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Abstract
The purpose of this paper is to study the strong convergence theorems of Moudafi’s
viscosity approximation methods for a nonexpansive mapping T in CAT(0) spaces
without the property P . For a contraction f on C and t ∈ (0, 1), let xt ∈ C be the unique
fixed point of the contraction x �→ tf (x)⊕ (1 – t)Tx; i.e.,

xt = tf (xt)⊕ (1 – t)Txt

and

xn+1 = αnf (xn)⊕ (1 – αn)Txn, n ≥ 0,

where x0 ∈ C is arbitrarily chosen and {αn} ⊂ (0, 1) satisfies certain conditions. We
prove that the iterative schemes {xt} and {xn} converge strongly to the same point x̃
such that x̃ = PF(T )f (x̃), which is the unique solution of the variational inequality (VIP)

〈––→̃xf x̃, –→xx̃〉 ≥ 0, x ∈ F(T ).

By using the concept of quasilinearization, we remark that the proof is different from
that of Shi and Chen in J. Appl. Math. 2012:421050, 2012. In fact, strong convergence
theorems for two given iterative schemes are established in CAT(0) spaces without
the property P .

Keywords: viscosity approximation method; nonexpansive mapping; variational
inequality; CAT(0) space; common fixed point

1 Introduction
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a
geodesic from x to y) is a map c from a closed interval [, l] ⊂ R to X such that c() = x,
c(l) = y, and d(c(t), c(t′)) = |t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When
it is unique, this geodesic segment is denoted by [x, y]. The space (X,d) is said to be a
geodesic space if every two points ofX are joined by a geodesic, andX is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X
is said to be convex if Y includes every geodesic segment joining any two of its points.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d) consists of three points
x, x, x in X (the vertices of �) and a geodesic segment between each pair of vertices
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(the edges of �). A comparison triangle for the geodesic triangle �(x,x,x) in (X,d) is a
triangle�(x,x,x) := �(x,x,x) in the Euclidean planeE such that dE (xi,xj) = d(xi,xj)
for all i, j ∈ {, , }.
A geodesic space is said to be a CAT() space if all geodesic triangles of an appropriate

size satisfy the following comparison axiom.
CAT(): Let � be a geodesic triangle in X and let � be a comparison triangle for �.

Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d(x, y) ≤ dE (x, y).

If x, y, y are points in a CAT() space and if y is the midpoint of the segment [y, y],
then the CAT() inequality implies

d(x, y) ≤ 

d(x, y) +



d(x, y) –



d(y, y). (CN)

This is the (CN)-inequality of Bruhat and Tits []. In fact (cf. [], p.), a geodesic space
is a CAT() space if and only if it satisfies the (CN)-inequality.
It is well known that any complete, simply connected Riemannianmanifold having non-

positive sectional curvature is a CAT() space. Other examples include pre-Hilbert spaces,
R-trees (see []), Euclidean buildings (see []), the complex Hilbert ball with a hyperbolic
metric (see []), and many others. Complete CAT() spaces are often called Hadamard
spaces.
It is proved in [] that a normed linear space satisfies the (CN)-inequality if and only if it

satisfies the parallelogram identity, i.e., is a pre-Hilbert space; hence it is not so unusual to
have an inner product-like notion in Hadamard spaces. Berg and Nikolaev [] introduced
the concept of quasilinearization as follows:
Let us formally denote a pair (a,b) ∈ X × X by

–→
ab and call it a vector. Then quasilin-

earization is defined as a map 〈·, ·〉 : (X ×X)× (X ×X)→R defined by

〈–→ab, –→cd〉 = 

(
d(a,d) + d(b, c) – d(a, c) – d(b,d)

)
(a,b, c,d ∈ X). ()

It is easily seen that 〈–→ab, –→cd〉 = 〈–→cd, –→ab〉, 〈–→ab, –→cd〉 = –〈–→ba, –→cd〉, and 〈–→ax, –→cd〉+ 〈–→xb, –→cd〉 = 〈–→ab, –→cd〉
for all a,b, c,d,x ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab, –→cd〉 ≤ d(a,b)d(c,d) ()

for all a,b, c,d ∈ X. It is known [, Corollary ] that a geodesically connected metric space
is a CAT() space if and only if it satisfies the Cauchy-Schwarz inequality.
In , Kakavandi and Amini [] introduced the concept of a dual space for CAT()

spaces as follows. Consider the map � :R×X ×X → C(X) defined by

�(t,a,b)(x) = t〈–→ab, –→ax〉, ()

where C(X) is the space of all continuous real-valued functions on X. Then the Cauchy-
Schwarz inequality implies that �(t,a,b) is a Lipschitz function with the Lipschitz semi-

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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norm L(�(t,a,b)) = |t|d(a,b) for all t ∈ R and a,b ∈ X, where

L(f ) = sup

{
f (x) – f (y)
d(x, y)

: x, y ∈ X,x �= y
}

is the Lipschitz semi-norm of the function f : X →R. Now, define the pseudometric D on
R×X ×X by

D
(
(t,a,b), (s, c,d)

)
= L

(
�(t,a,b) –�(s, c,d)

)
.

Lemma . [, Lemma .] D((t,a,b), (s, c,d)) =  if and only if t〈–→ab, –→xy〉 = s〈–→cd, –→xy〉 for all
x, y ∈ X.

For a complete CAT() space (X,d), the pseudometric space (R×X ×X,D) can be con-
sidered as a subspace of the pseudometric space (Lip(X,R),L) of all real-valued Lipschitz
functions. Also, D defines an equivalence relation on R × X × X, where the equivalence
class of t

–→
ab := (t,a,b) is

[t
–→
ab] =

{
s
–→
cd : t〈–→ab, –→xy〉 = s〈–→cd, –→xy〉 ∀x, y ∈ X

}
.

The set X* := {[t–→ab] : (t,a,b) ∈R×X×X} is a metric space with ametricD, which is called
the dual metric space of (X,d).
Recently, Dehghan and Rooin [] introduced the duality mapping in CAT() spaces and

studied its relation with subdifferential by using the concept of quasilinearization. Then
they presented a characterization of a metric projection in CAT() spaces as follows.

Theorem . [, Theorem .] Let C be a nonempty convex subset of a complete CAT()
space X, x ∈ X and u ∈ C. Then

u = PCx if and only if 〈–→yu, –→ux〉 ≥  for all y ∈ C.

Let C be a nonempty subset of a complete CAT() space X. Then the mapping T of
C into itself is called nonexpansive iff d(Tx,Ty) ≤ d(x, y) for all x, y ∈ C. A point x ∈ C is
called a fixed point of T if x = Tx. We denote by F(T) the set of all fixed points of T . Kirk
[] showed that the fixed point set of a nonexpansive mapping T is closed and convex.
A mapping f of C into itself is called contraction with coefficient α ∈ (, ) iff d(fx, fy) ≤
αd(x, y) for all x, y ∈ C. Banach’s contraction principle [] guarantees that f has a unique
fixed point when C is a nonempty closed convex subset of a complete metric space. The
existence of fixed points and convergence theorems for severalmappings inCAT() spaces
have been investigated by many authors (see also [–]).
In , Saejung [] studied the convergence theorems of the following Halpern’s iter-

ations for a nonexpansive mapping T : Let u be fixed and xt ∈ C be the unique fixed point
of the contraction x �→ tu⊕ ( – t)Tx; i.e.,

xt = tu⊕ ( – t)Txt , ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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where t ∈ [, ] and x,u ∈ C are arbitrarily chosen and

xn+ = αnu⊕ ( – αn)Txn, n≥ , ()

where {αn} ⊂ (, ). It is proved in [] that {xt} converges strongly as t →  to x̃ ∈ F(T)
which is nearest to u (x̃ = PF(T)u), and {xn} converges strongly as n→ ∞ to x̃ ∈ F(T) which
is nearest to u under certain appropriate conditions on {αn}, where PCx is a metric pro-
jection from X onto C.
In , Shi and Chen [] studied the convergence theorems of the followingMoudafi’s

viscosity iterations for a nonexpansive mapping T : For a contraction f on C and t ∈ (, ),
let xt ∈ C be the unique fixed point of the contraction x �→ tf (x)⊕ ( – t)Tx; i.e.,

xt = tf (xt)⊕ ( – t)Txt , ()

and x ∈ C is arbitrarily chosen and

xn+ = αnf (xn)⊕ ( – αn)Txn, n≥ , ()

where {αn} ⊂ (, ). They proved that {xt} defined by () converges strongly as t →  to
x̃ ∈ F(T) such that x̃ = PF(T)f (x̃) in the framework of a CAT() space satisfying the property
P , i.e., if for x,u, y, y ∈ X,

d(x,P[x,y]u)d(x, y)≤ d(x,P[x,y]u)d(x, y) + d(x,u)d(y, y).

Furthermore, they also obtained that {xn} defined by () converges strongly as n → ∞ to
x̃ ∈ F(T) under certain appropriate conditions imposed on {αn}.
All of the above bring us the following conjectures.

Question . Could we obtain the strong convergence of both {xt} and {xn} defined by
() and () respectively, in the framework of a CAT() space without the property P?

The purpose of this paper is to study the strong convergence theorems of the iterative
schemes () and () in CAT() spaces without the property P . We prove that the iterative
schemes () and () converge strongly to x̃ such that x̃ = PF(T)f (x̃), which is the unique
solution of the variational inequality (VIP)

〈––→x̃f x̃, –→xx̃〉 ≥ , x ∈ F(T). ()

By using the concept of quasilinearization, we remark that the proof given below is dif-
ferent from that of Shi and Chen []. In fact, strong convergence theorems for two given
iterative schemes are established in CAT() spaces without the property P .

2 Preliminaries
In this paper, we write ( – t)x⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(z,x) = td(x, y) and d(z, y) = ( – t)d(x, y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {(– t)x⊕
ty : t ∈ [, ]}. A subset C of a CAT() space is convex if [x, y] ⊆ C for all x, y ∈ C.
The following lemmas play an important role in our paper.

Lemma . [, Proposition .] Let X be a CAT() space, p,q, r, s ∈ X and λ ∈ [, ]. Then

d
(
λp⊕ ( – λ)q,λr ⊕ ( – λ)s

) ≤ λd(p, r) + ( – λ)d(q, s).

Lemma . [, Lemma .] Let X be a CAT() space, x, y, z ∈ X and λ ∈ [, ]. Then

d
(
λx⊕ ( – λ)y, z

) ≤ λd(x, z) + ( – λ)d(y, z).

Lemma . [, Lemma .] Let X be a CAT() space, x, y, z ∈ X and λ ∈ [, ]. Then

d(λx⊕ ( – λ)y, z
) ≤ λd(x, z) + ( – λ)d(y, z) – λ( – λ)d(x, y).

The concept of �-convergence introduced by Lim [] in  was shown by Kirk and
Panyanak [] in CAT() spaces to be very similar to weak convergence in the Banach
space setting. Next, we give the concept of �-convergence and collect some basic proper-
ties.
Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.
It is known from Proposition  of [] that in a CAT() space, A({xn}) consists of exactly

one point. A sequence {xn} ⊂ X is said to �-converge to x ∈ X if A({xnk }) = {x} for every
subsequence {xnk } of {xn}. The uniqueness of an asymptotic center implies that theCAT()
space X satisfies Opial’s property, i.e., for given {xn} ⊂ X such that {xn} �-converges to x
and given y ∈ X with y �= x,

lim sup
n→∞

d(xn,x) < lim sup
n→∞

d(xn, y).

Since it is not possible to formulate the concept of demiclosedness in aCAT() setting, as
stated in linear spaces, let us formally say that ‘I –T is demiclosed at zero’ if the conditions
{xn} ⊆ C �-converges to x and d(xn,Txn) →  imply x ∈ F(T).

Lemma . [] Every bounded sequence in a complete CAT() space always has a �-
convergent subsequence.

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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Lemma . [] If C is a closed convex subset of a complete CAT() space and if {xn} is a
bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma . [] If C is a closed convex subset of X and T : C → X is a nonexpansive
mapping, then the conditions {xn} �-converges to x and d(xn,Txn) →  imply x ∈ C and
Tx = x.

Having the notion of quasilinearization, Kakavandi and Amini [] introduced the fol-
lowing notion of convergence.
A sequence {xn} in the complete CAT() space (X,d) w-converges to x ∈ X if

limn→∞〈––→xxn, –→xy〉 = , i.e., limn→∞(d(xn,x) – d(xn, y) + d(x, y)) =  for all y ∈ X.
It is obvious that convergence in the metric implies w-convergence, and it is easy to

check that w-convergence implies �-convergence [, Proposition .], but it is showed in
([, Example .]) that the converse is not valid. However, the following lemma shows
another characterization of �-convergence as well as, more explicitly, a relation between
w-convergence and �-convergence.

Lemma . [, Theorem .] Let X be a complete CAT() space, {xn} be a sequence in X,
and x ∈ X. Then {xn} �-converges to x if and only if lim supn→∞〈––→xxn, –→xy〉 ≤  for all y ∈ X.

Lemma. [, Lemma.] Let {an} be a sequence of non-negative real numbers satisfying
the property

an+ ≤ ( – αn)an + αnβn, n ≥ ,

where {αn} ⊆ (, ) and {βn} ⊆R such that
.

∑∞
n= αn = ∞;

. lim supn→∞ βn ≤  or
∑∞

n= |αnβn| < ∞.
Then {an} converges to zero as n → ∞.

The following two lemmas can be obtained from elementary computation. For conve-
nience of the readers, we include the details.

Lemma . Let X be a complete CAT() space. Then for all u,x, y ∈ X, the following in-
equality holds:

d(x,u) ≤ d(y,u) + 〈–→xy, –→xu〉.

Proof

d(y,u) – d(x,u) – 〈–→yx, –→xu〉 = d(y,u) – d(x,u) – 〈–→yu, –→xu〉 – 〈–→ux, –→xu〉
= d(y,u) – d(x,u) – 〈–→yu, –→xu〉 + d(x,u)

= d(y,u) + d(x,u) – 〈–→yu, –→xu〉
≥ d(y,u) + d(x,u) – d(y,u)d(x,u)

=
(
d(y,u) – d(x,u)

) ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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Hence

d(x,u) ≤ d(y,u) + 〈–→xy, –→xu〉. �

Lemma . Let X be a CAT() space. For any u, v ∈ X and t ∈ [, ], let ut = tu⊕ ( – t)v.
Then, for all x, y ∈ X,

(i) 〈––→utx, ––→uty〉 ≤ t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉;
(ii) 〈––→utx, –→uy〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→uy〉 and 〈––→utx, –→vy〉 ≤ t〈–→ux, –→vy〉 + ( – t)〈–→vx, –→vy〉.

Proof (i) It follows from the (CN)-inequality that

〈––→utx, ––→uty〉 = d(ut , y) + d(x,ut) – d(ut ,ut) – d(x, y)

≤ td(u, y) + ( – t)d(v, y) – t( – t)d(u, v) + d(x,ut)

– d(ut ,ut) – d(x, y)

= td(u, y) + td(x,ut) – td(u,ut) – td(x, y)

+ ( – t)d(v, y) + ( – t)d(x,ut) – ( – t)d(v,ut) – ( – t)d(x, y)

+ td(u,ut) + ( – t)d(v,ut) – t( – t)d(u, v)

= t
[
d(u, y) + d(x,ut) – d(u,ut) – d(x, y)

]
+ ( – t)

[
d(v, y) + d(x,ut) – d(v,ut) – d(x, y)

]
+ t( – t)d(u, v) + ( – t)td(u, v) – t( – t)d(u, v)

= t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉.

(ii) The proof is similar to (i). �

3 Variational inequalities in CAT(0) spaces
In this section, we present strong convergence theorems of Moudafi’s viscosity methods
in CAT() spaces. Our first result is the continuous version of Theorem . of Shi and
Chen []. By using the concept of quasilinearization, we note that the proof given below
is different from that of Shi and Chen.
For any t ∈ (, ] and a contraction f with coefficient α ∈ (, ), define the mapping St :

C → C by

Gt = tf (x)⊕ ( – t)Tx, ∀x ∈ C. ()

It is not hard to see that Gt is a contraction on C. Indeed, for x, y ∈ C, we have

d
(
Gt(x),Gt(y)

)
= d

(
tf (x)⊕ ( – t)Tx, tf (y)⊕ ( – t)Ty

)
≤ d

(
tf (x)⊕ ( – t)Tx, tf (y)⊕ ( – t)Tx

)
+ d

(
tf (y)⊕ ( – t)Tx, tf (y)⊕ ( – t)Ty

)
≤ td

(
f (x), f (y)

)
+ ( – t)d(Tx,Ty)

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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≤ tαd(x, y) + ( – t)d(x, y)

=
(
 – t( – α)

)
d(x, y).

This implies that Gt is a contraction mapping. Then there exists a unique u ∈ C such that

u =Gt(u) = tf (u)⊕ ( – t)Tu.

Let xt ∈ C be the unique fixed point of Gt . Thus

xt = tf (xt)⊕ ( – t)Txt . ()

Theorem . Let C be a closed convex subset of a complete CAT() space X, and let
T : C → C be a nonexpansive mapping with F(T) �= ∅. Let f be a contraction on C with
coefficient  < α < . For each t ∈ (, ], let {xt} be given by

xt = tf (xt)⊕ ( – t)Txt . ()

Then {xt} converges strongly as t →  to x̃ such that x̃ = PF(T)f (x̃) which is equivalent to the
following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ F(T). ()

Proof We first show that {xt} is bounded. For any p ∈ F(T), we have that

d(xt ,p) = d
(
tf (xt)⊕ ( – t)Txt ,p

)
≤ td

(
f (xt),p

)
+ ( – t)d(Txt ,p)

≤ td
(
f (xt),p

)
+ ( – t)d(xt ,p).

Then

d(xt ,p) ≤ d
(
f (xt),p

) ≤ d
(
f (xt), f (p)

)
+ d

(
f (p),p

)
≤ αd(xt ,p) + d

(
f (p),p

)
.

This implies that

d(xt ,p) ≤ 
 – α

d
(
f (p),p

)
.

Hence {xt} is bounded, so are {Txt} and {f (xt)}. We get that

lim
t→

d(xt ,Txt) = lim
t→

d
(
tf (xt)⊕ ( – t)Txt ,Txt

)

≤ lim
t→

[
td

(
f (xt),Txt

)
+ ( – t)d(Txt ,Txt)

]

≤ lim
t→

td
(
f (xt),Txt

)
= .

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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Assume that {tn} ⊂ (, ) is such that tn →  as n → ∞. Put xn := xtn . We will show that
{xn} contains a subsequence converging strongly to x̃ such that x̃ = PF(T)f (x̃) which is
equivalent to the following variational inequality:

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ F(T).

Since {xn} is bounded, by Lemma ., ., wemay assume that {xn} �-converges to a point
x̃ and x̃ ∈ F(T). It follows from Lemma . (i) that

d(xn, x̃) = 〈––→xnx̃, ––→xnx̃〉
≤ αn

〈–––––→
f (xn)x̃,

––→
xnx̃

〉
+ ( – αn)〈–––→Txnx̃,

––→
xnx̃〉

≤ αn
〈–––––→
f (xn)x̃,

––→
xnx̃

〉
+ ( – αn)d(Txn, x̃)d(xn, x̃)

≤ αn
〈–––––→
f (xn)x̃,

––→
xnx̃

〉
+ ( – αn)d(xn, x̃).

It follows that

d(xn, x̃) ≤ 〈–––––→
f (xn)x̃,

––→
xnx̃

〉
=

〈––––––––→
f (xn)f (x̃),

––→
xnx̃

〉
+

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
≤ d

(
f (xn), f (x̃)

)
d(xn, x̃) +

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
≤ αd(xn, x̃) +

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
,

and thus

d(xn, x̃) ≤ 
 – α

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
. ()

Since {xn} �-converges to x̃, by Lemma ., we have

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ . ()

It follows from () that {xn} converges strongly to x̃.
Next, we show that x̃ solves the variational inequality (). Applying Lemma ., for any

q ∈ F(T),

d(xt ,q) = d(tf (xt)⊕ ( – t)Txt ,q
)

≤ td(f (xt),q) + ( – t)d(Txt ,q) – t( – t)d(f (xt),Txt)
≤ td(f (xt),q) + ( – t)d(xt ,q) – t( – t)d(f (xt),Txt).

It implies that

d(xt ,q) ≤ d(f (xt),q) – ( – t)d(f (xt),Txt).
Taking the limit through t = tn → , we can get that

d(x̃,q) ≤ d(f (x̃),q) – d(f (x̃), x̃).
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Hence

 ≤ 

[
d(x̃, x̃) + d(f (x̃),q) – d(x̃,q) – d(f (x̃), x̃)] = 〈––––→

x̃f (x̃),
–→
qx̃

〉
, ∀q ∈ F(T).

That is, x̃ solves the inequality ().
Finally, we show that the entire net {xt} converges to x̃, assume xsn → x̂, where sn → .

By the same argument, we get that x̂ ∈ F(T) and solves the variational inequality (), i.e.,

〈––––→
x̃f (x̃),

–→̃
xx̂

〉 ≤ , ()

and

〈––––→
x̂f (x̂),

–→̂
xx̃

〉 ≤ . ()

Adding up () and (), we get that

 ≥ 〈––––→
x̃f (x̃),

–→̃
xx̂

〉
–

〈––––→
x̂f (x̂),

–→̃
xx̂

〉

=
〈––––→
x̃f (x̂),

–→̃
xx̂

〉
+

〈––––––→
f (x̂)f (x̃),

–→̃
xx̂

〉
– 〈–→̂xx̃, –→̃xx̂〉 – 〈––––→

x̃f (x̂),
–→̃
xx̂

〉

= 〈–→̃xx̂, –→̃xx̂〉 – 〈––––––→
f (x̂)f (x̃),

–→̂
xx̃

〉

≥ 〈–→̃xx̂, –→̃xx̂〉 – d
(
f (x̂), f (x̃)

)
d(x̂, x̃)

≥ d(x̃, x̂) – αd(x̂, x̃)d(x̂, x̃)

= d(x̃, x̂) – αd(x̂, x̃)

≥ ( – α)d(x̃, x̂).

Since  < α < , we have that d(x̃, x̂) = , and so x̃ = x̂. Hence the net xt converges strongly
to x̃ which is the unique solution to the variational inequality (). This completes the
proof. �

Remark . We give the different proof of [, Theorem .]. In fact, the property P
imposed on a CAT() space X is removed.

If f ≡ u, then the following result can be obtained directly from Theorem ..

Corollary . [, Lemma .] Let C be a closed convex subset of a complete CAT() space
X, and let T : C → C be a nonexpansive mapping with F(T) �= ∅. For each t ∈ (, ], let u
be fixed and {xt} be given by

xt = tu⊕ ( – t)Txt . ()

Then {xt} converges strongly as t →  to x̃ ∈ F(T) which is nearest to u which is equivalent
to the following variational inequality:

〈–→̃xu, –→xx̃〉 ≥ , x ∈ F(T). ()
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Theorem . Let C be a closed convex subset of a complete CAT() space X, and let
T : C → C be a nonexpansive mapping with F(T) �= ∅. Let f be a contraction on C with
coefficient  < α < . For the arbitrary initial point x ∈ C, let {xn} be generated by

xn+ = αnf (xn)⊕ ( – αn)Txn, ∀n≥ , ()

where {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;
(ii)

∑∞
n= αn = ∞;

(iii) either
∑∞

n= |αn+ – αn| < ∞ or limn→∞(αn+/αn) = .
Then {xn} converges strongly as n → ∞ to x̃ such that x̃ = PF(T)f (x̃) which is equivalent to
the variational inequality ().

Proof We first show that the sequence {xn} is bounded. For any p ∈ F(T), we have that

d(xn+,p) = d
(
αnf (xn)⊕ ( – αn)Txn,p

)
≤ αnd

(
f (xn),p

)
+ ( – αn)d(Txn,p)

≤ αn
(
d
(
f (xn), f (p)

)
+ d

(
f (p),p

))
+ ( – αn)d(Txn,p)

≤ max

{
d(xn,p),


 – α

d
(
f (p),p

)}
.

By induction, we have

d(xn,p) ≤ max

{
d(x,p),


 – α

d
(
f (p),p

)}
,

for all n ∈ N. Hence {xn} is bounded, so are {Txn} and {f (xn)}. Next, we claim that
limn→∞ d(xn+,xn) = . To this end, we observe that

d(xn+,xn) = d
(
αnf (xn)⊕ ( – αn)Txn,αn–f (xn–)⊕ ( – αn–)Txn–

)
≤ d

(
αnf (xn)⊕ ( – αn)Txn,αnf (xn)⊕ ( – αn)Txn–

)
+ d

(
αnf (xn)⊕ ( – αn)Txn–,αnf (xn–)⊕ ( – αn)Txn–

)
+ d

(
αnf (xn–)⊕ ( – αn)Txn–,αn–f (xn–)⊕ ( – αn–)Txn–

)
≤ ( – αn)d(Txn,Txn–) + αnd

(
f (xn), f (xn–)

)
+ |αn – αn–|d

(
f (xn–),Txn–

)
≤ ( – αn)d(xn,xn–) + αnd

(
f (xn), f (xn–)

)
+ |αn – αn–|d

(
f (xn–),Txn–

)
≤ ( – αn)d(xn,xn–) + αnαd(xn,xn–) + |αn – αn–|d

(
f (xn–),Txn–

)
=

(
 – αn( – α)

)
d(xn,xn–) + |αn – αn–|d

(
f (xn–),Txn–

)
.

By the conditions (ii) and (iii) and Lemma ., we have

lim
n→∞d(xn+,xn) = . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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It follows from () and condition (i) that

d(xn,Txn) ≤ d(xn,xn+) + d(xn+,Txn)

= d(xn,xn+) + d
(
αnf (xn)⊕ ( – αn)Txn,Txn

)
≤ d(xn,xn+) + αnd

(
f (xn),Txn

) →  as n→ ∞. ()

Let {xt} be a net in C such that

xt = tf (xt)⊕ ( – t)Txt .

By Theorem ., we have that {xt} converges strongly as t →  to a fixed point x̃ ∈ F(T),
which solves the variational inequality (). Now, we claim that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ .

It follows from Lemma . (i) that

d(xt ,xn) = 〈–––→xtxn, –––→xtxn〉
≤ t

〈–––––→
f (xt)xn, –––→xtxn

〉
+ ( – t)〈––––→Txtxn, –––→xtxn〉

= t
〈–––––––→
f (xt)f (x̃), –––→xtxn

〉
+ t

〈––––→
f (x̃)x̃, –––→xtxn

〉
+ t〈–→̃xxt , –––→xtxn〉 + t〈–––→xtxn, –––→xtxn〉

+ ( – t)〈––––––→TxtTxn, –––→xtxn〉 + ( – t)〈––––→Txnxn, –––→xtxn〉
≤ tαd(xt , x̃)d(xt ,xn) + t

〈––––→
f (x̃)x̃, –––→xtxn

〉
+ td(x̃,xt)d(xt ,xn) + td(xt ,xn)

+ ( – t)d(xt ,xn) + ( – t)d(Txn,xn)d(xt ,xn)

≤ tαd(xt , x̃)M + t
〈––––→
f (x̃)x̃, –––→xtxn

〉
+ td(x̃,xt)M + td(xt ,xn)

+ ( – t)d(xt ,xn) + ( – t)d(Txn,xn)M

≤ d(xt ,xn) + tαd(xt , x̃)M + td(x̃,xt)M + d(Txn,xn)M + t
〈––––→
f (x̃)x̃, –––→xtxn

〉
,

whereM ≥ supm,n≥{d(xt ,xn)}. This implies that

〈––––→
f (x̃)x̃, –––→xnxt

〉 ≤ ( + α)d(xt , x̃)M +
d(Txn,xn)

t
M. ()

Taking the limit as n→ ∞ first and then t → , the inequality () yields

lim sup
t→

lim sup
n→∞

〈––––→
f (x̃)x̃, –––→xnxt

〉 ≤ .

Since xt → x̃ as t →  and by the continuity of a metric distance d, we have, for any fixed
n≥ ,

lim
t→

〈––––→
f (x̃)x̃, –––→xnxt

〉

= lim
t→



[
d(f (x̃),xt) + d(x̃,xn) – d(f (x̃),xn) – d(x̃,xt)

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/93
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=


[
d(f (x̃), x̃) + d(x̃,xn) – d(f (x̃),xn) – d(x̃, x̃)

]

=
〈––––→
f (x̃)x̃,

––→
xnx̃

〉
.

It implies that, for any ε > , there exists a δ >  such that

〈––––→
f (x̃)x̃,

––→
xnx̃

〉
<

〈––––→
f (x̃)x̃, –––→xnxt

〉
+ ε, ∀t ∈ (, δ). ()

Thus, by the upper limit as n→ ∞ first and then t → , the inequality in (), we get that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ ε.

Since ε is arbitrary, it follows that

lim sup
n→∞

〈––––→
f (x̃)x̃,

––→
xnx̃

〉 ≤ .

Finally, we prove that xn → x̃ as n → ∞. For any n ∈ N, we set yn = αnx̃ ⊕ ( – αn)Txn. It
follows from Lemma . and Lemma . (i), (ii) that

d(xn+, x̃) ≤ d(yn, x̃) + 〈–––––→xn+yn,
––––→
xn+x̃〉

≤ (
αnd(x̃, x̃) + ( – αn)d(Txn, x̃)

)
+ 

[
αn

〈––––––→
f (xn)yn,

––––→
xn+x̃

〉
+ ( – αn)〈––––→Txnyn,

––––→
xn+x̃〉

]
≤ ( – αn)d(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––––→
f (xn)Txn,

––––→
xn+x̃

〉
+ ( – αn)αn〈–––→Txnx̃,

––––→
xn+x̃〉 + ( – αn)( – αn)〈––––––→TxnTxn,

––––→
xn+x̃〉

]
≤ ( – αn)d(xn, x̃) + 

[
αnαn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––––→
f (xn)Txn,

––––→
xn+x̃

〉
+ ( – αn)αn〈–––→Txnx̃,

––––→
xn+x̃〉 + ( – αn)d(Txn,Txn)d(xn+x̃)

]
= ( – αn)d(xn, x̃) + 

[
α
n
〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
+ αn( – αn)

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉]
= ( – αn)d(xn, x̃) + αn

〈–––––→
f (xn)x̃,

––––→
xn+x̃

〉
= ( – αn)d(xn, x̃) + αn

〈––––––––→
f (xn)f (x̃),

––––→
xn+x̃

〉
+ αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
≤ ( – αn)d(xn, x̃) + αnαd(xn, x̃)d(xn+, x̃) + αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
≤ ( – αn)d(xn, x̃) + αnα

(
d(xn, x̃) + d(xn+, x̃)

)
+ αn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
,

which implies that

d(xn+, x̃) ≤  – ( – α)αn + α
n

 – ααn
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉

≤  – ( – α)αn

 – ααn
d(xn, x̃) +

αn

 – ααn

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
+ α

nM,

whereM ≥ supn≥{d(xn, x̃)}. It then follows that

d(xn+, x̃) ≤
(
 – α′

n
)
d(xn, x̃) + α′

nβ
′
n,
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where

α′
n =

( – α)αn

 – ααn
and β ′

n =
( – ααn)αn

( – α)
M +


( – α)

〈––––→
f (x̃)x̃,

––––→
xn+x̃

〉
.

Applying Lemma ., we can conclude that xn → x̃. This completes the proof. �

Remark . We give the different proof of [, Theorem .]. In fact, the property P
imposed on a CAT() space X is removed.

If f ≡ u, then the following corollary can be obtained directly from Theorem ..

Corollary . [, Theorem .] Let C be a closed convex subset of a complete CAT()
space X, and let T : C → C be a nonexpansive mapping with F(T) �= ∅. Let u,x ∈ C be
arbitrarily chosen and {xn} be generated by

xn+ = αnu⊕ ( – αn)Txn, ∀n≥ , ()

where {αn} ⊂ (, ) satisfies the following conditions:
(i) limn→∞ αn = ;
(ii)

∑∞
n= αn = ∞;

(iii) either
∑∞

n= |αn+ – αn| < ∞ or limn→∞(αn+/αn) = .
Then {xn} converges strongly as n→ ∞ to x̃ ∈ F(T)which is nearest to u which is equivalent
to the following variational inequality ().
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