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1 Introduction
After Schmitendorf [], who derived necessary and sufficient optimality conditions for
static minimax problems, much attention has been paid to optimality conditions and du-
ality theorems for minimax fractional programming problems [–]. For the theory, al-
gorithms, and applications of some minimax problems, the reader is referred to [].
In this paper, we consider the following nondifferentiable minimax fractional program-

ming problem:

Minimize ψ(x) = sup
y∈Y

f (x, y) + (xTBx)/

h(x, y) – (xTDx)/

subject to g(x) ≤ , (P)

where Y is a compact subset of Rl , f (·, ·) : Rn × Rl → R, h(·, ·) : Rn × Rl → R are twice
continuously differentiable on Rn × Rl and g(·) : Rn → Rm is twice continuously differen-
tiable on Rn, B, and D are a n× n positive semidefinite matrix, f (x, y) + (xTBx)/ ≥ , and
h(x, y) – (xTDx)/ >  for each (x, y) ∈ J× Y , where J = {x ∈ Rn : g(x)≤ }.
Motivated by [, , ], Yang and Hou [] formulated a dual model for fractional mini-

max programming problem and proved duality theorems under generalized convex func-
tions. Ahmad and Husain [] extended this model to nondifferentiable and obtained du-
ality relations involving (F ,α,ρ,d)-pseudoconvex functions. Jayswal [] studied duality
theorems for another two duals of (P) under α-univex functions. Recently, Ahmad et al.
[] derived the sufficient optimality condition for (P) and established duality relations for
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its dual problem under B-(p, r)-invexity assumptions. The papers [, –, –, ] in-
volved the study of first-order duality for minimax fractional programming problems.
The concept of second-order duality in nonlinear programming problems was first in-

troduced by Mangasarian []. One significant practical application of second-order dual
over first-order is that it may provide tighter bounds for the value of objective function be-
cause there are more parameters involved. Hanson [] has shown the other advantage of
second-order duality by citing an example, that is, if a feasible point of the primal is given
and first-order duality conditions do not apply (infeasible), then wemay use second-order
duality to provide a lower bound for the value of primal problem.
Recently, several researchers [, –, ] considered second-order dual for minimax

fractional programming problems. Husain et al. [] first formulated second-order dual
models for a minimax fractional programming problem and established duality relations
involving η-bonvex functions. This work was later on generalized in [] by introducing
an additional vector r to the dual models, and in Sharma and Gulati [] by proving the
results under second-order generalized α-type I univex functions. The work cited in [, ,
, ] involves differentiable minimax fractional programming problems. Recently, Hu
et al. [] proved appropriate duality theorems for a second-order dual model of (P) under
η-pseudobonvexity/η-quasibonvexity assumptions. In this paper, we formulate two types
of second-order dual models for (P) and then derive weak, strong, and strict converse du-
ality theorems under generalized α-univexity assumptions. Further, examples have been
illustrated to show the existence of second-order α-univex functions. Our study extends
some of the known results of the literature [, , , , ].

2 Notations and preliminaries
For each (x, y) ∈ Rn × Rl andM = {, , . . . ,m}, we define

J(x) =
{
j ∈M : gj(x) = 

}
,

Y (x) =
{
y ∈ Y :

f (x, y) + (xTBx)/

h(x, y) – (xTDx)/
= sup

b∈Y
f (x,b) + (xTBx)/

h(x,b) – (xTDx)/

}
,

K(x) =

{
(s, t, ỹ) ∈N × Rs

+ × Rls :  ≤ s ≤ n + , t = (t, t, . . . , ts) ∈ Rs
+,

s∑
i=

ti = , ỹ = (̃y, ỹ, . . . , ỹs), ỹi ∈ Y (x), i = , , . . . , s

}
.

Definition . Let ζ : X → R (X ⊆ Rn) be a twice differentiable function. Then ζ is said
to be second-order α-univex at u ∈ X, if there exist η : X × X → Rn, b : X × X → R+,
φ : R → R, and α : X ×X → R+\{} such that for all x ∈ X and p ∈ Rn, we have

bφ

[
ζ (x) – ζ (u) +



pT∇ζ (u)p

]
≥ α(x,u)ηT (x,u)

[∇ζ (u) +∇ζ (u)p
]
.

Example . Let ζ : X → R be defined as ζ (x) = ex + sin x + x, where X = (–,∞). Also,
let φ(t) = t+, b(x,u) = u+, α(x,u) = u+

x+ and η(x,u) = x+u. The function ζ is second-

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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order α-univex at u = , since

bφ

[
ζ (x) – ζ (u) +



pT∇ζ (u)p

]
– α(x,u)ηT (x,u)

[∇ζ (u) +∇ζ (u)p
]

= 
(
ex + sin x + x

)
+ . + .(p – .)

≥  for all x ∈ X and p ∈ R.

But every α-univex function need not be invex. To show this, consider the following ex-
ample.

Example . Let� : X = (,∞)→ R be defined as�(x) = –x. Let φ(t) = –t, b(x,u) = 
u ,

α(x,u) = u, and η(x,u) = 
u . Then we have

bφ

[
�(x) –�(u) +



pT∇�(u)p

]
– α(x,u)ηT (x,u)

[∇�(u) +∇�(u)p
]

=

u

[
x + (p + u)

] ≥  for all x,u ∈ X and p ∈ R.

Hence, the function � is second-order α-univex but not invex, since for x = , u = , and
p = , we obtain

�(x) –�(u) +


pT∇�(u)p – ηT (x,u)

[∇�(u) +∇�(u)p
]
= –. < .

Lemma . (Generalized Schwartz inequality) Let B be a positive semidefinite matrix of
order n. Then, for all x,w ∈ Rn,

xTBw≤ (
xTBx

)/(wTBw
)/.

The equality holds if Bx = λBw for some λ ≥ .

Following Theorem . ([], Theorem .) will be required to prove the strong duality
theorem.

Theorem . (Necessary condition) If x* is an optimal solution of problem (P) satisfy-
ing x*TBx* > , x*TDx* > , and ∇gj(x*), j ∈ J(x*) are linearly independent, then there exist
(s*, t*, ỹ) ∈ K(x*), k ∈ R+, w, v ∈ Rn and μ* ∈ Rm

+ such that

s*∑
i=

t*i
{∇f

(
x*, ỹi

)
+ Bw – k

(∇h
(
x*, ỹi

)
–Dv

)}
+

m∑
j=

μ*
j∇gj

(
x*

)
= , (.)

f
(
x*, ỹi

)
+

(
x*TBx*

)/ – k
(
h
(
x*, ỹi

)
–

(
x*TDx*

)/) = , i = , , . . . , s*, (.)
m∑
j=

μ*
j gj

(
x*

)
= , (.)

t*i ≥ 
(
i = , , . . . , s*

)
,

s*∑
i=

t*i = , (.)

wTBw≤ , vTDv ≤ ,
(
x*TBx*

)/ = x*TBw,
(
x*TDx*

)/ = x*TDv. (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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In the above theorem, both matrices B and D are positive semidefinite at x*. If either
x*TBx* or x*TDx* is zero, then the functions involved in the objective of problem (P) are
not differentiable. To derive necessary conditions under this situation, for (s*, t*, ỹ) ∈ K(x*),
we define

Z̃y
(
x*

)
=

{
z ∈ Rn : zT∇gj

(
x*

) ≤ , j ∈ J
(
x*

)
,

with any one of the next conditions (i)-(iii) holds
}
.

(i) x*TBx* > , x*TDx* = 

⇒ zT
( s*∑

i=

t*i

{
∇f

(
x*, ỹi

)
+

Bx*

(x*TBx*)/
– k∇h

(
x*, ỹi

)})

+
(
zT

(
kD

)
z
)/ < ,

(ii) x*TBx* = , x*TDx* > 

⇒ zT
( s*∑

i=

t*i

{
∇f

(
x*, ỹi

)
– k

(
∇h

(
x*, ỹi

)
–

Dx*

(x*TDx*)/

)})

+
(
zTBz

)/ < ,

(iii) x*TBx* = , x*TDx* = 

⇒ zT
( s*∑

i=

t*i
{∇f

(
x*, ỹi

)
– k∇h

(
x*, ỹi

)})
+

(
zT

(
kD

)
z
)/ + (

zTBz
)/ < .

If in addition, we insert the condition Z̃y(x*) = φ, then the result of Theorem . still
holds.
For the sake of convenience, let

ψ(·) = ξ(·) +
m∑
j=

μj
(
gj(·) – gj(z)

)
(.)

and

ψ(·) =
[ s∑

i=

ti
(
h(z, ỹi) – zTDv

)][ s∑
i=

ti
(
f (·, ỹi) + (·)TBw)

+
m∑
j=

μjgj(·)
]

–

[ s∑
i=

ti
(
f (z, ỹi) + zTBw

)
+

m∑
j=

μjgj(z)

][ s∑
i=

ti
(
h(·, ỹi) – (·)TDv

)]
,

where

ξ(·) =
s∑
i=

ti
[(
h(z, ỹi) – zTDv

)(
f (·, ỹi) + (·)TBw)

–
(
f (z, ỹi) + zTBw

)(
h(·, ỹi) – (·)TDv

)]
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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3 Model I
In this section, we consider the following second-order dual problem for (P):

max
(s,t ,̃y)∈K (z)

sup
(z,μ,w,v,p)∈H(s,t ,̃y)

F(z), (DM)

where F(z) = supy∈Y
f (z,y)+(zTBz)/
h(z,y)–(zTDz)/ and H(s, t, ỹ) denotes the set of all (z,μ,w, v,p) ∈ Rn ×

Rm
+ × Rn × Rn × Rn satisfying

∇ψ(z) +∇ψ(z)p = , (.)
m∑
j=

μjgj(z) –


pT∇ψ(z)p≥ , (.)

wTBw≤ , vTDv≤ ,(
zTBz

)/ = zTBw,
(
zTDz

)/ = zTDv.
(.)

If the set H(s, t, ỹ) = φ, we define the supremum of F(z) over H(s, t, ỹ) equal to –∞.

Remark . If p = , then using (.), the above dual model reduces to the problems stud-
ied in [, , ]. Further, if B and D are zero matrices of order n, then (DM) becomes the
dual model considered in [].

Next, we establish duality relations between primal (P) and dual (DM).

Theorem . (Weak duality) Let x and (z,μ,w, v, s, t, ỹ,p) are feasible solutions of (P) and
(DM), respectively. Assume that

(i) ψ(·) is second-order α-univex at z,
(ii) φ(a)≥  ⇒ a≥  and b(x, z) > .

Then

sup
ỹ∈Y

f (x, ỹ) + (xTBx)/

h(x, ỹ) – (xTDx)/
≥ F(z).

Proof Assume on contrary to the result that

sup
ỹ∈Y

f (x, ỹ) + (xTBx)/

h(x, ỹ) – (xTDx)/
< F(z). (.)

Since ỹi ∈ Y (z), i = , , . . . , s, we have

F(z) =
f (z, ỹi) + (zTBz)/

h(z, ỹi) – (zTDz)/
. (.)

From (.) and (.), for i = , , . . . , s, we get

f (x, ỹi) + (xTBx)/

h(x, ỹi) – (xTDx)/
≤ sup

ỹ∈Y
f (x, ỹ) + (xTBx)/

h(x, ỹ) – (xTDx)/
<
f (z, ỹi) + (zTBz)/

h(z, ỹi) – (zTDz)/
.

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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This further from ti ≥ , i = , , . . . , s, t 
=  and ỹi ∈ Y (z), we obtain

s∑
i=

ti
[(
h(z, ỹi) –

(
zTDz

)/)(f (x, ỹi) + (
xTBx

)/) – (
f (z, ỹi) +

(
zTBz

)/)
× (

h(x, ỹi) –
(
xTDx

)/)] < . (.)

Now,

ξ(x) =
s∑
i=

ti
[(
h(z, ỹi) – zTDv

)(
f (x, ỹi) + xTBw

)
–

(
f (z, ỹi) + zTBw

)(
h(x, ỹi) – xTDv

)]
≤

s∑
i=

ti
[(
h(z, ỹi) –

(
zTDz

)/)(f (x, ỹi) + (
xTBx

)/)
–

(
f (z, ỹi) +

(
zTBz

)/)(h(x, ỹi) – (
xTDx

)/)] (
using Lemma . and (.)

)
< 

(
from (.)

)
.

Therefore,

ξ(x) <  = ξ(z). (.)

By hypothesis (i), we have

bφ

[
ψ(x) –ψ(z) +



pT∇ψ(z)p

]
≥ α(x, z)ηT (x, z)

{∇ψ(z) +∇ψ(z)p
}
.

This follows from (.) that

bφ

[
ψ(x) –ψ(z) +



pT∇ψ(z)p

]
≥ 

which using hypothesis (ii) yields

ψ(x) –ψ(z) +


pT∇ψ(z)p ≥ .

This further from (.), (.), and the feasibility of x implies

ξ(x)≥ –
m∑
j=

μjgj(x) ≥  = ξ(z).

This contradicts (.), hence the result. �

Theorem . (Strong duality) Let x* be an optimal solution for (P) and let∇gj(x*), j ∈ J(x*)
be linearly independent. Then there exist (s*, t*, ỹ*) ∈ K(x*) and (x*,μ*,w*, v*,p* = ) ∈
H(s*, t*, ỹ*), such that (x*,μ*,w*, v*, s*, t*, ỹ*,p* = ) is feasible solution of (DM) and the two

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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objectives have same values. If, in addition, the assumptions of Theorem . hold for all fea-
sible solutions (x,μ,w, v, s, t, ỹ,p) of (DM), then (x*,μ*,w*, v*, s*, t*, ỹ*,p* = ) is an optimal
solution of (DM).

Proof Since x* is an optimal solution of (P) and ∇gj(x*), j ∈ J(x*) are linearly independent,
then by Theorem ., there exist (s*, t*, ỹ*) ∈ K(x*) and (x*,μ*,w*, v*,p* = ) ∈ H(s*, t*, ỹ*)
such that (x*,μ*,w*, v*, s*, t*, ỹ*,p* = ) is feasible solution of (DM) and the two objectives
have same values. Optimality of (x*,μ*,w*, v*, s*, t*, ỹ*,p* = ) for (DM), thus follows from
Theorem .. �

Theorem. (Strict converse duality) Let x* be an optimal solution to (P) and (z*,μ*,w*, v*,
s*, t*, ỹ*,p*) be an optimal solution to (DM). Assume that

(i) ψ(·) is strictly second-order α-univex at z*,
(ii) {∇gj(x*), j ∈ J(x*)}, are linearly independent,
(iii) φ(a) >  ⇒ a >  and b(x*, z*) > .

Then z* = x*.

Proof By the strict α-univexity of ψ(·) at z*, we get

b
(
x*, z*

)
φ

[
ψ

(
x*

)
–ψ

(
z*

)
+


p*T∇ψ

(
z*

)
p*

]
> α

(
x*, z*

)
ηT(

x*, z*
){∇ψ

(
z*

)
+∇ψ

(
z*

)
p*

}
which in view of (.) and hypothesis (iii) give

ψ
(
x*

)
–ψ

(
z*

)
+


p*T∇ψ

(
z*

)
p* > .

Using (.), (.), and feasibility of x* in above, we obtain

ξ
(
x*

)
>  = ξ

(
z*

)
. (.)

Now, we shall assume that z* 
= x* and reach a contradiction. Since x* and (z*,μ*,w*, v*, s*, t*,
ỹ*,p*) are optimal solutions to (P) and (DM), respectively, and {∇gj(x*), j ∈ J(x*)}, are lin-
early independent, by Theorem ., we get

sup
ỹ*∈Y

f (x*, ỹ*) + (x*TBx*)/

h(x*, ỹ*) – (x*TDx*)/
= F

(
z*

)
. (.)

Since ỹ*i ∈ Y (z*), i = , , . . . , s*, we have

F
(
z*

)
=

f (z*, ỹ*i ) + (z*TBz*)/

h(z*, ỹ*i ) – (z*TDz*)/
. (.)

By (.) and (.), we get

[(
h
(
z*, ỹ*i

)
–

(
z*TDz*

)/)(f (x*, ỹ*i) + (
x*TBx*

)/)
–

(
f
(
z*, ỹ*i

)
+

(
z*TBz*

)/)(h(x*, ỹ*i) – (
x*TDx*

)/)] ≤ ,

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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for all i = , , . . . , s* and ỹ*i ∈ Y . From ỹ*i ∈ Y (z*) ⊂ Y and t* ∈ Rs*
+ , with

∑s*
i= t*i = , we obtain

s*∑
i=

t*i
[(
h
(
z*, ỹ*i

)
–

(
z*TDz*

)/)(f (x*, ỹ*i) + (
x*TBx*

)/)
–

(
f
(
z*, ỹ*i

)
+

(
z*TBz*

)/)(h(x*, ỹ*i) – (
x*TDx*

)/)] ≤ . (.)

From Lemma ., (.), and (.), we have

ξ
(
x*

)
=

s*∑
i=

t*i
[(
h
(
z*, ỹ*i

)
– z*TDv*

)(
f
(
x*, ỹ*i

)
+ x*TBw*)

–
(
f
(
z*, ỹ*i

)
+ z*TBw*)(h(x*, ỹ*i) – x*TDv*

)]
≤

s*∑
i=

t*i
[(
h
(
z*, ỹ*i

)
–

(
z*TDz*

)/)(f (x*, ỹ*i) + (
x*TBx*

)/)
–

(
f
(
z*, ỹ*i

)
+

(
z*TBz*

)/)(h(x*, ỹ*i) – (
x*TDx*

)/)]
≤  = ξ

(
z*

)
,

which contradicts (.), hence the result. �

4 Model II
In this section, we consider another dual problem to (P):

max
(s,t ,̃y)∈K (z)

sup
(z,μ,w,v,p)∈H(s,t ,̃y)

∑s
i= ti(f (z, ỹi) + (zTBz)/) +

∑m
j= μjgj(z)∑s

i= ti(h(z, ỹi) – (zTDz)/)
, (DM)

where H(s, t, ỹ) denotes the set of all (z,μ,w, v,p) ∈ Rn × Rm
+ × Rn × Rn × Rn satisfying

∇ψ(z) +∇ψ(z)p = , (.)

pT∇ψ(z)p ≤ , (.)

wTBw≤ , vTDv ≤ ,
(
zTBz

)/ = zTBw,
(
zTDz

)/ = zTDv. (.)

If the setH(s, t, ỹ) is empty, we define the supremum in (DM) overH(s, t, ỹ) equal to –∞.

Remark . If p = , then using (.), the above dual model becomes the dual model
considered in [, , ]. In addition, if B and D are zero matrices of order n, then (DM)
reduces to the problem studied in [].

Now, we obtain the following appropriate duality theorems between (P) and (DM).

Theorem . (Weak duality) Let x and (z,μ,w, v, s, t, ỹ,p) are feasible solutions of (P) and
(DM), respectively. Suppose that the following conditions are satisfied:

(i) ψ(·) is second-order α-univex at z,
(ii) φ(a)≥  ⇒ a≥  and b(x, z) > .

http://www.journalofinequalitiesandapplications.com/content/2012/1/187
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Then

sup
ỹ∈Y

f (x, ỹ) + (xTBx)/

h(x, ỹ) – (xTDx)/
≥

∑s
i= ti(f (z, ỹi) + (zTBz)/) +

∑m
j= μjgj(z)∑s

i= ti(h(z, ỹi) – (zTDz)/)
.

Proof Assume on contrary to the result that

sup
ỹ∈Y

f (x, ỹ) + (xTBx)/

h(x, ỹ) – (xTDx)/
<

∑s
i= ti(f (z, ỹi) + (zTBz)/) +

∑m
j= μjgj(z)∑s

i= ti(h(z, ỹi) – (zTDz)/)

or

(
f (x, ỹi) +

(
xTBx

)/)[ s∑
i=

ti
(
h(z, ỹi) –

(
zTDz

)/)]

<
(
h(x, ỹi) –

(
xTDx

)/)[ s∑
i=

ti
(
f (z, ỹi) +

(
zTBz

)/) + m∑
j=

μjgj(z)

]
,

∀̃yi ∈ Y (z), i = , , . . . , s.

Using ti ≥ , i = , , . . . , s and (.) in above, we have

s∑
i=

ti
(
f (x, ỹi) +

(
xTBx

)/)[ s∑
i=

ti
(
h(z, ỹi) – zTDv

)]

<
s∑
i=

ti
(
h(x, ỹi) –

(
xTDx

)/)[ s∑
i=

ti
(
f (z, ỹi) + zTBw

)
+

m∑
j=

μjgj(z)

]
. (.)

Now,

ψ(x) =

[ s∑
i=

ti
(
f (x, ỹi) + xTBw

)
+

m∑
j=

μjgj(x)

][ s∑
i=

ti
(
h(z, ỹi) – zTDv

)]

–

[ s∑
i=

ti
(
h(x, ỹi) – xTDv

)][ s∑
i=

ti
(
f (z, ỹi) + zTBw

)
+

m∑
j=

μjgj(z)

]

≤
[ s∑

i=

ti
(
f (x, ỹi) +

(
xTBx

)/) + m∑
j=

μjgj(x)

][ s∑
i=

ti
(
h(z, ỹi) – zTDv

)]

–

[ s∑
i=

ti
(
h(x, ỹi) –

(
xTDx

)/)][ s∑
i=

ti
(
f (z, ỹi) + zTBw

)
+

m∑
j=

μjgj(z)

]
(
from Lemma . and (.)

)
<

s∑
i=

ti
(
h(z, ỹi) – zTDv

) m∑
j=

μjgj(x)
(
using (.)

)

≤ 

(
since

s∑
i=

ti
(
h(z, ỹi) – zTDv

)
>  and

m∑
j=

μjgj(x)≤ 

)
.
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Hence,

ψ(x) <  =ψ(z). (.)

Now, by the second-order α-univexity of ψ(·) at z, we get

bφ

[
ψ(x) –ψ(z) +



pT∇ψ(z)p

]
≥ ηT (x, z)α(x, z)

{∇ψ(z) +∇ψ(z)p
}

which using (.) and hypothesis (ii) give

ψ(x) –ψ(z) +


pT∇ψ(z)p ≥ .

This from (.) follows that

ψ(x)≥ ψ(z)

which contradicts (.). This proves the theorem. �

By a similar way, we can prove the following theorems between (P) and (DM).

Theorem . (Strong duality) Let x* be an optimal solution for (P) and let ∇gj(x*), j ∈
J(x*) be linearly independent. Then there exist (s*, t*, ỹ*) ∈ K(x*) and (x*,μ*,w*, v*,p* = ) ∈
H(s*, t*, ỹ*), such that (x*,μ*,w*, v*, s*, t*, ỹ*,p* = ) is feasible solution of (DM) and the
two objectives have same values. If, in addition, the assumptions of weak duality hold for
all feasible solutions (x,μ,w, v, s, t, ỹ,p) of (DM), then (x*,μ*,w*, v*, s*, t*, ỹ*,p* = ) is an
optimal solution of (DM).

Theorem . (Strict converse duality) Let x* and (z*,μ*,w*, v*, s*, t*, ỹ*,p*) are optimal so-
lutions of (P) and (DM), respectively. Assume that

(i) ψ(·) is strictly second-order α-univex at z,
(ii) {∇gj(x*), j ∈ J(x*)} are linearly independent,
(iii) φ(a) >  ⇒ a >  and b(x*, z*) > .

Then z* = x*.

5 Concluding remarks
In the present work, we have formulated two types of second-order dual models for a non-
differentiable minimax fractional programming problems and proved appropriate duality
relations involving second-order α-univex functions. Further, examples have been illus-
trated to show the existence of such type of functions. Now, the question arises whether
or not the results can be further extended to a higher-order nondifferentiable minimax
fractional programming problem.
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