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Abstract

Background: The k-mer counting problem, which is to build the histogram of occurrences of every k-symbol long
substring in a given text, is important for many bioinformatics applications. They include developing de Bruijn graph
genome assemblers, fast multiple sequence alignment and repeat detection.

Results: We propose a simple, yet efficient, parallel disk-based algorithm for counting k-mers. Experiments show that
it usually offers the fastest solution to the considered problem, while demanding a relatively small amount of
memory. In particular, it is capable of counting the statistics for short-read human genome data, in input gzipped
FASTQ file, in less than 40 minutes on a PC with 16 GB of RAM and 6 CPU cores, and for long-read human genome
data in less than 70 minutes. On a more powerful machine, using 32 GB of RAM and 32 CPU cores, the tasks are
accomplished in less than half the time. No other algorithm for most tested settings of this problem and
mammalian-size data can accomplish this task in comparable time. Our solution also belongs to memory-frugal ones;
most competitive algorithms cannot efficiently work on a PC with 16 GB of memory for such massive data.

Conclusions: By making use of cheap disk space and exploiting CPU and I/O parallelism we propose a very
competitive k-mer counting procedure, called KMC. Our results suggest that judicious resource management may
allow to solve at least some bioinformatics problems with massive data on a commodity personal computer.

Keywords: k-mer counting, de Bruijn graph genome assemblers, Multiple sequence alignment, Repeat detection

Background
Counting the number of occurrences of every substring
of length k (so-called k-mer) in a given string S is an
important procedure in bioinformatics. One prominent
application is de novo assembly from very large num-
ber (typically, a few billions) of short reads, produced
by second-generation sequencing instruments. The most
popular assembly approach for such data is based on
building the de Bruijn graph [1], in which an edge between
any pair of k-mers, represented as nodes in the graph,
exists if and only if the (k − 1)-symbol long suffix of
one k-mer is a prefix of another. The current sequencing
technology cannot, however, get rid of a relatively large
number of errors (mis-detected nucleotides) in sequence
reads. These errors can be detected on a statistical basis.
The whole genome obtains high coverage (30-fold to 60-
fold is typical) on modern sequencing platforms, which
means that any “genuine” substring of length, e.g., 25 or
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30 is very likely to appear multiple times in the reads
collection. If a given k-mer occurs only once, it almost cer-
tainly contains at least one (or more probably a few) false
symbol. The unique k-mers should be discarded before
(or in the process of ) building the de Bruijn graph, since
they significantly increase the memory and time require-
ments for graph generation. Other applications of k-mer
counting include fast multiple sequence alignment [2] and
repeat detection [3]. Usually we should not distinguish
between a k-mer and its reversed complement, and by
the “canonical k-mer” we will mean the lexicographically
smaller of the two.
Counting k-mers is challenging, because it should be

both fast and performed using as little memory as possi-
ble. A naı̈ve approach is to use a standard hash table, with
k-mers as keys and their counts as values. This solution
is both memory consuming and hard to parallelize effec-
tively. Moreover, some of the k-mer counting tools coop-
erate with Quake [4], a widely used package to correct
substitution sequencing errors in experiments with deep
coverage, which takes k-mer statistics as an important
component for its job. Supporting Quake makes k-mer
counting even more demanding, both in time and used
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memory, since instead of plain k-mer counts Quake takes
into account also the quality of base calls, i.e., high-quality
reads have higher impact. In the following paragraphs
we will briefly present several respected k-mer counting
solutions.
Tallymer [3] is a k-mer counter based on the suffix array

structure. Alas, suffix array construction is a relatively
expensive operation, which is worsened for the second-
generation sequencing data, where short reads must go
together with high coverage.
Meryl, from the k-mer package of the Celera assem-

bler [5], sorts the k-mers in memory. More precisely, it
distributes all k-mers into (by default) 224 bins and then
sorts each bin. Finally it removes the unique ones. This
approach requires a huge amount of memory to work. For
example, for the human NA19238 dataset that we use in
the experimental section (cf. the statistics in Table 1) over
350GB of RAM would be needed, provided 8 bytes per
k-mer.
Jellyfish [6] is an algorithm designed for shared mem-

ory parallel computers with multiple CPUs / cores. It uses
several lock-free data structures. Efficient shared access
to these structures implies high utilization of concurrent
processing units. More precisely, Jellyfish is based on a
hash table with quadratic probing collision resolution,
where concurrent update operations are possible thanks
to its lock-free mechanism, exploiting the ‘compare-and-
swap’ (CAS) assembly instruction present in all modern
multi-core CPUs. A CAS instruction performs up to three
‘elementary’ operations in an atomic fashion: it reads
a memory cell, compares the read value to the second
parameter of the instruction, and if the two values are
equal it then writes the third CAS parameter to the mem-
ory cell. In the considered application this mechanism
is much more efficient than traditional serialization of
the access to a shared resource with locking. Another

interesting feature of Jellyfish is to store only a part (pre-
fix) of the k-mer in the hash table, since its suffix can be
deduced from the hash position.
BFCounter [7] ingeniously involves the Bloom filter

structure to discard most of the unique k-mers before
their statistics are calculated using a standard hash table.
Bloom filter (BF) is a classic compact probabilistic data
structure for dynamic set membership queries, which
allows a low rate of false positives. To count non-unique
k-mers, BFCounter uses both a BF and a plain hash table.
Initially, the k-mers are inserted into the BF structure.
Then, the hash table is populated with all k-mers which
have at least two occurrences plus a relatively small num-
ber of unique k-mers, those which appeared false positives
in the BF. This algorithm is relatively frugal in memory
utilization, but only a serial implementation exists.
It should be noted that both Jellyfish and BFCounter

require estimation on the number of distinct k-mers. If
the user-specified value is far from the real one, these
algorithms may work much slower and using much more
memory than in the case of appropriate values given.
(More precisely, using Jellyfish with bounded memory is
possible, but with limitations. This aspect is discussed in
more detail in Sect. Results and discussion.)
We mention also khmer [8], a toolkit for k-mer-based

dataset analysis, which (among others) can count k-mers
and remove reads with low- or high-abundance k-mers.
It is reasonably fast and memory frugal, but these bene-
fits are achieved thanks to its probabilistic nature (again,
due to the underlying Bloom filter): with a low probabil-
ity, khmer may report a false k-mer as being “present”.
Also the reported counts for genuine k-mers are only
approximate. While these features are acceptable in some
applications, we can name its drawbacks: no k-mer listing
possibility (testing every possible k-mer is of course pro-
hibitive, even for relatively small k) and no quality score

Table 1 Statistics of the datasets used in the experiments for k = 25
D. ananassae C. elegans Z. mays H. sapiens H. sapiens

NA19238 HG02057

FASTQ file size [GB] 8.7 16.4 45.9 353 208

Total gzipped size [GB] 1.8 4.6 16.3 116.6 65.9

No. of gzipped files 6 2 108 463 6

No. of reads [×106] 35 68 62 2,662 860

Read lengths 75 100 25–2043 36(most)–75 100

Statistics of k-mers

No. of singletons 43 347 1,010 11,823 3,367

No. of distinct 63 459 1,916 14,599 6,023

No. of distinct non-singletons 20 112 906 2,776 2,657

Total no. 1,803 5,127 20,214 44,687 65,325

Totals in millions.
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support (e.g., with Quake-compatible counters). For these
reasons, we do not compare khmer with our solution in
the experimental section, as in our opinion they “play in
different leagues”.
Very recently, a disk-based k-mer counting algorithm,

named DSK, was presented [9]. On the high level, DSK
is similar to the solution presented in this paper, but
both algorithms were designed independently at about the
same time. In DSK, the (multi)set of k-mers from the input
reads is partitioned and partitions are sent to disk. Then,
each partition is loaded and processed separately in the
main memory, using a hash table. The tool provides strict
control of the allocated memory and disk space (lower
memory usage results in increased processing time due to
more iterations and thus increased I/O), which for exam-
ple allows to process human genome data in 4GB of RAM
only, in reasonable time.

Methods
In the following subsections we first present our basic
idea, on a high level and in a sequential manner, and
then the ‘real’ parallel algorithm, involving multiple
CPUs / cores and multiple disks (see Figure 1). The algo-
rithm description is valid for any parameters k and read
length r. In fact, in the current implementation k can be
as large as 256, and r as large as 10240, provided that
10 < k ≤ r. (These values can be easily increased when
needed, as they are compile-time constants.)
We assume here that the purpose is to count the k-mers,

but our implementation is more flexible: the associated
quality scores can be taken into consideration, k-mers
with a count below a threshold may be removed, etc.
At least from the algorithmic point, however, the core
functionality is the most important, hence it is discussed
below.

Basic idea
Our goal is to obtain a compact on-disk dictionary struc-
ture with k-mers as keys and their counts as values. The
structure can then be read sequentially, or individual k-
mers (with their associated counts) can be found using the
standard binary search technique.a The algorithm follows
the disk-based distribution sort paradigm. In the first, dis-
tribution, phase, we scan the reads one by one, extract all
the k-mers from each, replace them with their canonical
versions when necessary, and send each to one of multiple
(several hundred) disk files based on the k-mer prefix of
length p1. Actually, the first phase starts with storing the
data in buffers in the main memory where another prefix
part, of length p2, is removed from each k-mer, and the
prefix counts are maintained for further recovery. Once
the buffer reaches the predefined capacity, its content is
sent to a file.

The latter, sorting phase, is to collect the data from disk
in the order of lexicographically sorted prefixes of length
p1, recover the p2-symbol long prefixes, then radix-sort
the k-mers, count their frequencies (after sorting repeat-
ing k-mers are at adjacent positions), and (optionally)
remove, e.g., unique k-mers.

Parallel algorithm
The detailed description of our algorithm is relatively
complex and the reader is advised to consult Figure 1. The
number of components (splitters, bin readers etc.) at each
stage is chosen depending on the number of CPUs / cores
of the target machine, but optionally these parameters
may be user-specified. The distribution and the sort phase
are described in the two following subsections.

Distribution phase
The first phase begins with reading blocks of several
megabytes (the exact size depends on the available mem-
ory), rounded down to a record boundary, from a (possibly
compressed) FASTQ dataset.b One or more threads are
used, depending on the number of input data files; the
default number of such threads can be overridden with a
command-line switch. The blocks are added to a queue.
In the next step, a number of splitter threads remove

the blocks from the queue and extract k-mers from their
reads, converting the k-mers to canonical form. Every
splitter has its multiple (typically hundreds) bins to ful-
fill, each with capacity of, e.g., 215 entries. Each k-mer
is directed to the bin specified by the k-mer’s prefix of
length p1.
The lengths p1 are variable-sized and their minimum

size is user-specified. For example, if the program is run
with switch -p3, it means that 3, 4, or 5 symbols belong to
the prefix, depending on its content. The rationale is that,
for example, about 7/16 of all canonical k-mers are those
starting with Ac, and different prefix lengths allow to have
the bin counts more balanced. Due to some technical dif-
ficulties we resigned from even more granularity, but it
should be stressed that this issue is practically irrelevant
for the overall processing time. A more important goal is
to limit the largest bin count (which is beyond our full con-
trol, since the reads content is not random). The number
of resulting bins for parameter -p3 is about 125, for -p4
about 500, and for -p5 about 2000. As a rule of thumb, it
is better to use -p5 for large collections (e.g., mammalian
genomes with high coverage), -p3 for small collections
(e.g., bacterial genomes), and -p4 for middle-sized ones.
Once a bin is full, its content is transformed and then
flushed to a common queue of bins. The transformation
means here: partial sorting and compaction. The for-
mer uses counting sort, according to k-mer’s prefix, this
time of the length p2. The latter operation, compaction,
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FASTQ reader FASTQ reader

FASTQ parts queue

Splitter Splitter

Bin chunks queue

Package maker

Bin packages queue

Compactor Compactor

Compact packages queue

Disk writer Disk writer

Disk

Bin reader Bin reader

Bins queue

Sorter Sorter

Sorted and compacted bins priority queue

Completer

Figure 1 A scheme of the parallel KMC algorithm.

removes those prefixes and stores their frequencies, to
enable to recover the k-mers later. The parameter p2 is
chosen dynamically to fit other (possibly user-selected)
settings, like p1, hardware configuration, and the values of
k and r, with the idea of minimizing the amount of tempo-
rary data on disk (and thus also total I/O). For convenience

(byte-aligned data layout) we always have k − p1 − p2 a
multiple of 4. The reader is advised to look at Figure 2 with
a 2-stage prefix removal example presenting two cases:
one for a k-mer starting with A and one for a k-mer start-
ing with another symbol. The whole splitter operation is
presented in Figure 3.
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A C A T G G A T T A T C C G A C A A T A C C G G T

G C G A T A G A C C A C C A T G T A G A G A C T A

Figure 2 An example of 2-stage k-mer prefix removal, for one k-mer starting with symbol A and one starting with non-A. In total, 9 starting
characters are effectively removed before storing the k-mer on a temporary disk. The part of length p1 stands for the ID of the bin the given k-mer is
inserted into, and the part of length p2 is discarded to reduce the temporary storage (a way to recover later the removed part of length p2 is not
shown here, for clarity; see text).

Now a single package maker thread comes into action. It
prepares data to be sent to disk. More precisely, it moves
the content from the queue of bins to another queue of
“bin part packages” (Figure 4), which is handled by mul-
tiple threads. A compactor checks if it pays to strip extra
4 symbols from the prefix of each item in its package;
the compaction criterion is satisfied if the prefix coun-
ters (statistics) together with the stripped data use less
space than before the stripping. Now, the resulting data
(possibly more compacted) are formed into one of many
compact packages. Once the compact packages reach in
total the specified maximum capacity, the largest of them
is dumped to a file. Compacting the packages speeds up
file handling and reduces file fragmentation. The k-mers
scattered over (usually) hundreds of files are the outcome
of the first, i.e., distribution phase. Each file corresponds
to a unique prefix of length p1. In each file, the k-mers
are also grouped by their successive p2 or p2 + 4 symbols.
Assume for presentation clarity that the extra 4 symbols

are not removed, and thus what is sent to files are (k−p1−
p2)-symbol long suffixes of the k-mers, packed into bytes.
Additionally, each file contains 4p2 prefix counts (each
stored in 2 bytes) which enable to recover the p2-symbol
long parts of the prefixes. In total, the used disk space, in
the worst case and with classic counters, is approximately

nk(k − p1 − p2)/4 + 2 · 4p2 · nk/215 bytes,
where nk = n(r − k + 1) is the number of k-mers in
the input data. Switching to Quake-compatible counters
increases this worst-case estimate to

nk(k − p1 − p2 + 16)/4 + 2 · 4p2 · nk/215 bytes.
In practice, removing the prefixes reduces the disk usage

by at least a few, and sometimes over 20 percent, depend-
ing on the value of k. This has an analogous effect of
reducing the I/O, which translates to similar overall per-
formance improvement.

Figure 3 Algorithm of splitting k-mers in reads to bins according to their prefix. A full bin is compacted by sorting on p2-symbol long prefix
and removing this prefix.
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Figure 4 Algorithm of collecting compacted bin chunks from all splitting threads.

Sorting phase
The second phase starts with bin reader threads; there
are as many of them as disks for temporary data. The bin
readers read the files from disk to a queue.
Now, several sorter threads collect the data from the

queue, uncompact the k-mers (their p2-symbol long pre-
fix parts are brought back), sort them using multithreaded
least significant digit (LSD) radix sort (the sort implemen-
tation is partially inspired by [10]), count their frequencies
and discard k-mers with out of thresholds counter val-
ues (based on default or user-selected settings). The input
data to be sorted are divided evenly among threads.
The (remaining) k-mers, with their counts, are ready

to be sent to disk (cf. Figure 5), but it is up to the next
stage, the completer thread. The sorter threads submit
the k-mers with their statistics into a priority queue, with
bin ID as the priority, which is then handled by the sin-
gle completer thread. This thread reorganizes the sorted
bins in the order of ascending bin ID. The priority queue
is needed to send the statistics in the proper order. As
this structure is relatively small, implementing it as a plain
unsorted array with several hundred slots and linear scan
for finding the minimum was enough for the application.
The scheme presented above depends on a number

of parameters. By default, KMC works in an automatic

mode, where the parameters are found with respect to the
machine it is executed at; the number of CPU cores and
the available amount of RAM are all taken into account.
More details on the parameter setting are given in Addi-
tional file 1: Table S6). (Manual setting is possible as well,
though.)

Results and discussion
Our algorithm, called K-mer Counter (KMC), was imple-
mented in C++11, using gcc compiler (version 4.7.1) for
the linux build and Microsoft Visual Studio 2012 for
the Windows build, and is freely available at http://sun.
aei.polsl.pl/kmc (as well as is given as Additional files 2
and 3). The following well-known libraries were used:
OpenMP, Boost for managing the threads and filesys-
tem operations, zlib and libbzip for reading compressed
FASTQ files, and asmlib (http://www.agner.org/optimize/
asmlib-instructions.pdf) for a fast low-level memcpyd
implementation.
Out of the five well-known k-mer counting tools,

three were taken for the comparative tests, Jellyfish [6],
BFCounter [7], and DSK [9]. The other two, Tallymer [3]
and Meryl from the Celera assembler [5], were tested in
[6], on a 1GB turkey genome, and we can find the fol-
lowing statement in the cited work: Jellyfish is also able to

Figure 5 Algorithm of sorting k-mers within bins. Fast radix sort procedure is used here.

http://sun.aei.polsl.pl/kmc
http://sun.aei.polsl.pl/kmc
http://www.agner.org/optimize/asmlib-instructions.pdf
http://www.agner.org/optimize/asmlib-instructions.pdf
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count 22-mers at coverage>10×where the other programs
fail or take over 5 h. Clearly, this makes them hard to use
on human genome data, with 30-fold coverage.
Two test machines were used. One was a 4 AMD

Opteron™6136 2.4GHz CPUs (32 cores) server with
128GB RAM, and fast RAID-0 disk matrix of total
size 2.0 TB. The other was a “home” PC, with 6-core
AMD Phenom II 1090 3.2GHz CPU, 16GB RAM and
3 SATA HDD of sizes 2TB each. The hard disks at
the PC machine were: two Seagate Barracuda Green
ST2000DL003 with 5,900 rpm and one Hitachi Deskstar
7K3000 with 7,200 rpm.
The comparison includes total computation time and

maximum RAM use. Moreover, the maximum disk use of
the disk-based algorithms is recorded. Although the other
tested programs for k-mer counting, except for DSK, work
only in RAM, we believe that using even several hundreds
of gigabytes of disk space during the execution of KMC is
a mild price for the achieved high efficiency, as disk space
is almost two orders of magnitude cheaper than the RAM
memory. KMC was run twelve times for each dataset and
each tested k: with 32GB and 16GB RAM limitation on
the server machine and with 11GB RAM limitation on the
PC, with classic andQuake-compatible counters, and with
gzipped and non-compressed input data in each configu-
ration. The classic counters are just integers telling how
many times a k-mer occurs in the dataset. The Quake-
compatible counters take into account the quality scores
and are thus decimal-point numbers. The other programs
used in the comparison, except DSK, optionally produce
output results in Quake-compatible form.
We performed experiments on five datasets, three of

which are presented below and an extra two in Additional
file 1.
These three datasets discussed here comprise:

• Homo sapiens NA19238 from 1000GP (ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data/NA19238/
sequence read/), used also in [7],

• Homo sapiens HG02057 from 1000GP (ftp://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/data/HG02057/
sequence read/),

• Caenorhabditis elegans (http://ftp.sra.ebi.ac.uk/vol1/
fastq/SRR065/SRR065390/).

Their basic statistics, for k = 25, are presented in Table 1.
There were several problems to compare exactly the

proposed algorithm against its competitors. For example,
some datasets contain raw reads with occasional N sym-
bols in the DNA stream. Jellyfish processes such reads
but refrains from counting the k-mers containing Ns (in
KMCwe handle this issue in the same way). To our knowl-
edge, BFCounter treats Ns as As and DSK treats them
as Gs. This is of course rather strange from biological

point of view but since there are only very few Ns,
the misinterpreted k-mers do not affect noticeably the
RAM occupancy and computation time. Another prob-
lem with BFCounter is that it fails when executed with
k > 25 in the classic counters mode (the authors claim
it should work for k up to 31, but we were not able
to reproduce it). With the Quake-compatible counters it
sometimes handles larger k, sometimes fails (details in
the tables).
KMC is clearly the most flexible software: it can work

over wide ranges of k and also for both counter modes.
Like DSK, but contrary to other solutions, KMC can also
read gzipped FASTQ datasets (typically used in genomic
repositories) which tends to improve overall processing
time (due to reduced I/O and the possibility to read mul-
tiple gzip files, even located at multiple disks). It is impor-
tant to note that KMC space resources are bounded: the
RAM usage is user-selected and the upper bound on the
amount of disk space can be calculated with the (approxi-
mate) formula given in Section Distribution phase, which
depends only on standard input parameters (the num-
ber of reads, the read length, the value of k). DSK is
even better in this aspect: it allows to set the RAM and
disk usage quite precisely, but of course choosing tight
parameters comes at a price of increased I/O and thus
overall processing time. On the other hand, BFCounter
and Jellyfish require guessing the number of unique k-
mers in the dataset, and a significant deviation from the
true value is likely to cost significantly in increased RAM
usage and processing time. In fact, it is possible to bound
(not very precisely) the RAM requirements for Jellyfish,
which, for large enough data, results in two-stage process-
ing. In the first stage the tool produces several hash tables,
and then, in the second stage, it merges them. The price is,
however, deterioration in speed. Moreover, this regime of
work is viable only for classic counters, as for the Quake-
compatible counters the amount of space Jellyfish needs
in the second stage is huge and we were not able to test it
on human datasets.
Based on the results, several observations can be

made. We start from the two human datasets. The first,
NA19238e (Table 2), has variable-length reads, but most
of them are short, of length 36 only. This fact poses
a restriction on the maximum used value of k (31).
BFCounter was many times slower than its competitors
and the amount of RAM it used was not impressive either:
up to 46GB, i.e., less than Jellyfish (run with speed in
mind, i.e., with possibly the smallest amount of allocated
memory for which no hash table merging is needed) but
more than KMC. KMC was consistently faster than Jel-
lyfish (both with classic and Quake-compatible counters)
and several times faster than DSK. On the other hand,
DSK (run in this and all other tests with default settings)
was clearly the most frugal in memory use (6GB) but

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA19238/sequence_read/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA19238/sequence_read/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/NA19238/sequence_read/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG02057/sequence_read/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG02057/sequence_read/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/HG02057/sequence_read/
http://ftp.sra.ebi.ac.uk/vol1/fastq/SRR065/SRR065390/
http://ftp.sra.ebi.ac.uk/vol1/fastq/SRR065/SRR065390/
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Table 2 k-mers counting results for Homo sapiensNA19238 individual (353GB FASTQ file or 463 gzipped FASTQ files of
total size 116.6GB)

k = 22 k = 25 k = 28 k = 31
Algorithm Space Time Space Time Space Time Space Time

Classic counters

32-core server

BFCounter 46/ 0 114,083 41/ 0 99,468 Failed Failed

Jellyfish 50/ 0 2,303 64/ 0 2,258 75/ 0 2,208 87/ 0 2,107

Jellyfish1 27/ 39 2,964 33/ 36 2,769 21/ 27 2,673 24/ 22 2,511

DSK 6/200 6,490 6/340 6,020 6/280 5,115 6/221 4,215

DSKgz 6/200 9,076 6/340 8,029 6/280 7,157 6/221 6,424

KMC 32/104 1,405 32/130 1,488 32/133 1,522 32/121 1,471

KMC 16/107 1,548 16/131 1,657 16/141 1,684 16/128 1,568

KMCgz 32/104 1,040 32/129 1,066 32/132 1,055 32/120 989

KMCgz 16/107 1,278 16/130 1,631 16/141 1,662 16/125 1,307

6-core PC

DSK 6/200 21,468 6/340 18,774 6/280 15,384 6/221 11,857

DSKgz 6/200 18,939 6/340 16,818 6/280 14,694 6/221 12,070

KMC 11/107 3,482 11/128 3,442 11/138 3,584 11/127 3,515

KMCgz 11/107 2,198 11/128 2,206 11/138 2,303 11/127 2,365

Quake-compatible counters

32-core server

BFCounter 70/ 0 171,888 72/ 0 180,861 Failed Failed

Jellyfish 100/ 0 4,339 57/230 2,891∗ 64/192 3,246∗ 70/175 3,161∗

KMC 32/311 2,585 32/302 2,467 32/282 2,347 32/237 2,106

KMC 16/315 2,615 16/305 2,730 16/283 2,592 16/245 2,284

KMCgz 32/310 2,071 32/302 1,995 32/282 1,880 32/237 1,690

KMCgz 16/318 2,273 16/304 2,611 16/283 2,015 16/244 2,707

6-core PC

KMC 11/316 5,538 11/298 5,533 11/277 5,184 11/242 5,016

KMCgz 11/316 5,370 11/298 5,060 11/277 4,708 11/243 4,643

RAM and disk spaces (the first and the second value in the column “Space”, respectively) are in GB (1GB=230B). Time is in seconds. The test machines: 32-core server,
6-core PC (see more details in the text). Superscripts denote: 1—RAM limited to 36GB, gz—input data in gzipped files. The programs were used for the number of
threads adjusted to the number of cores to achieve maximum speed. The asterisk signs (for Jellyfish) denote that two separate databases were constructed by Jellyfish
due to the memory limit of the machine (128GB RAM) and Jellyfish reported that to merge these databases it needs more RAM, so these times are underestimated.

required about twice ormore disk space than KMC.When
the KMC’s input FASTQ data are gzipped (note that the
input data consist of 463 gzipped files and several of them
can be read in parallel), the gap in speed between KMC
and Jellyfish sometimes exceeds factor 2. Although the
speedup thanks to compressed input varies, it is often of
the order of 20 percent or more. The amount of disk space
needed by KMC is up to 141GB in the classic counters
mode and up to 321GB with the Quake-compatible coun-
ters. While certainly not small, this is less than the size
of the input (uncompressed) FASTQ file. Reducing the
amount of available RAM from 32GB to 16GB for KMC
results in about 10 percent slow-down.

The HG02057 data (Table 3) are quite challenging, con-
cerning their sheer volume. BFCounter was not tested
here, since the experiments would take literally weeks. Jel-
lyfish suffers from rapidly growing RAM usage for larger
k, and for k = 31 it needs 86GB of memory. On the
other hand, KMC can handle the dataset in 32GB or
even 16GB of RAM, no matter the k. In the runs with
halved memory, KMC is (again) only by about 10 per-
cent slower than with 32GB, and requires a few percent
more disk space. We admit that Jellyfish is usually faster
on this dataset than KMC-32GB, by about 10–20 per-
cent. The penalty in RAM usage is severe though; in the
Quake-compatible mode Jellyfish couldn’t properly finish
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Table 3 k-mers counting results for Homo sapiensHG02057 individual (208GB FASTQ file or 6 gzipped FASTQ files of
total size 65.9GB)

k = 22 k = 28 k = 40 k = 55
Algorithm Space Time Space Time Space Time Space Time

Classic counters

32-core server

Jellyfish 27/ 0 1,375 75/ 0 1,433 — —

Jellyfish1 27/ 0 1,375 21/ 53 2,404 — —

DSK 6/168 8,683 6/156 9,073 6/195 13,172 6/197 9,409

DSKgz 6/168 10,125 6/156 10,579 6/195 14,569 6/197 10,987

KMC 32/130 1,221 32/220 1,706 32/341 2,486 32/391 2,722

KMC 16/134 1,376 16/234 1,872 16/343 2,664 16/405 2,967

KMCgz 32/130 1,249 32/219 1,505 32/342 2,304 32/391 2,597

KMCgz 16/134 1,195 16/234 1,732 16/343 2,479 16/403 2,909

6-core PC

DSK 6/168 22,963 6/156 23,512 6/195 37,958 6/197 28,681

DSKgz 6/168 21,688 6/156 22,061 6/195 36,328 6/197 26,584

KMC 11/137 2,939 11/234 3,782 11/343 6,133 11/405 7,770

KMCgz 11/136 2,623 11/235 4,041 11/343 6,306 11/405 7,020

Quake-compatible counters

32-core server

Jellyfish 51/ 0 2,426 59/126 2,503∗ — —

KMC 32/388 2,612 32/468 3,011 32/537 3,541 32/542 3,546

KMC 16/402 2,990 16/468 3,405 16/539 4,300 16/552 4,175

KMCgz 32/387 2,409 32/468 2,860 32/537 3,370 32/536 3,357

KMCgz 16/400 2,760 16/468 3,285 16/498 4,083 16/552 4,038

6-core PC

KMC 11/404 6,625 11/469 7,741 11/539 9,673 11/552 11,135

KMCgz 11/403 6,783 11/468 8,034 11/539 9,764 11/553 9,775

Test methodology and column description are just as for Table 2. The asterisk sign (for Jellyfish) denotes that two separate databases were constructed by Jellyfish
due to the memory limit of the machine (128GB RAM) and Jellyfish reported that to merge these databases it needs more RAM, so these times are underestimated.

some runs on the server machine with 128GB of RAM,
i.e., produced two output files and was unable to merge
them in the available memory (the corresponding results
are marked with an asterisk). The analogous weakness of
KMC, using up to 553GB of temporary disk space, is less
painful (not only disk space is much cheaper than inter-
nal memory, but also adding a disk to the system is usually
easier and not so limited as expanding RAM). We note
that Jellyfish’s problems with memory are partly related to
its dependence on the estimate of the number of unique
k-mers. Jellyfish works fastest when the whole hash table
it needs fits the RAM memory. Alas, it requires know-
ing (approximately) the number of unique k-mers. If the
specified parameter is too small, Jellyfish creates several
temporary files on disk, which are at the end merged; an
operation not only time-consuming, but also demanding
in memory, as our experiment showed. Again, for this

dataset DSK may be a tool of choice on a less powerful
(e.g., laptop) computer, since it uses only 6GB of RAMand
usually less disk space than KMC (which is at least 4 times
faster though).
On the smallest of the tested datasets, C. elegans

(Table 4), our tool, KMC, cannot fully spread its wings
and achieve better results than Jellyfish. In the amount
of used RAM memory they are comparable, with 21–
26GB used by Jellyfish, slightly growing with chosen k,
and (selectable) 16GB or 32GB spent by KMC. In speed,
Jellyfish was in most cases faster by 10–30 percent than
KMC (but the speed varied somewhat; for more results
see Additional file 1: Table S2). BFCounter used here the
least amount of RAM memory (4GB) but was about 40
times slower than KMC and Jellyfish. DSK used 5GB of
RAM and less disk space than KMC, but was a few times
slower than KMC and Jellyfish.
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Table 4 k-mers counting results for Caenorhabditis elegans (16.4GB FASTQ file or 2 gzipped FASTQ files of total size
4.6GB)

k = 22 k = 28 k = 40 k = 55
Algorithm Space Time Space Time Space Time Space Time

Classic counters

32-core server

BFCounter 4/ 0 10,407 Failed Failed Failed

Jellyfish 21/ 0 88 22/ 0 89 — —

DSK 5/13 493 5/13 458 5/16 647 5/16 481

DSKgz 5/13 587 5/13 564 5/16 761 5/16 592

KMC 32/10 105 32/18 115 32/27 185 32/31 191

KMC 16/11 93 16/18 93 16/27 163 16/32 160

KMCgz 32/10 134 32/18 138 32/27 199 32/31 203

KMCgz 16/11 119 16/18 121 16/27 195 16/32 182

6-core PC

DSK 5/13 1,307 5/13 1,215 5/16 2,073 5/16 1,597

DSKgz 5/13 1,268 5/13 1,151 5/16 2,017 5/16 1,518

KMC 11/11 274 11/18 343 11/27 507 11/32 553

KMCgz 11/11 233 11/18 333 11/27 514 11/32 542

Quake-compatible counters

32-core server

BFCounter 4/ 0 10,349 4/ 0 9,527 4/ 0 8,213 4/ 0 6,689

Jellyfish 24/ 0 143 25/ 0 132 — —

KMC 32/31 173 32/37 179 32/42 245 32/43 243

KMC 16/32 166 16/37 154 16/43 212 16/44 214

KMCgz 32/31 184 32/37 188 32/43 247 32/43 249

KMCgz 16/32 168 16/37 165 16/43 218 16/44 230

6-core PC

KMC 11/32 562 11/37 635 11/43 750 11/44 784

KMCgz 11/32 555 11/37 627 11/43 749 11/44 772

As expected, KMC uses more time and disk space in
the Quake-compatible counter mode, but in most cases
these differences are by a factor smaller than 2. With
growing k, the computational resources increase (until k
becomes quite close to the read length), in accordance to
the pattern demonstrated in Figure 6.
The comparisons with other tools were run on our

stronger machine, but KMC is also tested on a PC, where
11GB of RAM was always used. It is about 3 times slower
and uses a comparable amount of disk space.
Figure 6 presents the computation time (red lines)

and the used disk space (blue lines) for C. elegans and
HG02057, for varying k. The read length r for both
datasets is 100. On the charts, the solid lines are for
the occurrence count mode and the dashed lines for the
Quake-compatible mode. The statistics were gathered for
counts at least 2 in the former and at least 2.0 in the latter

mode. We focus on the case of C. elegans (a), although
similar observations pertain to the other dataset. Not
surprisingly, the Quake-related mode is more demand-
ing in computation time and disk space, but the relative
gap diminishes with growing k. The time grows suddenly
when k exceeds thresholds 32 and 64, as more machine
words are then needed to store a whole k-mer. As k
was approaching r, KMC worked faster and in less space,
because the number of k-mers per read was diminish-
ing relatively fast. Another clear observation is that the
processing time and used disk space are closely related;
more precisely, the overall time and the amount of I/O are
closely related in our algorithm.
It may also be an interesting question how the process-

ing time and the amount of used disk space in KMC vary
with different specified amounts of RAM (i.e., if it pays
to give it more RAM when it is available). The results,
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Figure 6 The KMC processing time (red lines) and used disk space (blue lines) as a function of k for (a) C. elegans dataset, (b) HG02057
dataset. The solid lines are for classic counters, the dashed lines for Quake-compatible counters.

presented in Figure 7, concern the HG02057 dataset in
gzipped input representation, for k = 40 and in the classic
counters mode. Using more than 32GB of RAM is even
detrimental for the KMC speed, although the loss is slight
up to 80GB (becomes somewhat more significant with
96GB).What is perhaps more important practically, using
24GB of RAM is almost as good as 32GB. Another obser-
vation is that more RAM translates into less disk space
needed, but this effect is mild (about 6 percent difference
between the extreme values).
A related experiment, on the same dataset, concerned

the impact of the number of hard disks available in
the PC test machine (Figure 8). While finding a pre-
cise formula would be difficult and dependent on many
factors (gzipped or non-gzipped input, standard or
Quake-compatible counters, etc.), this experiment clearly
shows that using more than one disk is beneficial, and
3 disks reduce the overall processing time sometimes
by even more than 50% compared to a single disk. This
observation confirms that the overall KMC performance
strongly depends on the I/O (sub)system and supplying
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Figure 7 HG02057 (gzipped) dataset, k = 40, classic counters.
The KMC processing time (red line) and used disk space (blue line) as
a function of allowed RAMmemory.

the platform with SSD disk(s), with approximately 3 times
faster transfer rates and 2 orders of magnitude shorter
access times, should give an extra boost.
The architecture of KMC fits quite well the MapReduce

(MR) paradigm [11], widely used in (but not limited to)
cloud computing. Using this framework directly would be
inefficient for the k-mer counting problem, due to enor-
mous I/O and communication costs. In KMC the k-mer
counting threads make use of the available RAMmemory,
and once their buffers are filled up, they sent statistics onto
disk. Hence, these threads resemble the Combiner func-
tion in MR, which typically digests (“reduces”) the data
produced by the Map function and outputs them to inter-
mediate file(s). The k-mer statistics from disk are read and
processed by other, merging, threads, making an analogy
to the Reduce function in MR.

Conclusion
High utilization of available resources is the key to
obtaining competitive algorithms. Even home computers,
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Figure 8 HG02057 (gzipped) dataset, classic counters. Influence
of the no. of HDDs on the processing time: 3 HDDs (green line), 2
HDDs (blue line), and 1 HDD (red line).
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equipped with multi-core CPUs, several gigabytes of
RAM and a few fast TB-scale hard disks get power-
ful enough to be applied for real bioinformatics tasks.
Our k-mer counter, KMC, being an external and paral-
lel algorithm, is capable to find exact k-mer statistics on
short-read human genomic collection with about 30-fold
coverage in less than 40 minutes on a standard 6-core
PC with 16GB of RAM and 3 hard disks, and on long-
read human genomic collection with a similar coverage
in less than 70 minutes, for k = 28 in both tests. Using
a more powerful machine reduces the times more than
twice. Even in a demanding scenario (Quake-compatible
counters, k = 70) our software works in less than 3 hours
on the PC.

Endnotes
aThese functionalities of our tool are available via an

API, whose detailed description is contained in Additional
file 1.

bOur tool handles both FASTQ and FASTA input files.
For brevity, we however refer throughout the paper only
to the (more complicated of the two) FASTQ format.

cAbout 1/4 of all k-mers start with A and also about 1/4
of all k-mers end with T, and it is easy to note that for
these (and only these) k-mers their canonical forms start
with A. These two groups are not disjoint; their intersec-
tion, with exactly the k-mers having A as their first and
T as their last symbol, contains about 1/16 of all k-mers.
Taking all this into account we immediately obtain the
figure 7/16. Similarly, we can show that the distribution
of k-mers starting with base C, G and T is 5/16, 3/16 and
1/16. These numbers are different, since (roughly speak-
ing) the lexicographically greater the first k-mer’s symbol,
the lesser chance its canonical form will also start with the
same symbol.

dmemcpy is a popular function from the C language
standard library, which copies a number of bytes from one
memory location to another.

eUsed in the experiments in [7], under a mistaken name
NA19240.

Additional files

Additional file 1: 1) KMC counter usage. 2) API. 3) Example of API
usage. 4) Database format. 5) Experimental results. 6) Automatic
setting of parameters in KMC. 7) Selected components of the KMC
algorithm (codes not shown in the main part of the paper).

Additional file 2: Source codes for 64-bit Windows platform
(Microsoft Visual C++ 2012 project).

Additional file 3: Source codes for 64-bit Linux platform (gcc project).
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