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Abstract

Purpose: A linear regression model with Gaussian-distributed error terms is the most
widely used method to describe the possible relationship between outcome and
predictor variables. However, there are some drawbacks of Gaussian errors such as
the distribution being mesokurtic. In many practical situations, the variables under
study may not be mesokurtic but are platykurtic. Hence, to analyze this sort of
platykurtic variables, a multiple regression model with symmetric platykurtic (SP)
distributed errors is needed. In this paper, we introduce and develop a multiple linear
regression model with symmetric platykurtic distributed errors for the first time.

Methods: We used the methods of ordinary least squares (OLS) and maximum
likelihood (ML) to estimate the model parameters. The properties of the ML
estimators with respect to the symmetric platykurtic distributed errors are discussed.
The model selection criteria such as Akaike information criteria (AIC) and Bayesian
information criteria (BIC) for the models are used. The utility of the proposed model
is demonstrated with both simulation and real-time data.

Results: A comparative study of symmetric platykurtic linear regression model with
the Gaussian model revealed that the former gives good fit to some data sets. The
results also revealed that ML estimators are more efficient than OLS estimators in
terms of the relative efficiency of the one-step-ahead forecast mean square error.

Conclusions: The study shows that the symmetric platykurtic distribution serves as
an alternative to the normal distribution. The developed model is useful for
analyzing data sets arising from agricultural experiments, portfolio management,
space experiments, and a wide range of other practical problems.

Keywords: Maximum likelihood; Multiple linear regression model; Simulation;
Symmetric platykurtic distribution
Introduction
Regression analysis is one of the most commonly used statistical methodologies in

many branches of science and engineering used for discovering functional relationships

between variables. The most typical example of regression analysis is multiple linear

regression modeling, which is used for predicting values of one or more response vari-

ables from any factor of interest, the independent variables. It has received applications

in almost every area of science, engineering, and medicine. Comprehensive accounts of

the theory and applications of the linear regression model are discussed in Seber [1],

Montgomery et al. [2], Grob [3], Sengupta and Jammalamadaka [4], Seber and Lee [5],

Weisberg [6], and Yan and Su [7]. This technique is usually based on a statistical
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model in which the error terms are assumed to be independent and identically distrib-

uted random variables, whose distribution is considered to be multivariate normal with

a zero mean vector and a positive definite covariance matrix [8]. However, in many dis-

ciplines, scientific research based on empirical studies or theoretical reasoning provided

support for the presence of skewness or heavy tails in the distribution of the error

terms. The departures from normality may be caused also by the presence of outlying

values in the responses. Examples can be found, amongst others, in Fama [9] and

Sutton [10]. For these reasons, several researchers proposed to perform multivariate re-

gression analysis using a model that assumes a different parametric distribution family

for the error terms.

Zeckhauser and Thompson [11] studied on a linear regression model with power dis-

tributions. Zellner [12] and Sutradhar and Ali [13] studied on a regression model with

a multivariate t error variable. Tiku et al. [14-16] investigated a linear regression model

with symmetric innovations, discussed a first-order autoregressive model with symmet-

ric innovations, and presented a linear model with t distribution, respectively. Sengupta

and Jammalamadaka [17] studied on linear models. Liu and Bozdogan [18] studied

on power exponential (PE) multiple regression. Wong and Bian [19,20] studied on

multiple regression coefficients in a linear model with errors being Student's

t distribution and a linear regression model with underlying distribution being a

generalized logistic distribution, respectively. Liu and Bozdogan [21] studied on

multivariate regression models with PE random errors under various assumptions.

Soffritti and Galimberti [22] discussed a multivariate linear regression model under

the assumption that the error terms follow a finite mixture of normal distributions.

Jafari and Hashemi [23] studied on linear regression with the error term of skew-

normal distribution. Jahan and Khan [24] investigated the g-and-k distribution as

the underlying assumption for the distribution of error in a simple linear regres-

sion model. Bian et al. [25] studied a multiple linear regression model with under-

lying Student's t distribution.

No serious attempt is made to develop and analyze multiple regression models with

symmetric platykurtic (SP) errors. For this reason, to achieve more flexibility in statis-

tical modeling and model selection, and to robustify many multiple statistical proce-

dures, the purpose of this paper is to introduce and develop a multivariate linear

regression model for conditions in which the distribution of error terms is assumed to

be independent and identically distributed SP random errors with mean 0 and constant

variance σ2.

Model description

The multiple regression model assumes a linear (in parameters) relationship between a

dependent variable Y = (y1, y2,…, yn) ' and a set of independent variables X
0
i ¼

xi0; xi1; xi2;…; xikð Þ, where the first regressor xi0 = 1 is a constant and i = 1, 2,…, n. The

model of interest is the standard linear regression model of the following form:

yi ¼ β0 þ β1xi1 þ⋯þ βkxik þ εi i ¼ 1; 2;…; nð Þ; ð1Þ

where yi is an observed dependent variable, xik are observed independent variables, β0,

β1,…, βk are unknown regression coefficients to be estimated, and εi are independently
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and identically distributed. Using linear algebra notation, model (1) may be written

alternatively in matrix form as

y ¼ Xβþ ∈; ∈eSP 0; σ2I
� �

: ð2Þ

In this model,
y
nx1

¼

y1
y2
:
:
:
yn

0BBBBBB@

1CCCCCCA ; X
nx kþ1ð Þ

¼

x10 x11 : : : x1k
x20 x21 : : : x2k
: : : :
: : : :
: : : :
xn0 xn1 : : : xnk

0BBBBBB@

1CCCCCCA ; β
kþ1ð Þx1

¼

β0
β1
:
:
:
βk

0BBBBBB@

1CCCCCCA ; ∈
nx1

¼

ε1
ε2
:
:
:
εn

0BBBBBB@

1CCCCCCA ;

ð3Þ

where y is a column vector of n elements, X is an nx(k + 1)(k + 1 < n) nonrandom de-

sign matrix of covariates (with its first column having all elements equal to 1, the sec-

ond column being filled by the observed values of x1, the (k + 1)th column being filled

by the observed values of xk), β is a column vector of the (k + 1) elements, σ is an un-

known scale parameter, and ∈ is an nx1 column vector of error terms with zero mean

and constant variance σ2I.

Model assumptions

In order to complete the description of the model, some assumptions about the nature

of the errors are necessary. It is assumed that the errors are independent and identically

distributed (i.i.d.) random variables whose distribution is assumed to be two-parameter

SP rather than normal, with zero mean and a positive definite variance-covariance

matrix σ2I of dimension nxn, that is

εi eMSP 0; σ2I
� �

: ð4Þ

These assumptions are summarized in the matrix vector form as

E ∈ð Þ ¼ 0;Cov ∈ð Þ ¼ E ∈∈0ð Þ ¼ σ2 I
nxn

; ð5Þ

where the notation E stands for the expected value and Cov represents an nxn

variance-covariance matrix. The vector 0 is a column vector with n zero elements, and

I is an identity matrix of order nxn. The parameter σ2 is unspecified, along with the

vector parameter β. The elements of β are real-valued, while σ is positive. The covari-

ates are either nonrandom or are independent of the errors. E(y) = Xβ, and Cov(y) = σ2I.

We shall use the triplet (y,Xβ,σ2I) for linear model (2).

Article headings

The manuscript is organized in eight sections. The ‘Introduction’ section frames the ob-

jective of the paper and reviews related literatures. In the ‘Properties of the two param-

eter symmetric platykurtic distribution’ section, we introduced the two-parameter SP

distribution, in notation SP(μ,σ). We derived the maximum likelihood (ML) estimators

in the ‘Maximum likelihood estimation of the model parameters’ section. In order to

obtain numerical solutions to the ML estimate problem, the Newton–Raphson (NR) it-

erative method has been used. In the ‘Properties of the estimators through simulation

study’ section, we show the asymptotic properties of the estimators. In the ‘Least
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squares estimation of the model parameters’ section, OLS estimation for the model pa-

rameters is studied. Comparison of MLE with OLS estimators and that of the proposed

model with the Gaussian model are done in the ‘Comparative study of the model’ sec-

tion. The ‘Application of the model’ section demonstrates the usefulness of the present

model on real data. Finally, the ‘Summary and conclusions’ section concludes the

paper.

Properties of the two-parameter symmetric platykurtic distribution

Even though the sample frequency curve has a symmetric and bell shape, it often has

fat tails than normal and the almost universally used Gaussian distribution may badly

fit the fat tails. The family of symmetric platykurtic distributions can best model these

features. The origin and genesis of this distribution is given by Srinivasa Rao et al. [26]

for analyzing statistical data that arise from biological, sociological, agricultural, and en-

vironmental experiments. It became popular thereafter and has received considerable

attention in the present time in modeling image segmentation and economic and finan-

cial data as a generalization of normal distribution (e.g., [27]). The probability density

function (pdf ) of such a family of distributions is

f r y=μ; σ; γð Þ ¼
2γ þ y−μ

σ

� �2h iγ
e−

1
2

y−μ
σð Þ2

Xγ
j¼0

γ
j

� �
2γð Þγ−j2jþ1

2Γ jþ 1
2

� �
σ

: ð6Þ

The distribution depends on three parameters μ, σ, and γ. These parameters can be
interpreted as follows:

� μ is a real number and may be thought of as a location measure.

� σ is positive and measures the dispersion or the scale of the distribution.

� γ is a kurtosis parameter which determines the shape of the distribution, taking

values γ = 0, 1, 2,…, n. If γ = 0, we retrieve the normal distribution N(μ,σ2). If we

take γ = 1, we get a two-parameter symmetric platykurtic distribution.

In this section, we briefly present a two-parameter symmetric platykurtic distribution

which is appropriate for data having kurtosis β = 2.52. A random variable Y is said to

follow a two-parameter SP distribution if the density function of Y is

f y=μ; σð Þ ¼
2þ y−μ

σ

� �2h i
e−

1
2

y−μ
σð Þ2

3σ
ffiffiffiffiffiffi
2π

p ; y ∈ℜ; ð7Þ

where −∞ < μ <∞ and σ > 0 are location and scale parameters, respectively. We denote

this by Y ~ SP(μ,σ2). The various shapes of the frequency curves are shown in Figure 1.

Some important properties of the random variable Y in a univariate context and

those which are needed for the simulation of the variate are as follows:



Figure 1 The probability density function curve for different values of μ and σ. (μ,σ) = (1,0.5), (0,1.5),
(0,1), and (2,0.75).
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1. The distribution function of the random variable Y specified by the probability

density function (7) is given by

FY yð Þ ¼ ∫
y

−∞

2þ t−μ
σ

� �2h i
e−

1
2

t−μ
σð Þ2

3σ
ffiffiffiffiffiffi
2π

p dt

which, on simplification, reduces to
FY yð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p ∫
y

−∞e
−1
2

t−μ
σð Þ2dt− y−μð Þe−1

2
y−μ
σð Þ2

3σ
ffiffiffiffiffiffi
2π

p ¼ F0 y; μ; σð Þ−F1 y; μ; σð Þ; ð8Þ

where F0 y; μ; σð Þ ¼ 1ffiffiffiffip ∫y−∞e
− t−μ

σð Þ2dt y∈ℜ, is the distribution function of the

σ 2π

normal random variable with mean μ and variance σ, while F1 yð Þ ¼ y−μð Þ
3σ
ffiffiffiffi
2π

p e−
1
2

y−μ
σð Þ2 ;

y∈ℜ is the nondistribution function (cannot be a cumulative density function)

since it is negative for Y > μ.

2. Numerical approximations for the two-parameter symmetric platykurtic cumulative

distribution function (CDF): Following Marsaglia's [28] approximation for standard

normal distribution who suggested a simple algorithm based on the Taylor series ex-

pansion, we have also approximated the values F(y;μ,σ) as follows. For standard nor-

mal distribution with arbitrary precision, Φ yð Þ ¼ 1
2 þ φ yð Þ yþ y3

3 þ y5

3:5 þ y7

3:5:7 þ…
� �

where φ and Φ is the pdf and CDF of the normal distribution with mean μ and

variance σ. Accordingly, after little algebra, the standard symmetric platykurtic CDF,

F(y), is approximated by

F yð Þ ¼ 1
2
þ f yð Þ −y

3
þ
Xn
i¼1

yi

i!!

 !
ð9Þ

where n = 1, 3, 5,…, n and n!! denotes the double factorial that is the product of
every odd number from 1 to n.
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3. The cumulant-generating function is the logarithm of the moment-generating

function:

g t; μ; σ2
� � ¼ μt þ 1

2
σ2t2 þ ln 1þ σtð Þ2

3

" #
: ð10Þ

The cumulants kn are extracted from the cumulant-generating function via differ-
entiation (at zero) of g(t). That is, the cumulants appear as the coefficients in the

Maclaurin series of g(t):

k1 ¼ g 0 0ð Þ ¼ μ; k2 ¼ g 00 0ð Þ ¼ 5σ2

3
; k3 ¼ g 000 0ð Þ ¼ ⋯ ¼ kn ¼ g nð Þ 0ð Þ ¼ 0 ð11Þ

That is, the first two cumulants are equal to the mean μ and the variance 5σ2
3 of

the two-parameter symmetric platykurtic distribution, respectively, whereas all

higher-order cumulants are equal to zero.

4. Hazard rate function of the distribution: The hazard function h(y;μ,σ) of the two-

parameter symmetric platykurtic distribution used in this paper is utilized to

characterize life phenomena and can be written as

h y; μ; σð Þ ¼
2þ y−μ

σ

� �2� �
φ y−μ

σ

� �
3σQ yð Þ þ y−μð Þφ y−μ

σ

� � ; ð12Þ

where φ is the pdf of the normal distribution with mean μ and variance σ,
whereas the Q-function Q(y) is the complement of the standard normal CDF, Q

(y) = 1 −Φ(y).

Recently, it was observed by Gupta and Gupta [29] that the reversed hazard

function plays an important role in the reliability analysis. The reversed hazard

function of the two-parameter SP(μ,σ) is

r y; μ; σð Þ ¼ f y; μ; σð Þ
SP y; μ; σð Þ ¼

2þ y−μ
σ

� �2� �
φ y−μ

σ

� �
3σΦ y−μ

σ

� �
− y−μð Þφ y−μ

σ

� � : ð13Þ

It is well known that the hazard function or the reversed hazard function

uniquely determines the corresponding probability density function.

5. Entropy: The entropy for a two-parameter symmetric platykurtic distribution random

variable y with probability density function f(y) on the real line is defined by

h yð Þ ¼ −529
1; 500

þ ln 3σ
ffiffiffiffiffiffi
2π

p� �
: ð14Þ

It can be recalled that the entropy for normal distribution is 1 ln 2πeσ2ð Þ.
2

If f and g are the probability distributions of symmetric platykurtic and
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normal distributions, respectively, then the relative entropy D(f||g) from

f to g is

D f jjgð Þ ¼ ∫∞−∞f yð Þ log f yð Þ
g yð Þ dy ¼ 0:7088: ð15Þ

This gives us a measure of something like the distance between the two

probability distributions, in the sense that the relative entropy is always positive,

is zero if and only if the two distributions are the same, and increases as the

distributions diverge. Some of the more important properties of the SP

distribution are summarized in the Appendix.
Maximum likelihood estimation of the model parameters

In this section, we consider the homoscedastic regression model (Y,Xβ,σ2I) with ε ~ SP

(0, σ2I). The unknown parameters of this model are the coefficient vector β and the

error variance σ2. We deal with the problem of ML estimation of these parameters,

which requires some fairly intricate mathematics, from the observables Y and X. The

MLEs of β and σ2 are the parameter values that maximize the likelihood function:

L y; β; σð Þ ¼ ∏n
i¼1 f yi=Xβ; σ

2I
� � ¼Yn

i¼1

2þ yi−x
0
i β

σ

� �2
" #

e
−
1
2

yi−x
0
iβ

σ

� �2

3σ
ffiffiffiffiffiffi
2π

p

¼ 3σ
ffiffiffiffiffiffi
2π

p� �−nYn
i¼1

2þ yi−x
0
i β

σ

� �2
 !

e
−
1
2

yi−x
0
i β

σ

� �22664
3775:

ð16Þ

The log-likelihood function in the i.i.d. case, ignoring the additive constants, equals
ℓ ¼ lnL y; β; σð Þ ¼ −
n
2
lnσ2 þ

Xn
i¼1

lnh
yi−x

0
i β

σ

� �

where h
yi−x

0
iβ

σ

� �
¼ 2þ yi−x

0
iβ

σ

� �2
" #

e
−
1
2

yi−x
0
i β

σ

� �2

:

ð17Þ

The unknown parameters of this model are the coefficient vector β and the error
variance σ2. The MLE is that θ̂MLE ¼ β̂; σ̂ 2
� �

which maximizes the log-likelihood. Tak-

ing the partial derivatives of the log of the likelihood with respect to the (k + 1)x1 vec-

tor β and nxn matrix of σ2I and setting the result equal to zero will produce (18) and

(19). The MLEs are the solutions of the equations:

∂ℓ
∂β

¼ −
1
σ

Xn
i¼1

xi
∂ lnh uð Þ

∂u

� �
u¼

yi−x
0
i β

σ

¼ 0 ¼ 1
σ

Xn
i¼1

xi
u3

2þ u2

� �
u¼

yi−x
0
i β

σ

¼ 0

							
							

ð18Þ

and
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∂ℓ
∂σ2

¼ −
n
2σ2

−
1
2σ2

Xn
i¼1

u
∂ lnh uð Þ

∂u

� �
u¼

yi−x
0
i β

σ

¼ 0 ¼ −
n
2σ2

þ 1
2σ2

Xn
i¼1

u4

2þ u2

� �
u¼

yi−x
0
i β

σ

¼ 0:

							
							

ð19Þ

Since there are no closed-form solutions to the likelihood equations, numerical
methods such as the Fisher scoring or Newton–Raphson iterative method can be used

to obtain the MLEs. The usual or standard procedure for implementing this solution is

to use the Newton–Raphson iteration method given by

θ nþ1ð Þ ¼ θ nð Þ− H nð Þ
� �−1

S nð Þ; θ ¼ β; σ2
� �0

; ð20Þ

where H is the matrix of the second derivative and S is the vector of the first derivative

of the log-likelihood function both evaluated at the current values of the parameter

vector θ.

Here we begin with some starting value, say θ(0), and improve it by finding some bet-

ter approximation θ(1) to the required root. This procedure can be iterated to go from

a current approximation θ(n) to a better approximation θ(n+1).

Variance-covariance matrix

To obtain the asymptotic variances and covariance of the estimates, it is required to

construct the Hessian matrix of the log-likelihood. The negative expected values of the

second-order partial derivatives of the log-likelihood equations (18) and (19) can be

used to estimate the asymptotic covariance matrix of parameter estimates and can be

found as follows. Each summand in the right-hand side of (19) has zero expectation.

Therefore,

E
∂ℓ
∂β

� �
∂ℓ
∂β

� �0" #
¼ 1

σ2

Xn
i¼1

xixi
0∫∞−∞

∂ lnh uð Þ
∂u

� �2
					
u¼

yi−x
0
iβ

σ

:
1
σ
h

yi−x
0
iβ

σ

� �
dyi

¼ 1
σ2

Xn
i¼1

xixi
0∫∞−∞

∂ lnh uð Þ
∂u

� �2

h uð Þdu

¼ IμX
0X;

ð21Þ

where Iμ ¼ 1
σ2

∫∞−∞
∂ lnh uð Þ

∂u

� �2

h uð Þdu ¼ 1
σ2

∫∞−∞
u6

u2 þ 2
e
−
1
2
u2

du ¼ 4:934
σ2

:
ð22Þ

Further,
E
∂ℓ
∂β

� �
∂ℓ
∂σ2

� �
 �
¼ 1

2σ3
Xn
i¼1

xi∫∞−∞u
∂ lnh uð Þ

∂u

� �2
					
u¼

yi−x
0
iβ

σ

:
1
σ
h

yi−x
0
iβ

σ

� �
dyi

¼ 1
2σ3

Xn
i¼1

xi∫∞−∞u
∂ lnh uð Þ

∂u

� �2

h uð Þdu ¼ 0

ð23Þ

as the integrand in the last expression is an odd function of u, that is, making use of

the fact that the integrand of the off-diagonal term is an odd function of u.
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Finally,

E
∂ℓ
∂σ2

� �2
" #

¼ n2

4σ4
þ n
2σ4

Xn
i¼1

E u
∂ lnh uð Þ

∂u

� �					
u¼

yi−x
0
iβ

σ

264
375

þ 1
4σ4

Xn
i¼1

Xn
j¼1

E u
∂ lnh uð Þ

∂u

� �
u¼

yi−x
0
iβ

σ

: u
∂ lnh uð Þ

∂u

� �							
							u¼ yi−x

0
iβ

σ

264
375

¼ n2

4σ4
þ n2

2σ4
∫∞−∞u

∂h uð Þ
∂u

duþ n2−n
4σ4

∫∞−∞u
∂h uð Þ
∂u

du

� �2

þ n
4σ4

∫∞−∞ u
∂ lnh uð Þ

∂u

� �2

:h uð Þdu:

Simplification of the expression of this term is aided by the identity
∫∞−∞u
∂h uð Þ
∂u

du ¼ −1 ¼ n2

4σ4
þ n2

2σ4
−1ð Þ þ n2−n

4σ4
−1ð Þ2 þ n

4σ4
∫∞−∞ u

∂ lnh uð Þ
∂u

� �2

:h uð Þdu ¼ nIσ2

ð24Þ

where Iσ2 ¼ 1
4σ4

∫∞−∞ u
∂ lnh uð Þ

∂u

� �2

:h uð Þdu−1
" #

¼ 1
4σ4

∫∞−∞
u8

u2 þ 2
e
−
1
2
u2

du−1

264
375

¼ 1
4σ4

27:731−1½ � ¼ 26:731
4σ4

¼ 6:68275
σ4

:

ð25Þ

Therefore, the information matrix for θ = (β,σ2)' is
I θð Þ ¼ IμX 0X 0
0 nIσ2

� �
: ð26Þ

The information for β is IμX'X. Therefore, the design issues can be addressed with

reference to the matrix X'X - just as in the normal case. The scalar Iμ is equal to 4:934
σ2

(greater than σ−2 when the components of y are normally distributed), whereas the sca-

lar Iσ2 is equal to 6:68275
σ4 (greater than σ−4 when the components of y are normally dis-

tributed). The large sample variances and covariance of the estimates can be

approximated by inverting the usual symmetric information matrix (26):

Var θð Þ ¼ I θð Þ½ �−1 ¼ IμX 0X
� �−1

0
0 nIσ2ð Þ−1

 !
ð27Þ

Thus, the square root of the elements on the diagonal of this matrix will give us the
standard errors associated with the coefficients.

Simulation and results

The proposed approach was evaluated through Monte Carlo experiments in which arti-

ficial data sets were generated from model (2) using Wolfram Mathematica 9. To facili-

tate exposition of the method of estimation, a multiple data set with two independent

variables and one dependent variable are simulated from a model with prespecified pa-

rameters for various sample sizes n = 100, 1,000, 3,000, 5,000, 10,000. (The sample size
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in this case, 10,000, is relatively large, and so finite sample bias is less of an issue.) The

dependent variable (Y) is simulated from the symmetric platykurtic distribution with

mean 0 and variance 1 while the two predictor x1 and x2 variables are generated from

normal and lognormal distributions, respectively, with the prespecified mean and vari-

ance using the following simulation protocol:

x1 ¼ RandomReal NormalDistribution 10; 5½ �½ �;
x2 ¼ RandomReal LogNormalDistribution 0; 3½ �½ � ð28Þ

and use as explanatory variables for the regression model. Without loss of generality,

we considered the values of the model parameters as

β0
β1
β2

0@ 1A ¼
4
2
3

0@ 1Aand
μ
σ

� �
¼ 0

1

� �
: ð29Þ

Summary statistics of estimations of the regression model with symmetric platykurtic
distributed errors using the ML procedure are presented in Table 1.

The numerical results in Table 1 suggest that as the sample size increases, the esti-

mates of the parameters become more precise. The ML method provides good esti-

mates of the underlying model not only of the regression coefficients but also of the
Table 1 Summary of ML estimation of the regression model for the simulated data

Sample
size (n)

Parameter Estimate Standard
error

Wald 95% confidence limits Chi-square Pr > chi-
squareLower Upper

100 β0 4.0747 0.2515 3.5817 4.5677 262.46 <.0001

β1 1.9914 0.0216 1.9491 2.0337 8,510.03 <.0001

β2 2.9998 0.0010 2.9978 3.0019 8,263,598 <.0001

σ 1.0668 0.0754 0.9288 1.2254

1,000 β0 3.8958 0.0696 3.7593 4.0323 3,129.59 <.0001

β1 2.0062 0.0065 1.9935 2.0189 96,198.0 <.0001

β2 2.9999 0.0001 2.9997 3.0000 1.408E9 <.0001

σ 1.0242 0.0229 0.9803 1.0701

3,000 β0 4.0504 0.0407 3.9707 4.1301 9,916.51 <.0001

β1 1.9938 0.0036 1.9867 2.0009 303,055 <.0001

β2 2.9999 0.0000 2.9999 3.0000 3.731E9 <.0001

σ 1.0037 0.0130 0.9786 1.0294

5,000 β0 4.0012 0.0315 3.9394 4.0630 16,095.1 <.0001

β1 2.0013 0.0028 1.9957 2.0068 506,637 <.0001

β2 3.0000 0.0000 3.0000 3.0000 6.34E10 <.0001

σ 0.9988 0.0100 0.9794 1.0186

10,000 β0 4.0052 0.0220 3.9620 4.0483 33,060.4 <.0001

β1 1.9981 0.0020 1.9942 2.0019 1,031,236 <.0001

β2 3.0000 0.0000 3.0000 3.0000 9.55E11 <.0001

σ 0.9850 0.0070 0.9714 0.9987
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correlation matrix. The fitted linear regression model with symmetric platykurtic dis-

tributed error terms to the simulated data, based on the sample of size 10,000, is

Ŷ ¼ 4:0052þ 1:9981X1 þ 3:000X2: ð30Þ

Standard errors of the estimates were estimated by the square root of the diagonal el-
ements of the inverse of the Hessian of the log-likelihood function. Thus, the estimated

standard errors are

s:e: β̂0

� �
¼ 0:0220; s:e: β̂1

� �
¼ 0:0020; s:e: β̂2

� �
¼ 0:000; and s:e: σ̂ð Þ ¼ 0:0070: ð31Þ

Properties of the estimators through simulation study

If certain regularity conditions of the density are met, the MLEs are most attractive be-

cause they possess many asymptotic or large sample properties. Derivations of the

asymptotic properties require some fairly intricate mathematics. The three properties

of the regular densities (moments of the derivatives of the log-likelihood) are used in

establishing the properties of MLEs. The properties of the ML estimators are as

follows.

Consistency

One of the basic properties of a good estimator is that it differs from a true value by a

very small amount as n becomes large. This implies that we can reach the exact value

of θ by indefinitely increasing the sample size. Mathematically, it is expressed as

p limθ̂ ¼ θ: ð32Þ
More specifically, a consistent estimator should not only be unbiased, but it should
also have a variance which is as small as possible. This leads to two definitions:

E θ̂
� �

→n→∞ θ and

V θ̂
� �

→n→∞ 0
ð33Þ

From (27), it is clear that the variance tends to zero as n→∞ in each case, so we

conclude that the estimators are consistent since they are composed of i.i.d.

observations.

Asymptotic normality

Greene's derivation of the asymptotic normality of the MLE applies here. The first de-

rivative of the log-likelihood evaluated at the MLE equals zero. So

S θ̂
� �

¼ 0: ð34Þ

Expand this set of equations in a Taylor series around the true parameters θ0 using
the mean value theorem to truncate the Taylor series at the second term:

S θ̂
� �

¼ S θ0ð Þ þ H �θ
� �

θ̂−θ0
� �

¼ 0: ð35Þ
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The Hessian is evaluated at a point �θ that is between θ̂ and θ0 �θ ¼ wθ̂ þ 1−wð Þθ0
h

for some 0 < w < 1� . We then rearrange this function and multiply the result byffiffiffi
n

p
to obtainffiffiffi
n

p
θ̂−θ0
� �

¼ −H �θ
� �� −1 ffiffiffi

n
p

S θ0ð Þ�  ð36Þ

ffiffiffip ^
� � ffiffiffip ^

� �

Using (32), the probability limits of n θ−θ and n θ−θ go to zero because of

the consistency of θ̂ (i.e., p lim θ̂−θ
� �

¼ 0 and p lim θ̂−�θ
� �

¼ 0). The second derivatives

are continuous functions. Therefore, if the limiting distribution exists, then

ffiffiffi
n

p
θ̂−θ0
� �

→
d

−H θ0ð Þ½ �−1 ffiffiffi
n

p
S θ0ð Þ� 

: ð37Þ

By dividing H(θ0) and S(θ0) by n, we obtain
ffiffiffi
n

p
θ̂−θ0
� �

→
d

−
1
n
H θ0ð Þ


 �−1 ffiffiffi
n

p
�S θ0ð Þ�  ð38Þ

We may apply the Lindeberg-Levy central limit theorem to
ffiffiffi
n

p �S θ0ð Þ½ � because it is
ffiffiffi
n

p
times the mean of a random sample. By virtue of V Si θð Þ½ � ¼ −E 1

nH θð Þ� 
, the limit-

ing variance of
ffiffiffi
n

p �S θð Þ½ � is −E 1
n H θð Þ� 

, so

ffiffiffi
n

p
�S θð Þ→d N 0;−E

1
n
H θð Þ


 �� �
ð39Þ

By virtue of E Si θð Þ½ � ¼ 0; p lim − 1H θð Þ�  ¼ −E 1H θð Þ� 
. This result is a constant
n n

matrix, so we can combine results to obtain

−
1
n
H θð Þ


 �−1 ffiffiffi
n

p �S θð Þ→d N 0; −E
1
n
H θð Þ


 �� �−1

−E
1
n
H θð Þ


 �� �
−E

1
n
H θð Þ


 �� �−1
" #

or

ffiffiffi
n

p
θ̂−θ
� �

→d N 0; −E
1
n
H θð Þ


 �� �−1
" #

:

ð40Þ

It follows that the MLEs are asymptotically normal with asymptotic distribution:
θ̂eN θ; I θð Þf g−1� 
: ð41Þ

Asymptotic efficiency

The information matrix forms a tool of interest to verify efficiency, viz. the attainment

of the information limit to the variance of the estimator. An estimator whose variance

is as small as the Cramer-Rao lower bound when the sample size tends to infinity is



Table 2 Nonlinear OLS summary of residual errors

Equation DF model DF error SSE MSE Root MSE R-square Adjusted R-square

y 3 9996 16650.3 1.6657 1.2906 1.0000 1.0000

DF degrees of freedom, SSE sum of the squared errors.
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called asymptotically efficient. This means that an estimator which reaches 100% effi-

ciency only in the n→∞ limit is called asymptotically efficient. It can be shown that

the Cramer-Rao lower bound for θ̂ ¼ β̂0; β̂1; β̂2

� �0
and σ̂ 2, respectively, are

Var θ̂
� �

≥
1

−nE
∂2 lnf yð Þ

∂θ2

� � ¼ IμX
0X

� �−1
and

Var σ̂ 2ð Þ≥ 1

−nE
∂2 lnf

∂σ2ð Þ2
 ! ¼ nIσ2ð Þ−1; ð42Þ

where Iμ and Iσ2 are as defined in (22) and (25), respectively.

This means that any unbiased estimator that achieves this lower bound is efficient

and no better unbiased estimator is possible. Now look back at the variance-covariance

matrix (27). It is interesting to note that the variances of the estimators in the variance-

covariance matrix do asymptotically coincide with the Cramer-Rao lower bound (42).

This means that our MLEs are 100% asymptotically efficient. The asymptotic variance

of the MLE is, in fact, equal to the Cramer-Rao lower bound for the variance of a con-

sistent and asymptotically normally distributed estimator [30].

Invariance

Last, the invariance property is a mathematical result of the method of computing

MLEs; it is not a statistical result as such. If it is desired to analyze a continuous and

continuously differentiable function of an MLE, then the function of θ̂ will, itself, be

the MLE since the MLE is invariant to one-to-one transformations of θ.

These four properties explain the prevalence of the ML technique. The second is a

particularly powerful result. The third greatly facilitates hypothesis testing and the con-

struction of interval estimates. The MLE has the minimum variance achievable by a

consistent and asymptotically normally distributed estimator.

Least squares estimation of the model parameters

The most widely used technique for estimating the unknown regression coefficients in

a standard linear regression model is undeniably the method of ordinary least squares

(OLS). The least squares estimates of β0, β1, and β2 are the values which minimize
Table 3 Nonlinear OLS parameter estimates

Parameter Estimate Approximate standard error t value Approximate Pr > |t|

β0 3.9598 0.0287 138.16 <.0001

β1 2.003412 0.00256 782.76 <.0001

β2 2.99998 0.000015 202,020 <.0001

Number of observations: used = 10,000, missing = 0; statistics for the system: objective = 1.6652; objective × N = 1665.2.



Table 4 Comparison of the OLS with ML estimators of the SP regression model

OLS MLE

β̂0 Bias −0.04016 0.0109

MSE 0.002436516 0.000914

β̂1 Bias 0.003412 −0.0022

MSE 1.81953E − 05 1.11E − 05

β̂2 Bias −1.7E − 05 0.0001

MSE 5.14E − 10 2E − 08
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SS ¼
Xn
i¼1

yi−β0−β1x1i−β2x2i
� �2

: ð43Þ

This leads to a closed-form expression for the estimated value of the unknown para-
metric vector β:

β̂ ¼ XTX
� �−1

XTy ¼ 1
n

Xn
1

xix
T

i

 !−1
1
n

Xn
1

xiyi

 !
: ð44Þ

Tables 2 and 3 summarize the results of the OLS estimation for a sample of size

10,000 using the same simulated observations obtained in the ‘Simulation and results’

section.

From Table 3, it is observed that the OLS estimates differ significantly from the ML

estimates and the ML estimators are closer to the true values of the parameters com-

pared to the OLS estimators.
Comparative study of the model
Comparison of estimators of the linear regression model

In this section, ML and OLS estimators are compared in fitting the multivariate linear

model with two-parameter symmetric platykurtic error terms. One-step-ahead forecast-

ing is commonly used to compare the performance of different models [31,32]. For
Table 5 Information criteria and model diagnostics of ML estimators of the parameters

Model Sample size (n) Information criterion Model diagnostics

AIC BIC RMSE

Symmetric platykurtic 100 −362.2424 −360.0588 0.16106

1,000 −3,097.2222 −3,095.2041 0.21222

3,000 −9,716.3881 −9,714.3821 0.19792

5,000 −15,524.364 −15,522.361 0.21167

10,000 −33,554.338 −33,552.336 0.18674

Normal 100 −3.9620 −1.7784 0.96601

1,000 17.3923 19.4103 1.00722

3,000 −58.9903 −56.9843 0.98972

5,000 −73.1305 −71.1269 0.99242

10,000 20.9714 22.9732 1.00090



Figure 2 Comparison of the SP linear model versus the N linear model using AIC.
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each estimation technique, bias and mean square error (MSE) are calculated for the

sample size of 10,000 where

MSE β̂
� �

¼ var β̂
� �

þ bias β̂
� �h i2

: ð45Þ

The computational result is presented in Table 4.

As we expect, the results reported in Table 4 show that ML estimators have both

smaller one-step-ahead forecast bias and less MSE than OLS estimators. This reveals

that ML estimators exhibit superior performance to OLS estimators. This confirms the

fact that deviations from normality cause OLS estimators to be poor estimators.

Comparison of the SP-LRM with the N-LRM

The linear regression model with symmetric platykurtic errors (SP-LRM) and linear re-

gression model with normal errors (N-LRM) were applied to the simulated data sets.

This produced parameter estimates β̂0; β̂1; β̂2; σ̂ Þ
�

for the model with SP errors and par-

ameter estimates β̂0; β̂1; β̂2; σ̂ Þ
�

for the model with N errors. The simulated multivariate

data are used to compare the performance of the linear regression model with symmetric

platykurtic error terms with that of the linear regression model with normal error terms. In

order to determine the best linear model among the fitted ones, we computed the Akaike

information criteria (AIC) and Bayesian information criteria (BIC) with model diagnostics

root-mean-square error (RMSE). Needless to say, the proposed model would be chosen as

the best model according to the minimum of AIC, BIC, and RMSE. The output of the simu-

lation study using various sample sizes is presented in Table 5.
Figure 3 Comparison of the SP linear model versus the N linear model using BIC.



Figure 4 Comparison of the SP linear model versus the N linear model using RMSE.
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Models with small values for the criterion are potential candidate models where it

can be seen that the SP distribution provides the best fit to the data. That is, both infor-

mation criteria and model diagnostics indicate that the linear model with symmetric

platykurtic distributed error terms consistently performed best across all the sample

sizes of the simulation. The fact that SP-LRM is superior to N-LRM is also consistently

noticed from Figures 2, 3, and 4.

Application of the model

As an illustration of the proposed methodology, we considered a real data set concerning

202 athletes collected at the Australian Institute of Sport, courtesy of Richard Telford and

Ross Cunningham [33]. It is also available within the package sn in R. The variables exam-

ined are body mass index (BMI), red cell count (RCC), white cell count (WCC), and

plasma ferritine concentration (PFC). The first is a biometrical variable, while the

remaining three concern blood composition. They are summarized in Table 6. We studied

the linear dependence of the biometrical variable on the blood composition variables.

We compute the skewness, kurtosis, and Jarque-Bera statistic to test the normality

hypothesis for the body mass index. The results are shown in Table 7. Several other sta-

tistics could be used to test normality, such as the modified Shapiro-Wilk statistic,

Anderson-Darling test, and Kolmogorov-Smirnov test. However, as the Jarque-Bera

statistic is one of the most powerful tests of normality, and the results of the other sta-

tistics are similar, we report only the results of the Jarque-Bera statistic and its corre-

sponding skewness and kurtosis. The 1% level of significance shown in the table leads

to rejection of the null hypothesis of normality for the body mass index.

Table 8 shows the results of fitting multiple regression models with symmetric platy-

kurtic distributed errors and Gaussian errors (SP-LRM and N-LRM) to the Australian

Institute of Sport data set using the maximum likelihood method of estimation. The

standard errors are the asymptotic standard errors based on the observed information

matrix given in (26).
Table 6 Variables of the Australian Institute of Sport data frame with 202 observations
Variables

Response variables Y = BMI

Independent variables

X1 = RCC

X2 =WCC

X3 = PFC



Table 7 Tests for departure from normality of the response variable (BMI)

Response variable Skewness Kurtosis Jarque-Bera statistic

BMI 1.174474881 2.65370385 36.85416*

*p < 1%.
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From Table 8, it is observed that the estimates differ slightly between the two models. Fol-

lowing Lachos et al. [34], we propose selecting the best fit between N-LRM and SP-LRM by

inspection of information criteria such as AIC and BIC (the preferred model is the one with

the smallest value of the criterion). The AIC and BIC values shown at the bottom of Table 8

indicate that the SP-LRM outperforms the N-LRM. Therefore, the fitted model for BMI is

Ŷ ¼ 4:7799þ 3:1472X1 þ 0:0899X2 þ 0:1988X3 ð46Þ

with the estimated standard errors

s:e: β̂0

� �
¼ 2:3617; s:e: β̂1

� �
¼ 0:4575; s:e: β̂2

� �
¼ 0:1018;

s:e: β̂3

� �
¼ 0:0337; and s:e: σ̂ð Þ ¼ 0:1918:

ð47Þ

Summary and conclusions
A multiple linear regression model generalizes the simple linear regression model by

allowing the response variable to depend on more than one explanatory variable. In this

paper, we have explored the idea of using a symmetric platykurtic distribution for ana-

lyzing nonnormal errors in the multivariate linear regression model. The symmetric

platykurtic distribution serves as an alternative to the normal distribution with platy-

kurtic nature. The maximum likelihood estimators of the model parameters are derived

and we found them feasible. Through simulation studies, the properties of these esti-

mators are studied. Traditional OLS estimation is carried out in parallel and the results

are compared. The simulated results reveal that the ML estimators are more efficient

than the OLS estimators in terms of the relative efficiency of one-step-ahead forecast

mean square error. A comparative study of the developed regression model with the

Gaussian model revealed that this model gives good fit to some data sets. The asymp-

totic properties of the maximum likelihood estimators are studied, and the large sample

theory with respect to regression coefficients is also presented. The utility of the pro-

posed model is demonstrated with real-time data. This regression model is much more

useful for analyzing data sets arising from agricultural experiments, portfolio manage-

ment, space experiments, and a wide range other practical problems. The calculations
Table 8 ML estimates of model parameters calculated from the real data set

Parameter N-LRM SP-LRM

Estimate SE Estimate SE

β̂0 4.7799 2.3617 4.7800 2.3382

β̂1 3.1472 0.4575 3.1472 0.4530

β̂2 0.08992 0.1018 0.0899 0.1008

β̂3 0.1988 0.0337 0.1989 0.0333

σ̂ 2.5133 0.1918 2.4883 0.1238

AIC (smaller is better) 407.0530 376.2918

BIC (smaller is better) 408.2227 378.4526
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in this paper make considerable use of a combination of three popular statistical pack-

ages: Mathematica 9.0, Matlab R2012b, and SAS 9.0.

Appendix
Summary of properties of two-parameter symmetric platykurtic distribution

1. Notation NS(μ, σ2)

2. Parameters μ ∈ ℜ−Mean locationð Þ
σ2 > 0−Variance squaredscaleð Þ

3. Support y ∈ℜ

4. PDF 2þ y−μ
σð Þ2

� 
e−

1
2

y−μ
σð Þ2

3σ
ffiffiffiffi
2π

p

5. CDF 1
σ
ffiffiffiffi
2π

p ∫y−∞e
−1
2

t−μ
σð Þ2dt− y−μð Þe−1

2
y−μ
σð Þ2

3σ
ffiffiffiffiffiffi
2π

p

6. Mean μ

7. Median μ

8. Mode μ

9. Variance 5
3 σ

2

10. Skewness 0

11. Kurtosis 2.52

12. Entropy −529
1500 þ ln 3σ

ffiffiffiffiffiffi
2π

p� �
13. MGF eμtþ

t2σ2
2 1þ σtð Þ2

3

h i
14. CF eμit−

1
2σ

2t2 1þ σitð Þ2
3

n o
15. CGF μt þ 1

2 σ
2t2 þ ln 1þ σtð Þ2

3

h i
nþ 3

2

� �
Γ nþ 1

2

� �26 37

16. Central moments μ2n ¼ 3

ffiffiffi
π

p64 752nþ1σ2n; evencentralmoments

μ2nþ1 ¼ 0; oddcentralmoments
17. Fisher information IμX 0X 0
0 nIσ2

� �
; Iμ ¼ 4:934

σ2 , Iσ2 ¼ 6:68275
σ4
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