible by

numerical methods.

Work on other, more systematic applications of our method is in progress.
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