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of a significant liaison
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Abstract Age-related diseases such as obesity, diabetes, non-
alcoholic fatty liver disease, chronic kidney disease and car-
diomyopathy are frequently associated with fibrosis. Work
within the last decade has improved our understanding of
the pathophysiological mechanisms contributing to fibrosis
development. In particular, oxidative stress and the antioxi-
dant system appear to be crucial modulators of processes such
as transforming growth factor-β1 (TGF-β1) signalling, meta-
bolic homeostasis and chronic low-grade inflammation, all of
which play important roles in fibrosis development and per-
sistence. In the current review, we discuss the connections
between reactive oxygen species, antioxidant enzymes and
TGF-β1 signalling, together with functional consequences,
reflecting a concept of redox-fibrosis that can be targeted in
future therapies.
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Introduction

Age-related diseases and their associated complications such
as organ fibrosis are considered to represent a major health
problem worldwide. Fibrosis can be described as an

irreversible non-physiological scarring process usually occur-
ring as a consequence of inflammation or other injury in
which an excessive appearance of extracellular matrix
(ECM) contributes to further tissue damage. Fibrosis is not
limited to any specific organ and can have multiple causes.
For example, hepatic fibrosis can result from infection, alco-
hol, drugs or morbid obesity. Pulmonary fibrosis can be the
result of radiation exposure or genetic alterations (e.g., cystic
fibrosis) or it can be idiopathic. The various types of cardiac
fibrosis range from congenital or idiopathic (e.g.,
endomyocardial fibrosis) to ischaemic. Retroperitoneal fibro-
sis and peritoneal fibrosis may result from therapies (the for-
mer has been associated with autoimmunity, malignancy and
some forms ofmedication, such asβ-blockers; the latter might
be a complication of peritoneal dialysis). Many disorders, e.g.,
acquired, congenital, iatrogenic or allergic, culminate in renal
fibrosis. Moreover, fibrosis of the skin is often caused by
iatrogenic drug-related (eosinophilia-myalgia syndrome) or
environmental (polyvinyl chloride, toxic/denatured
BSpanish^ rapeseed oil) factors (Boin and Hummers 2008).
Thus, we need to understand the pathophysiology of fibrosis
not only in the context of the wide spectrum of complications
related to contemporary therapies and drugs but also as a con-
sequence of chronic disease.

Although some organ-specific aspects of fibrosis are known,
fibrosis is not restricted to any particular organ and is found to
occur in all organs and tumour tissues (Dvorak et al. 1984;
Dvorak 1986; Kalluri and Zeisberg 2006; Rockey et al. 2015)
suggesting the existence of a common pathogenetic pattern in
which fibroblasts are primary ECM producers. Those
fibroblasts possessing an increased synthetic capacity in
fibrosis are called Bmyofibroblasts^ or Bactivated fibroblasts^
(Hecker et al. 2011). Myofibroblasts appear to be derived
either from tissue-resident fibroblasts, bone-marrow-
derived fibrocytes (Bucala et al. 1994) or vascular smooth
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muscle cells and pericytes shed from vessels (Lin et al. 2008;
Ronnov-Jessen et al. 1995). In addition, endothelial cells that
have undergone endothelial-to-mesenchymal transition
(Zeisberg et al. 2007) and epithelial cells after epithelial-to-
mesenchymal transition (Strutz et al. 1995) might give rise to
fibrotic ECM production (Fig. 1).

A common pattern is also visible, macroscopically and
microscopically. In addition to being hard and non-elastic,
fibrotic tissue is also pale, reflecting injured parenchyma with
an excess presence of fibrillar ECM and fibroblasts and a lack
of capillaries. Further, a mononuclear infiltrate is also usually
observed (Kalluri and Zeisberg 2006). In addition, recent find-
ings at a more molecular level suggest that disturbances in the
formation and degradation of reactive oxygen species (ROS)
are a crucial part of the common fibrotic pathway. These find-
ings have fed the concept of Bredox-fibrosis^, which will be
discussed in the current review together with its therapeutic
potential.

Fibrosis, ROS and oxidative stress

Lost parenchyma after tissue injury is usually replaced, be-
cause of the ability of parenchymal cells to regenerate.
However, the opportunity to regenerate usually becomes un-
available upon repetitive insults associated with chronic in-
flammation, the secretion of chemokines and the release of
profibrotic metabolites, among them, ROS. Further, the

production of ROS and the concomitant oxidative stress also
contribute to the synthesis and activation of various cytokines
and growth factors (Barnes and Gorin 2011; Babalola et al.
2014; Paik et al. 2014) indicating common feed-forward and
feedback mechanisms (Fig. 2).

The link between ROS and oxidative stress became partic-
ularly evident from investigations showing that increased
levels of hydrogen peroxide and oxidative stress markers such
as 8-isoprostane were to be found in exhalants and in the urine
of patients with lung fibrosis, respectively (Dekhuijzen et al.
1996; Pratico et al. 1998). In addition, enhanced levels of the
lipid peroxidation marker 4-hydroxy-2′-nonenal (Seki et al.
2005) were found in biopsy specimens from patients with
liver fibrosis. Moreover, ROS were proposed to be crucial
for the development of asbestosis and silicosis, since
nitrotyrosine adducts and the oxidative DNA damage indica-
tor 8-hydroxy-2′-deoxyguanosine were found in those patients
(Pilger et al. 2000; Pelclova et al. 2008). In addition, ROS and
oxidative stress appear to be important in renal fibrosis (Ha
and Lee 2003; Djamali et al. 2009) and tissue repair/
remodelling after myocardial infarction (Murdoch et al.
2006; Sirker et al. 2007; Aragno et al. 2008).

Sources and sites of ROS production

Ultraviolet light, ionizing radiation, toxic chemicals and drugs
are well-known inducers of fibrosis and of ROS formation in a
non-enzymatic manner in vivo (Fig. 2). Intracellularly, most

Fig. 1 Activated fibroblasts are
key players in the fibrotic process
and extracellular matrix (ECM)
production. Fibroblasts involved
in fibrosis can be derived from
vascular smooth muscle cells,
pericytes, fibrocytes, endo- and
epithelial cells or resident
fibroblasts. Depending on their
origin, these cells undergo
proliferation, differentiation and
endothelial/epithelial-to-
mesenchymal transition
(EndoMT/EMT) and the emerging
myofibroblasts/activated
fibroblasts excessively synthesize
and secrete ECM proteins that
contribute to fibrosis
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ROS are by-products of the mitochondrial electron transport
chain. In addition, ROS can be produced more specifically by
various enzymes, among them members of the cytochrome
P450 family, xanthine oxidoreductase, cyclo- and
lipoxygenases, several peroxisomal oxidases and NADPH
oxidases (NOX; for a review, see Samoylenko et al. 2013).

Of the ROS-producing enzymes, NOX appear to have a
key role during fibrosis (Brown and Griendling 2009;
O’Neill et al. 2015). The classic NOX from phagocytes forms
a multiprotein complex, whereas the transmembrane proteins
NOX2 (also known as gp91phox) and p22phox form the cat-
alytic core for O2¯• production, which rapidly dismutates to
hydrogen peroxide (Deffert et al. 2014; Nauseef 2014). In
addition to NOX2, further NOX proteins designated NOX1–
5 and the more distantly related DUOX1/2 proteins (Brown
and Griendling 2009; O’Neill et al. 2015) have been identi-
fied. Although the expression of NOX2 is most evident in
polymorphonuclear cells, macrophages and endothelial cells,
its expression has also been verified in other cell types includ-
ing cells from the central nervous system, smooth muscle
cells, fibroblasts, cardiomyocytes, skeletal muscle, hepato-
cytes and haematopoietic stem cells (Gorlach et al. 2015).
NOX1 is also present in the plasma membranes of various cell
types (Brown and Griendling 2009; Aguirre and Lambeth
2010; Badid et al. 2010), whereas NOX3, NOX4 and NOX5
appear to have different subcellular locations and cell-specific
expression patterns (for a review, see Gorlach et al. 2015).
NOX3 is found in fetal tissues, the inner ear and lung endo-
thelium and in HepG2 and RAW264.7 cells. NOX4 is widely
expressed at very high levels in kidney, whereas NOX5 is

more abundant in lymph nodes, spleen, prostate and testis
and in endothelial and smooth muscle cells. Both NOX types
appear to be mainly localized in the endoplasmic reticulum
(for a review, see Gorlach et al. 2015). In general, NOX and
DUOX activities, except those of NOX4, are controlled by
regulatory subunits. Among these are the NOX2 cytosolic
subunits p40phox, p47phox and p67phox, their NOX1- and
NOX3-regulating homologues NOXO1 and NOXA1 and the
DUOX1/2 regulators DUOXA1 and 2 plus the GTPase Rac.
In addition, the activation of NOX5 and DUOX1/2 is depen-
dent on calcium signalling (BelAiba et al. 2007). NOX4 ac-
tivity seems to be independent of regulatory subunits.

NOX-derived ROS have been found to be associated with
fibrosis in several organs such as lung (Hecker et al. 2009),
heart (Cucoranu et al. 2005), kidney (Sedeek et al. 2013),
pancreas (Masamune et al. 2007) and liver (De Minicis and
Brenner 2007; Cui et al. 2011; Paik et al. 2011). Of the NOX
proteins, NOX4 is unique in that its activity is mainly regulat-
ed via its expression levels and that it does not require further
regulatory subunits except for its dimerization partner
p22phox (Petry et al. 2006; Paik et al. 2014). Moreover,
NOX4 has been closely linked to endothelial cell dysfunction
and hypoxia, conditions known to promote its expression
(Bernard et al. 2014). Thus, compared with the more complex
regulation of the other NOX enzymes, NOX4 might have a
more critical role in ROS production under conditions pro-
moting fibrosis.

ROS and TGF-β are interlinked by feed-forward
and feedback mechanisms

The onset and progression of fibrosis appear to involve not
only ROS formation but also the synthesis and secretion of
various growth factors and chemokines. Cytokines of the
transforming growth factor-β (TGF-β) family crucially par-
ticipate in the fibrotic process in most if not all organs (Akram
et al. 2013; Aravinthan et al. 2013; Rudolph et al. 2000). So
far, three TGF-β isoforms (called TGF-β1, TGF-β2 and
TGF-β3) have been identified; before these isoforms were
discovered, TGF-β referred only to TGF-β1. Although pri-
marily linked to fibrosis, TGF-β1 also seems to be important
in the pathogenesis of other diseases such as Marfan syn-
drome, Parkinson’s disease, various forms of cancer and dia-
betes (for reviews, see Leask and Abraham 2004; Leask et al.
2004; Zheng 2009). Importantly, the production of TGF-β1 is
increased in all fibrotic tissues. Further, it can induce collagen
expression in fibroblast cell cultures of various origins
(Romanelli et al. 1997; Kim et al. 1998; Abraham et al.
2000; Hogaboam et al. 2000).Moreover, increased production
of ROS and oxidative stress are connected to TGF-β1 activa-
tion and production, indicating that they are key to the fibrotic
process (Barnes and Gorin 2011; Radwan et al. 2012).

Fig. 2 Reactive oxygen species (ROS) contribute to fibrosis via various
feed-forward and feedback loops. Insults resulting from infectious
diseases, trauma, toxins, drugs and radiation (UV, ionizing) induce ROS
generation. Subsequently, ROS contribute to the fibrotic process either
directly or indirectly via enhanced inflammation. Fibrosis and the
inflammation itself might feedback into the pathway and further
increase ROS formation or stimulate the production of cytokines and
growth factors. The last two mentioned substances can also contribute
to ROS formation. In a non-fibrotic process, inflammation and ROS
formation end in tissue regeneration
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TGF-β1 is involved in ROS production

In various cell types, ROS formation has been shown to
be enhanced in response to TGF-β1. This process appears
to be predominantly a consequence of the TGF-β1-
mediated induction of NOX4 expression and its subse-
quent increased activity (Cucoranu et al. 2005; Sturrock
et al. 2006; Carmona-Cuenca et al. 2008; Boudreau et al.
2012). Likewise, NOX4 is selectively up-regulated in the
lungs of patients with idiopathic pulmonary fibrosis and is
associated with endothelial cell dysfunction and hypoxia,
two processes that can foster the further up-regulation of
NOX4 expression (Diebold et al. 2010a, 2010b). In addi-
tion, short interfering RNA (siRNA)-mediated NOX4
knockdown inhibits TGF-β1-mediated pro-fibrotic re-
sponses and ECM deposition in the lungs of mice
(Hecker et al. 2009). Further, NOX4 knockout mice are
more protected against bleomycin-induced acute lung in-
jury and the onset of fibrosis (Carnesecchi et al. 2011)
than NOX2 knockout mice (Manoury et al. 2005). In
agreement with this, the use of a low-molecular-weight
NOX4 inhibitor in mice attenuates the bleomycin-
induced pulmonary fibrosis (Jarman et al. 2014). In addi-
tion, NOX4 has also been found to be increased in pa-
tients with hepatitis C virus (HCV)-associated liver fibro-
sis and in patients with non-alcoholic steatohepatitis
(Bettaieb et al. 2015). Furthermore, hepatic stellate cells
(HSCs), which have a key role during liver fibrosis, in-
duce NOX4-dependent ROS formation upon stimulation
with TGF-β1 (Proell et al. 2007) and the down-regulation
of NOX4 by siRNA or the absence of NOX4 in mice
inhibits the TGF-β-induced fibrotic process (Sancho
et al. 2012). Although these studies indicate a dominant
role of NOX4 in fibrosis, other investigations also indi-
cate roles of NOX1 and NOX2 (Imura et al. 1992; Aram
et al. 2008, 2009; J.X. Jiang et al. 2010; Paik et al. 2011).

In agreement with the consideration that fibrosis is an
age-related disease, NOX4 and its role in fibrosis have
also been found to be connected with aging. In particular,
NOX4 appears to have different roles in young and in
aged mice ; i n young mice , NOX4 s t imu la t e s
myofibroblast differentiation and wound healing but, in
aged mice, it induces fibrosis (Hecker et al. 2009, 2014;
Thannickal 2010). The fibrotic response in aged animals
might be the result of a reduced antioxidant response.
Accordingly, the ratio between NOX4 and the antioxidant
transcription factor NRF2 (nuclear factor erythroid 2-
related factor 2; see below) has been proposed to be cru-
cial for the development of fibrosis and apoptosis-
resistant myofibroblasts in aged mice (Thannickal 2010).
Together, TGF-β1-driven ROS formation involving
NOX4 appears to play an important role in the pathogen-
esis of fibrosis, in particular, in elderly subjects.

TGF-β1 is a negative regulator of the antioxidative
response

The increase in ROS levels in response to TGF-β1 may also
be a result of the suppressed expression of several antioxidant
enzymes. As a result, the formation and removal of ROS are
no longer balanced leading to oxidative stress. A number of
exogenous substances and endogenous molecules, among
them glutathione (GSH) and several enzymes, such as super-
oxide dismutases (SODs), glutathione peroxidases (GPXs)
and catalase (CTL) represent major players in the antioxidant
defence system (Samoylenko et al. 2013; Fig. 3).

The ubiquitously present reduced three-residue peptide
GSH (γ-L-glutamyl-L-cysteinyl glycine) acts as a major cel-
lular antioxidant (Foyer and Noctor 2011). It is present at a
relatively high concentration (1–10 mM) and is able to donate
an electron, a process uponwhich twomolecules of GSH form
oxidized glutathione (GSSG). This process is reversible and is
carried out by the enzyme glutathione reductase (Fig. 3).
Although GSH can directly react with O2•¯ and some other
ROS, its indirect ROS-scavenging functions are more impor-
tant (Winterbourn and Metodiewa 1994; Winterbourn 2008;
Blokhina and Fagerstedt 2010). In particular, GSH can regen-
erate other antioxidants, e.g., it can reduce α-tocopherol rad-
icals and semihydroascorbate radicals (Blokhina and
Fagerstedt 2010) or, together with GPXs, can convert hydro-
gen peroxide into water. Further, GSH acts together with
glutaredoxins and glutathione S transferase (GST) to detoxify
reactive electrophilic compounds, which are products of oxi-
dative stress and often constituents of environmental toxins
(Fernandes and Holmgren 2004).

Patients with fibrotic diseases such as liver cirrhosis, viral
hepatitis, chronic obstructive lung diseases and asbestosis dis-
play reduced GSH levels, which may contribute to increased
ROS levels (Gao and Bataller 2011; Geybels et al. 2013; Choi
et al. 2014). One factor that might be of importance in the
pathogenic process of fibrosis is chronic alcohol abuse, which
is well known as being amajor reason for chronic liver disease
and cirrhosis, whereby it can cause an 80–90 % depletion of
GSH in the liver (Bianchi et al. 2000). However, GSH restric-
tion because of alcohol consumption appears not to be restrict-
ed to liver tissue, as it can also occur in the lungs (Bianchi
et al. 2000). A major reason for the GSH deficiency appears to
be decreased GSH generation triggered by TGF-β1, which
affects the expression of one of the gamma-glutamylcysteine
synthetase (gamma-GCS) subunits. Gamma-GCS is the rate-
controlling enzyme of GSH synthesis (Arsalane et al. 1997;
Ramani et al. 2012) and consists in the regulatory light
(gamma-GCSl) subunit and the catalytic heavy (gamma-
GCSh) subunit. Of these two subunits, TGF-β1 has been
shown to down-regulate the expression of gamma-GCSh in
the fibrotic areas of interstitial pneumonia (Tiitto et al. 2004)
and in human lung alveolar epithelial cells (Liu et al. 2012).
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The reduction of gamma-GCSh expression and GSH genera-
tion in response to TGF-β1 is also in agreement with the
increased protein oxidation and lipid peroxidation in mice
with lung fibrosis (Liu et al. 2012). All in all, TGF-β1-
mediated reduction in GSH production might contribute to
oxidative stress during the fibrotic process.

As mentioned above, GSH can act together with the
glutaredoxins (Grxs), which function as thiol-disulphide oxi-
doreductases. In connection with this, TGF-β1 has been
shown to reduce Grx1 expression, again indicating that

GSH-driven processes are of importance in fibrosis
(Peltoniemi et al. 2006; Harju et al. 2007).

Another family of enzymes with antioxidant functions are
the SODs, which catalyse the conversion of O2•¯ into hydro-
gen peroxidase and O2. Mammals possess three SODs: cyto-
solic (SOD1), mitochondrial (SOD2) and extracellular
(SOD3) variants. Although the generated hydrogen peroxi-
dase can be converted into oxygen and water by catalase
(Samoylenko et al. 2013; McCord and Fridovich 2014), it
appears that peroxiredoxins (Prxs) are more important, since
they react with hydrogen peroxidase at an exceptionally high
rate (Wood et al. 2003; Fig. 3). In particular, Prx2 is consid-
ered to trap almost all hydrogen peroxidase in vivo
(Winterbourn 2008) as a result of its high abundance and
reaction rate. Moreover, Prx members not only react with
hydrogen peroxidase, but also with peroxynitrite and other
organic hydroperoxides. Importantly, the various Prx mem-
bers are localized in different cellular compartments, with
Prx1, 2 and 4 occurring mainly in the cytoplasm and nucleus.
In addition, Prx1 can also be found in mitochondria and per-
oxisomes, whereas Prx4 has been located in lysosomes
(Oberley et al. 2001; Immenschuh et al. 2003; Go and Jones
2010). Prx3 is present in mitochondria, like Prx5, which can
also be found in the cytoplasm, nucleus and peroxisomes (Seo
et al. 2000). Once oxidized, Prx molecules are reduced by
thioredoxins (Trxs). The Trx proteins themselves are subject
to oxidation–reduction reactions, whereby various stimuli can
contribute to their oxidation and thioredoxin reductase (TrxR)
mediates their NADPH-dependent reduction (Holmgren et al.
2005; Fig. 3). Again, these systems are compartmentalized,
with Trx1 and TrxR1 in the cytoplasm and nucleus and Trx2
and TrxR2 in the mitochondria (Oberley et al. 2001; Go and
Jones 2010).

In addition to the Prx members, GPXs are also able to
reduce peroxides in various compartments. The ubiquitous
member is GPX1, which reduces peroxides mainly in the cy-
tosol, mitochondria and peroxisomes. GPX2 acts in epithelia
and its highest levels are found in the intestine (Lubos et al.
2011). Another variant is represented by the secreted GPX3,
which is found predominantly in lung and kidney and protects
against peroxides arising from outside the cell (Lubos et al.
2011). Three isoforms of GPX4, namely the cytosolic (c-
GPX4), mitochondrial (m-GPX4) and nuclear (n-GPX4) iso-
forms (Nomura et al. 2000; Imai and Nakagawa 2003), which
are derived from a single gene, have been identified so far. In
addition to hydrogen peroxide, GPX4 substrates include de-
rivatives of cholesterol and cholesteryl esters and thymine
hydroperoxide (Imai and Nakagawa 2003).

The usefulness of having several systems for hydrogen
peroxide conversion is mainly for preventing iron-catalyzed
Fenton reactions and the subsequent generation of highly reac-
tive hydroxyl radicals (•OH; Fig. 3). In addition, iron-binding
proteins, such as ferritin and transferrin, which sequester

Fig. 3 Various antioxidant enzymes act on ROS. Superoxide (O2
•-) is a

major ROS and can be produced by various enzymes; it serves as the
main precursor for the production of other ROS and, upon reaction with
nitric oxide (NO•), it gives rise to peroxynitrite formation (ONOO−).
Antioxidant enzymes (ellipsoids) such as superoxide dismutase (SOD)
are able to convert O2

•- to hydrogen peroxide (H2O2), which can be
neutralized through the action of glutathione peroxidases (GPX),
peroxiredoxins (Prx) or catalase (CTL). Non-neutralized hydrogen
peroxide may be converted in the presence of Fe2+ into hydroxyl radicals
(•OH) and hydroxyl anions (OH−) in the Fenton reaction (mETC
itochondrial electron transport chain, LOX lipoxygenase, pOX
peroxidase, NOX NADPH oxidase, XOR xanthine oxidoreductase, COX
cyclooxygenase, NOS nitric oxide synthase, NO2

● nitrogen dioxide, Trx
thioredoxin, TrxR thioredoxin reductase, GR glutathione reductase, GSH
glutathione, GSSG oxidized glutathione)
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free iron, also contribute to this effect. Further, so-called
Bdietary micronutrients^ such as vitamin C, vitamin E and se-
lenium also participate in the antioxidative process
(Samoylenko et al. 2013).

Interestingly, the roles of the antioxidant enzymes during
fibrosis are not yet well known. However, TGF-β1 appears to
act as a negative regulator and inhibits mRNA expression and
the activities of GPX1 and CTL in a hamster pancreatic beta-
cell line (HIT). Concomitantly, an increase in ROS levels and
oxidized proteins can be detected (Islam et al. 1997). In addi-
tion, TGF-β1 also decreases SOD1, SOD2, CTL and GST
expression and increases cellular ROS levels in cultured rat
hepatocytes and airway smooth muscle cells (Kayanoki et al.
1994; Islam et al. 1997; Michaeloudes et al. 2011).

Together, the fibrotic action of TGF-β1 appears to be
coupled to the suppressed expression of antioxidant enzymes.
This subsequently leads to the increased production of ROS
because of the prevailing action of ROS-generating systems.

Fibrosis and NRF2 signalling

The transcription factor NRF2 and its binding partner
Keap1 (Kelch-like ECH-associated protein 1) regulate
the transcription of various antioxidant enzymes (Hayes
and Dinkova-Kostova 2014; Levonen et al. 2014). In the
absence of ROS, Keap1 is bound to NRF2 and promotes
its proteasomal degradation. The sulphhydryl groups at
the cysteine residues in Keap1, with Cys151 as the most
critical, are able to mediate redox sensitivity (Kensler
et al. 2007; Hayes and Dinkova-Kostova 2014). They
become oxidized upon an increase in ROS and Keap1
loses its binding to NRF2. Moreover, ROS cause the
dephosphorylation of Keap1 at Tyr141, an event that
promotes Keap1 degradation (Jain et al. 2008). As a
consequence, NRF2 can no longer be degraded and is
transported to the nucleus, where its presence is promot-
ed because of the inability of the nuclear export protein
CRM1 to bind the Cys183-oxidized NRF2. In the nucle-
us, NRF2 heterodimerizes with a small Maf protein and
activates genes whose products are involved in the anti-
oxidant response (Kensler et al. 2007; Hayes and
Dinkova-Kostova 2014).

Several investigators have pointed out that NRF2 signal-
ling is of importance in the pathogenesis of fibrosis. Indeed,
NRF2−/− mice have been found to be more prone to chemi-
cally induced oxidative stress than wild-type mice (Aleksunes
and Manautou 2007; Liu et al. 2013). This is particularly
evident in the liver, where NRF2 protects mice from carbon-
tetrachloride-induced hepatic fibrosis (Xu et al. 2008) or fi-
brosis when fed a methionine- and choline-deficient diet
(Chowdhry et al. 2010; Sugimoto et al. 2010; Zhang et al.
2010; Okada et al. 2012). In addition, the response to high-

fat diets or chronic alcohol abuse appears to involve the sup-
pression of NRF2. Indeed, the onset of bleomycin-induced
lung fibrosis in mice has been found to be primed by chronic
alcohol abuse; the priming effect is considered to be the result
of the reduced expression of the NRF2-dependent genes for
GST theta 2 and the catalytic subunit of glutamate-cysteine
ligase and of the increased expression of TGF-β1
(Sueblinvong et al. 2014a). The increased TGF-β1 expression
upon alcohol ingestion in this model has subsequently been
shown to be the dominant modulator, since the blocking of the
TGF-β1 signal attenuates the alcohol-induced suppression of
NRF2 (Sueblinvong et al. 2014b). Moreover, and in agree-
ment with fibrosis being an age-related disorder, NRF2-
mediated protection against chemically induced fibrosis has
been found to be less efficient with aging (Aravinthan et al.
2013).

The NRF2/Keap1 system is also subject to further modu-
lation by other regulatory cascades. For instance, the
selenoprotein TrxR1 has been found to regulate NRF2; con-
sequently, a deficiency of selenium and the concomitant loss
of TrxR1 activity not only affect NRF2 but are also combined
with the induction of NOX activity and oxidative stress
(Cebula et al. 2015). Moreover, the transcription factor
Krüppel-like factor 9 (Klf9) can be induced by ROS via
NRF2. This is an important aspect of the pathogenesis of
fibrosis, since Klf9 has been shown to increase ROS in vitro
and in vivo in mice and to promote bleomycin-induced pul-
monary fibrosis (Zucker et al. 2014). Thus, the induction of
Klf9 by NRF2 results in a critical feed-forward response that
might promote ROS formation and fibrosis.

A number of substances naturally occurring in plants,
such as quercetin, genistein and curcumin, are considered
to be health-beneficial. They are, among environmental
agents such as paraquat, metals and endogenous sub-
stances such as hydrogen peroxide, NO and 4-
hydroxynonenal, known to be NRF2 activators (Ma and
He 2012). Although this implies that the induction of
NRF2 is of therapeutic benefit, NRF2 activation attribut-
able to Keap1 absence in mice has been found to cause
death shortly after birth, although the lethal phenotype
can be rescued in Keap1/NRF2 double-knockout mice
(Wakabayashi et al. 2003). Another study has shown that
the constitutive activation of NRF2 promotes tumour sur-
vival (T. Jiang et al. 2010). These findings indicate that
chronic or excessive NRF2 activation negatively affects
cellular behaviour and normal life span.

Overall, the NRF2 pathway appears to be critically in-
volved in the ROS-mediated regulation of fibrosis, especially
in connection with its inactivation in response to TGF-β1.
However, the cross-talk and feed-forward and feedbackmech-
anisms impacting the NRF2 system are not yet completely
understood and thus remain to be resolved in order to gain a
more complete picture of its role in fibrosis.
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ROS activate TGF-β

Like many growth factors and hormones, TGF-β needs to be
activated. Normally, TGF-β is bound to two polypeptides: a
latent TGF-β-binding protein (LTBP) and a latency-
associated peptide (LAP). Together, they form an inactive,
so-called latent TGF-β complex. To become active, TGF-β
needs to be released from this complex (Fig. 4). This can be
achieved via serum proteases such as plasmin, a number of
matrix metalloproteases and thrombospondin-1 (Shi et al.
2011; Robertson et al. 2015). Furthermore, integrins, pH and
ROS are able to activate TGF-β (Lyons et al. 1988; Munger
et al. 1998; Jobling et al. 2006), although whether this activa-
tion occurs directly or indirectly via integrin-, pH- or ROS-
mediated activation of proteases is not resolved.

With respect to ROS, the activation of TGF-β1 appears to
be direct, since ROS generated in a cell-free system by ioniz-
ing radiation or metal ion-catalyzed ascorbate reactions in
solution can activate recombinant latent TGF-β1 (Jobling
et al. 2006). In particular, TGF-β1 activation in response to
metal ion-catalyzed ascorbate oxidation is very efficient and
has been shown to depend on transition metal ions and ascor-
bate. Further, the ROS-dependent activation occurs only with
TGF-β1 and not the other isoforms; this has been found to be

attributable to ROS-mediated oxidation of the LAP-beta1 pro-
tein at methionine 253 (Jobling et al. 2006). All in all, en-
hanced ROS production can be crucial for the activation of
TGF-β1, indicating another causal link to fibrosis.

Fibrosis and ROS are linked to hypoxia

The fibrotic process is not only characterized by enhanced
ROS levels but is also associated with hypoxia attributable
to the loss of endothelial cells and the rarefication of capil-
laries. The reduction of endothelial cells is largely caused by
endothelial-mesenchymal transition (EndoMT), a process
whereby endothelial cells undergo transformation and acquire
a mesenchymal (fibroblast-like) phenotype that allows these
cells to migrate and to acquire invasive properties; a similar
process called epithelial-mesenchymal transition (EMT) can
occur with epithelial cells. Although EndoMT and EMT are
usually dormant in adult organs, insults, inflammation or
chronic diseases can reactivate these embryonic processes
(Dimmeler and Zeiher 2004; Abraham and Varga 2005;
Asada et al. 2011).

The transcription factors hypoxia-inducible factor-1α
(HIF-1α) and hypoxia-inducible factor-2α (HIF-2α) appear

Fig. 4 ROS are involved in transforming growth factor-β (TGF-β)-
mediated fibrosis. Various cell types such as platelets, parenchymal
cells and inflammatory cells (e.g., lymphocytes, macrophages) can
release TGF-β1. After conversion of the latent to the active form, TGF-
β1 binds to its receptor and induces SMAD2/3 and/or phosphatidyl
inositol 3-kinase (PI3K) signalling to express various genes, among
them that for NOX4. NOX4 in turn leads to ROS production. Enhanced

ROS may activate the proliferation, migration and differentiation of
fibroblasts plus epithelial-to-mesenchymal transition (EMT), apoptosis
of epithelial cells and/or excessive extracellular matrix (ECM)
deposition. In addition, TGF-β1 contributes to ROS production by
attenuating the expression of antioxidant enzymes such as glutaredoxin,
catalase, glutathione peroxidase, glutathione S transferase, superoxide
dismutase and the heavy subunit of gamma-glutamylcysteine synthetase
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to integrate EMT, fibrosis and the responses to various stimuli
at the level of ROS signalling (Lavrovsky et al. 2000; Gorlach
et al. 2015). Indeed, preclinical and clinical studies show that
the fibrotic process correlates with the expression of hypoxia-
inducible HIF-1α target genes such as those for tissue-
inhibitor of metalloproteinases-1, plasminogen activator
inhibitor-1 (PAI-1) and connective tissue growth factor
(Kaminski 2006; Tzouvelekis et al. 2007). Further, data from
pulmonary fibrosis mouse models and idiopathic pulmonary
fibrosis patients have revealed increased HIF-1α expression in
alveolar epithelial cells at an early stage of pulmonary fibrosis
(Tzouvelekis et al. 2007). Moreover, TGF-β1 and hypoxia
signalling appear to undergo mutual interactions, since the
major TGF-β-responsive transcription factor Smad3 can be
up-regulated by hypoxia (Zhang et al. 2003) and, vice versa,
the induction of type I collagen expression by TGF-β1 can be
decreased upon inhibition of HIF-1 (Basu et al. 2011).

TGF-β and hypoxia are also drivers of EMT. Although
hypoxia via HIF-1α (Distler et al. 2004; Moon et al. 2009)
promotes the expression of endothelial growth factors to im-
prove the capacity to regenerate vessels (or form new ones),
the link to EMT suggests that fibroblast formation and EMT
will occur (Kim et al. 1998). Indeed, hypoxia and the stable
expression of HIF-1α have been associated with increased
renal fibrosis and EMT, whereas the injection of vascular en-
dothelial growth factor (VEGF) is beneficial in some experi-
mental models of organ fibrosis (Corpechot et al. 2002; Yoon
et al. 2005; Ioannou et al. 2013). In agreement with this evi-
dence, the loss of HIF-1α in primary renal epithelial cells
reduces EMTand the targeted deletion of HIF-1α in proximal
tubular epithelial cells reduces tubulointerstitial fibrosis upon
unilateral urethral obstruction (Higgins et al. 2007).
Interestingly, the transdifferentiation of kidney tubular epithe-
lial cells into myofibroblasts appears to be a result of HIF-
mediated regulation of stromal cell-derived factor 1 (SDF-1)
and its receptor CXCR4 (Barriga et al. 2013), whereas a recent
study of human coronary endothelial cells demonstrated that
HIF-1α-driven expression of the transcription factor Snail is
responsible for EMT (Xu et al. 2015). Together, these data
suggest that hypoxia has opposing effects and, probably de-
pending on the regenerative capacity of the injured tissue, can
contribute to vessel regeneration via HIF-driven VEGF ex-
pression or to the progression of fibrosis via EMT.

Fibrosis is affected by ROS via post-transcriptional
and epigenetic mechanisms

Knowledge concerning the pathogenesis of fibrosis has im-
proved greatly, although a large number of issues are still not
resolved. Among these is the often occurring inter-individual
difference in the severity and progression of fibrosis. Recent
advances in understanding post-transcriptional gene-

regulation events, genetic variability and epigenetic phenom-
ena have suggested that these mechanisms contribute to the
variability often seen in individuals with fibrosis (Wynn
2010).

Post-transcriptional regulation is largely achieved by
mRNA degradation and translational repression, processes in
which microRNAs (miRNAs) play a crucial role. Indeed, sev-
eral miRNAs have been found to be regulated by TGF-β1 and
shown to be regulators of pro- and anti-fibrotic processes
(Pottier et al. 2014). The connection between ROS, fibrosis
andmiRNA expression is underlined by findings showing that
TGF-β1 regulates NOX4 expression and the NOX4-
dependent generation of hydrogen peroxide, which has been
found to be required for TGF-β-induced myofibroblast differ-
entiation, ECM production and contractility (Hecker et al.
2009). The expression of NOX4 and thus ROS generation
can be down-regulated by the so-called BredoximiRs^ miR-
146a and miR-25 (Cheng et al. 2013), whereas miR-135b and
miR-708 can be up-regulated by hydrogen peroxide (Fig. 5).
In addition, NRF2 expression can be switched off by miR-
153, miR-27a, miR-142-5p and miR144. The NRF2 partner
Keap1 can be regulated by miR-200a, with the consequence
that NRF2 is activated. Further activation of NRF2 can be
achieved via miR-34a targeting sirtuin1 (Sirt1), which nor-
mally deacetylates NRF2 to promote its nuclear export (for
reviews, see Cheng et al. 2013; Narasimhan et al. 2012).
Another miRNA, miR-27 a/b, reduces prohibitin 1 and
NRF2 (Yang et al. 2013) and leads to the appearance of non-
alcoholic steatohepatitis-like symptoms and liver fibrosis. In
addition, miR-433 decreases the expression of the major
glutathione-synthesizing enzyme gamma-GCS (Espinosa-
Diez et al. 2014) and contributes to oxidative stress.
Furthermore, fibrotic kidneys have been found to display a
loss of miR-30e, which, if present, would counteract EMT (
L. Jiang et al. 2013). Thus, miRNAs are important molecules
at the point at which ROS signalling and fibrosis converge.

Other factors concerning the dissimilarities occurring in
fibrosis are epigenetic changes. These are heritable traits that
involve no changes in DNA sequences but where changes in
DNA methylation and post-translational modifications of his-
tones and other chromatin-associated proteins regulate tran-
scription (Helin and Dhanak 2013). In particular, DNA meth-
ylation can be affected by ROS; oxidatively modified bases
such as 8-oxo-2′-deoxyguanosine (8-oxodG) may inhibit the
methylation of adjacent cytosines (Turk et al. 1995). The
methylation of cytosine at its 5-position (5-methylcytosine
[5mC]), sometimes called the Bfifth base,^ is associated with
transcriptional silencing. As a consequence of 8-oxodG-
inhibited methylation, the resulting hypomethylation results
in transcriptional activation, whereby cells might gain new
characteristics that promote various processes, among them
fibrosis. On the other hand, ROS have also been linked to
hypermethylation (Franco et al. 2008) and the down-
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regulation of repair genes such as O-6-methylguanine-DNA
methyltransferase andMLH1 (mutL homologue 1; Ziech et al.
2011). Further, the hypermethylation of the phosphatase and
tension homologue (PTEN) favours ERK andAKTsignalling,
cell proliferation and migration and the promotion of liver
fibrosis (Bian et al. 2012). In addition, hypoxia has been as-
sociated with changes in global DNA methylation and, in
particular, HIF-1α has been found directly to activate DNA
methyltransferase 1 (DNMT1) and DNMT3B expression in
cardiac fibroblasts. In agreement with this, the inhibition or
genetic ablation of DNMT counteracts the hypoxia-induced
expression of pro-fibrotic genes in cardiac tissue. Again,
hypoxia-induced hypermethylation has been found in connec-
tion with the Thy-1 cell surface antigen promoter and appears
to foster the development of a pro-fibrotic phenotype in hu-
man pulmonary fibroblasts (Robinson et al. 2012). Silencing
of methylcytosine dioxygenase 3 has been found to contribute
to bone-morphogenic-protein 7-induced reversal of kidney
fibrosis attributable to 5-hydroxymethylcytosine formation
and thus hypomethylation in the RAS protein activator pro-
moter RASAL1 (Tampe et al. 2014). In addition, the hyper-
methylation and repression of Klf4 via Dnmt1 (Xiao et al.
2015) and the hypermethylation of methyl CpG binding pro-
tein 2 (Yang et al. 2013), RASAL1 (Tao et al. 2011), peroxi-
some proliferator-activated receptor (Zhao et al. 2013) and
patched1 (Yang et al. 2013) also appear to promote fibrosis.

In addition to the above-mentioned factors, epigenetic
modifications in antioxidant enzyme genes may also account
for variations in the fibrotic process. Recent data point to the
epigenetic silencing of the SOD2 gene, which may be a result
of increased O2

•− levels, constituting a feed-forward mecha-
nism promoting further epigenetic aberrancies (Hitchler et al.
2006; Teoh-Fitzgerald et al. 2012; Cyr et al. 2013). Thereby,
O2

•− serves as a starting point for the generation of other ROS,
with the consequence that metabolites such as NAD(+), S-
adenosyl methionine and 2-oxoglutarate are altered. Because
these substances are crit ical for sirtuins, histone

methyltransferases, histone demethylases and DNA
demethylases, these alterations immediately affect the epige-
netic landscape (Cyr et al. 2013). Together, epigenetic aber-
rancies attributable to ROS might account for a number of
variants seen in fibrotic phenotypes and could eventually be
involved in the progression of cells from fibrotic to cancer
phenotypes.

Are antioxidants a treatment option in fibrosis?

The connection of fibrosis with ROS and oxidative stress im-
plies that supplementation with nutrients or diets with antiox-
idants will, in addition to disease-specific therapies and the
inhibition of TGF-β signalling, be beneficial. In general, this
is not a new idea and part of a worldwide Bantioxidant hype^
that has been applied to other oxidative-stress-associated dis-
eases such as cancer, type II diabetes and cardiovascular dis-
eases (for a review, see Samoylenko et al. 2013). However,
several studies have demonstrated that dietary supplementa-
tion with antioxidants does not have a positive influence but
rather a negative effect on overall mortality; in particular, vi-
tamin A, β-carotene and vitamin E increase mortality
(Bjelakovic et al. 2007). Vitamin E has also been linked to
prostate cancer (Klein et al. 2011). With respect to fibrosis, a
prospective double-blind randomized placebo-controlled trial
has been carried out among a total of 49 patients with non-
alcoholic steatohepatitis receiving vitamins C and E (1000 mg
and 1000 IU daily for 6 months, respectively) together with a
diet limited to 1600 kcalories/day. Evaluation of the histolo-
gical data from 45 patients finishing the study demonstrated
no statistically significant differences in inflammation/
necrosis between the vitamin group and the placebo group
or within the vitamin or the placebo groups. Additionally, no
significant difference in fibrosis was noted between the vita-
min and the placebo groups. However, significant im-
provement in fibrosis was recorded within the group that

Fig. 5 Fibrosis and ROS are interconnected with microRNA (miRNA)
expression and epigenetic modifications. Several miRNAs affect cellular
ROS levels via the post-transcriptional degradation of NOX4 and nuclear
factor erythroid 2-related factor 2 (NRF2) mRNA. In addition,
epigenetically, ROS-associated DNA hypermethylation contributes
to the reduced expression of various genes, among them O-6-

methylguanine-DNA methyltransferase (MGMT), mutL homologue 1
(MLH1), thymocyte differentiation antigen-1 (Thy-1), Krüppel-like
factor 4 (Klf4), methyl CpG binding protein 2 (MeCP2), RAS protein
activator 1 (RASAL1), peroxisome proliferator-activated receptor
(PPAR-γ) and patched1 (PTCH1)
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received vitamins E and C but not in the placebo group
(Harrison et al. 2003). Multicentre trials among patients suf-
fering from idiopathic lung fibrosis have shown that antioxi-
dant treatment has no or only a modestly beneficial effect
(Demedts et al. 2005; Day 2008; Idiopathic Pulmonary
Fibrosis Clinical Research Network et al. 2014). Further, vi-
tamin supplementation has been shown to accelerate renal
function decline in patients thought to have diabetic nephrop-
athy (House et al. 2010). This lack of (or reduced) benefit not
only applies to fibrosis but is also observed in cancer, type II
diabetes and cardiovascular diseases and is known as the
Bantioxidant paradox^ (Halliwell 2000; Hollman et al. 2011;
Sheikh-Ali et al. 2011).

The reasons that antioxidants do not fulfil their expecta-
tions might be multiple and attributable; for example, to the
wrong type/dose combinations, variations in treatment dura-
tion, poorly understood mechanisms of action and a lack of
tests for compliance (for reviews, see Gorlach et al. 2015;
Schmidt et al. 2015). However, recently, resveratrol, a natural
antioxidant present in grapes and various berries, has been
suggested as being of use in lung fibrosis, respiratory diseases
such as asthma and chronic obstructive pulmonary disease.
However, even if in vitro and animal data support resveratrol
use, careful clinical patient characterization is needed, since
resveratrol has been shown to exert opposite effects on the
hypoxia-dependent expression of the breast cancer evidence
marker PAI-1 in tumour vs. primary cells (Ganjam et al.
2015). Moreover, large clinical trials with resveratrol remain
somewhat limited and further studies need to be performed to
assess its real benefit (Conte et al. 2015). In particular, this
seems to be important as regards dosage and the combination
of antioxidants in the diet, since high doses of a single antiox-
idant in the diet have been shown to be harmful in smokers,
whereas diets enriched with two antioxidants were safe in a
randomised controlled trial in male smokers (Karlsen et al.
2011). Thus, antioxidant therapies for fibrosis and other dis-
eases may still have a future but increased efforts with respect
to research into ROS, antioxidants and disease pathogenesis in
conjunction with large multicentre trials are required.

Concluding remarks

All in all, ROS have an important role in fibrosis, in particular,
in conjunction with the TGF-β1 signalling system. However,
current knowledge represents just a basic understanding of the
way that ROS contribute to fibrosis and details of the interplay
with signalling pathways other than that involving TGF-β1
are largely lacking. Although the mechanisms involved show
a causative role of ROS in fibrosis, they do not allow any
precise conclusions or recommendations in terms of antioxi-
dant therapy, which itself is somewhat questionable. At the
same time, this lack of knowledge increases the demand for

further understanding to be gained about the mechanisms
linking the dynamics of ROS and antioxidant action and about
the pathogenesis of fibrosis and its future therapies.
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