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Abstract The problem of dynamic stability of viscoelastic extremely shallow and circu-
lar cylindrical shells with any hereditary properties, including time-dependence of Pois-
son’s ratio, are reduced to the investigation of stability of the zero solution of an ordinary
integro-differential equation with variable coefficients. Using the Laplace integral transform,
an integro-differential equation is reduced to the new integro-differential one of which the
main part coincides with the damped Hill equation and the integral part is proportional to
the product of two small parameters. Changing this equation for the system of two linear
equations of the first order and using the averaging method, the monodromy matrix of the
obtained system is constructed. Considering the absolute value of the eigen-values of mon-
odromy matrix is greater than unit, the condition for instability of zero solution is obtained
in the three-dimensional space of parameters corresponding to the frequency, viscosity and
amplitude of external action. Analysis of form and size of instability domains is carried out.

Keywords Viscoelastic shells · Any hereditary property · Time-dependent Poisson ratio ·
Damped Hill equation · Monodromy matrix · Stability · Resonance

1 Introduction

Analysis of the parametric vibrations of the elastic systems subjected to time vary-
ing loadings is one of the well-established areas of applied mechanics (Bolotin 1964;
Seyranyan and Mailybaev 2003). Adopting elastic theory for the solution of the structures
that are made of polymer composites proves to be inconsistent with reality. The viscoelastic
theory appears to be suitable for describing the behavior of a large group of materials. Some
important results for dynamic stability of viscoelastic materials are obtained (Bolotin 1964;
Seyranyan and Mailybaev 2003; Ilyasova 2002–2003; Ilyasov and Aköz 2000; Ahmadi
and Glockner 1983; Wang and Lakes 2005; Pata 2006; Shuping et al. 1998; Ilyasov 2007;
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Giorgi and Lazzai 1997; Liu and Zheng 1996). Damping plays the main role in the problem
of dynamic stability of elastic systems. It is known that if the construction element is loaded
by periodic forces in their midsurface, instability occurs for some frequency and amplitude
of the applied force. The monodromy matrix method is used in Seyranyan and Mailybaev
(2003), Ilyasova (2002–2003) for determination of stability regions of Hill’s equation. The
influence of viscoelasticity on the instability region is investigated in Ilyasov and Aköz
(2000) and it is found that viscoelasticity increases the stability of the plate. The prob-
lem of dynamic stability of Kelvin-viscoelastic column is studied in Ahmadi and Glockner
(1983). The stability of the discrete viscoelastic system with negative stiffness elements is
investigated in Wang and Lakes (2005). The asymptotic behavior of solutions of an ab-
stract integro-differential equation modeling linear viscoelasticity is investigated in Pata
(2006). Asymptotic and exponential stabilities for the Kelvin-Voigt damping are investi-
gated in Shuping et al. (1998). A new method for investigation of dynamic stability of vis-
coelastic plates for any hereditary properties, including time-dependence of Poisson’s ratio,
is proposed in Ilyasov (2007). The condition for instability of zero solution of obtained
integro-differential equation is derived and investigated in the three-dimensional space of
parameters.

In order to simplify the mathematical difficulties for the solution of multidimensional
dynamical problems for viscoelastic material the viscoelastic Poisson ratio is assumed to be
constant. This approach reduces to misstatements of the problems and erroneous of the ob-
tained results. As it has been shown in Tschoegl et al. (2002), the viscoelastic Poisson ratio
is not constant except for incompressible materials. In current paper, the dynamic stability of
shells, with general isotropic viscoelastic constitutive equations are examined. Using equa-
tions known for elastic shells (Bolotin 1964), the equations of parametric vibrations of both
extremely shallow and circular cylindrical shells are derived for any viscoelastic functions
including time-dependence of Poisson’s ratio. By the method of separation of variables, the
problems are reduced to the investigation of stability of the zero solution of the ordinary
integro-differential equation with variable coefficient. The equation is reduced to a new
integro-differential equation for which the main part is the damped Hill equation and the
integral part is proportional to the product of two small parameters. The monodromy matrix
of the obtained equation and its eigenvalues are constructed. Supposing the absolute value
of eigenvalue is greater than the unit, the condition of instability is obtained. Analysis of in-
stability regions with respect to parameters is carried out. Examples have been considered.

2 Statement of the problem

In this section we will derive the equations of parametric vibrations of isotropic homo-
geneous viscoelastic shells for any real hereditary properties. We will consider both the
extremely shallow and the circular cylindrical shells with constant thickness.

2.1 Extremely shallow shell

Let us assume that in the plan view the shell has the form of a rectangle with sides a and b

and, moreover, that the rise of the shell is relatively small in comparison with the sides
of the rectangle. Let x, y be the Cartesian coordinates of a point on the horizontal plane.
We assume that the principal curvatures of the middle plane in the directions of axes 0x

and 0y are k1 = const, k2 = const. Furthermore, for the case of a shallow shell, the tangential
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components of the load can be neglected. Under these assumptions, the dynamic stability of
elastic shell is reduced in Bolotin (1964) to the equation

m
∂2

∂t2
∇2∇2F +

(
N1

∂2

∂x2
+ N2

∂2

∂y2

)
∇2∇2F + Eh∇2

k ∇2
k F + D∇2∇2∇2∇2F = 0, (1)

where

∇2 = ∂2

∂x2
+ ∂2

∂y2
, ∇2

k = k2
∂2

∂x2
+ k1

∂2

∂y2
,

m is the mass of the shell per unit area of the middle surface, D = Eh3/12(1 − ν2) is the
flexural stiffness of the shell, E is Young modulus, ν is Poisson ratio, h is thickness of the
shell, the function F is related to the normal displacement w by the formula w = ∇2∇2F ,
N1 and N2 are the normal forces on the middle surface of the shell, which we will take as

Nj = Nj0 − Nj1ϕ(t) (j = 1,2) (2)

where Nj0, Nj1 are constants and ϕ(t) is T -periodic function.
Assume that the shell is simply supported on all four sides. In this case the function

F(t, x, y) must be chosen in such a way that

F = ∂2F

∂x2
= ∂4F

∂x4
= ∂6F

∂x6
= 0 at x = 0 and x = a,

F = ∂2F

∂y2
= ∂4F

∂y4
= ∂6F

∂y6
= 0 at y = 0 and y = b.

To write (1) for viscoelastic shell we use the elastic-viscoelastic correspondence principle
between the Laplace-Carson transform of elastic and viscoelastic problems (Tschoegl et al.
2002; Ilyasov and Ilyasova 2006; Iliushin and Pobedrya 1970; Christensen 1971). As it is
seen from (1), for viscoelastic shell we should invert the functions Ēf̄ and Ē

1−ν̄2 f̄ , where the

bar above the functions denotes its Laplace-Carson transform f̄ (s) = s
∫ ∞

0 f (t)e−st dt and s

is the complex parameter of the transformation. We will describe these functions by means
of shear and dilatation relaxation functions G(t) and K(t), respectively, and corresponding
creep functions. It is known that these functions are monotonically decreasing continuous
functions, having monotonically increasing integrable derivatives on t > 0, moreover, 0 <

G(∞) = G∞ ≤ G(t) ≤ G(0) = G and 0 < K(∞) = K∞ ≤ K(t) ≤ K(0) = K where G∞,
K∞ and G, K are the equilibrium and instantaneous elastic moduli, respectively and G(t) =
K(t) ≡ 0 for t < 0 (Tschoegl et al. 2002; Iliushin and Pobedrya 1970; Christensen 1971).

Using the relations

Ē = 9ḠK̄

Ḡ + 3K̄
, ν̄ = 3K̄ − 2Ḡ

2(Ḡ + 3K̄)

it is easy to get

Ē

1 − ν̄2
= 4Ḡ(Ḡ + 3K̄)

3K̄ + 4Ḡ
= Ḡ + 3Ḡḡ2 = N̄,

where g2(t) is the Iliushin creep function with the initial value g2(0) = (1 + ν)/3(1 − ν)

(Iliushin and Pobedrya 1970). Here E and ν denote the initial value of the functions E(t)

and ν(t), respectively. The function g2(t) can be obtained both theoretically and directly by
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the experiment (Iliushin and Pobedrya 1970). Let ω̄ = 2Ḡ/3K̄ = (1 − 2ν̄)/(1 + ν̄), then we
have ω(t) = 2

3K
G(t) + 2

3

∫ t

0+ G(t − τ)dJ1(τ ) and if K̄ ≡ K is constant, ω(t) = 2
3K

G(t) is
obtained. Here J1(t) (J1(0) = 1/K) is the dilatation creep function.

It is easy to verify the equalities ωmax = ω̄max = ω0 = (1 − 2ν)/(1 + ν) ≈ 1/4 and ωmin =
ω̄min = ω0G(∞)/G > 0, here |2ω̄| < 1 is obtained So we have the absolutely and uniformly
convergent series

ḡ2 = 1

1 + 2ω̄
= 1 − 2ω̄ + 4ω̄2 − · · · ,

and the series expression of the function g2(t)

g2(t) = 1 − 2ω(t) + 4

[
ω0ω(t) +

∫ t

0+
ω(t − τ)dω(τ)

]
− · · · .

The inversion

N(t) = 2G(t)/(1 − ν) + 3
∫ t

0+
G(t − τ)dg2(τ )

and

Ē

1 − ν̄2
f̄ = N̄ f̄ � N(0)

[
f (t) + 1

N(0)

∫ t

0
N ′(t − τ)f (τ )dτ

]

are easily obtained. It is seen that N(0) = E/(1 − ν2). Let us denote �3(t) = −N ′(t)/N(0),
then we write

Ē

1 − ν̄2
f̄ � E

1 − ν2

[
f (t) −

∫ t

0
�3(t − τ)f (τ )dτ

]
. (3)

By the same way we find

Ē = 2Ḡ(1 + ν̄) = 3Ḡ
1

1 + ω̄/2
� 2(1 + ν)G(t) + 3

∫ t

0+
G(t − τ)dg1/2(τ ) = E(t),

where

g1/2(t) = 1 − 1

2
ω(t) + 1

4

[
ω0ω(t) +

∫ t

0+
ω(t − τ)dω(τ)

]
− · · · .

Then

Ēf̄ � E

[
f (t) + 1

E

∫ t

0
E′(t − τ)f (τ )dτ

]

and denoting �2(t) = −E′(t)/E, we write

Ēf̄ � E

[
f (t) −

∫ t

0
�2(t − τ)f (τ )dτ

]
. (4)

If Poisson’s ratio is constant then N(t) = 2G(t)/(1 − ν). The relation between the func-
tions �2(t), �3(t) and the shear relaxation function G(t) is obtained as �2(t) = �3(t) =
−G′(t)/G = �1(t).
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Using (3) and (4), from (1) we obtain the equation of motion for viscoelastic shell for
any (satisfying only the natural conditions)hereditary property

m
∂2

∂t2
∇2∇2F +

(
N1

∂2

∂x2
+ N2

∂2

∂y2

)
∇2∇2F + Eh∇2

k ∇2
k F + D∇2∇2∇2∇2F

= Eh

∫ t

0
�2(t − τ)∇2

k ∇2
k F (τ, x, y)dτ + D

∫ t

0
�3(t − τ)∇2∇2∇2∇2F(τ, x, y)dτ. (5)

The boundary conditions will be satisfied if we let

F(t, x, y) =
∞∑

j,k=1

fjk(t) sin
jπx

a
sin

kπy

b
. (6)

Here fjk(t) are unknown functions of time. Substituting (6) and (2) in (5), we obtain the
ordinary integro-differential equation with variable coefficients (for the sake of simplicity
jk indices of fjk will be omitted later on):

f
′′
(t) + [λ2 + μϕ(t)]f (t) = ελ2

∫ t

0
�(t − r)f (r)dr, (7)

where

λ2 = �2

(
1 − N10

N1∗
− N20

N2∗

)
,

�2 = D

m(n2
j + m2

k)
2

[
(n2

j + m2
k)

4 + 12(1 − ν2)

h2
(k2n

2
j + k1m

2
k)

2

]
,

nj = jπ

a
, mk = kπ

b
,

ε�(t) = D

λ2m(n2
j + m2

k)
2
[12(1 − ν2)h−2(k2n

2
j + k1m

2
k)

2�2(t) + (n2
j + m2

k)
4�3(t)],

μ = 1

m
(N11n

2
j + N21m

2
k), N1∗ = m�2n−2

j , N2∗ = m�2m−2
k .

The viscous resistance of viscoelastic solid is much smaller then the elastic one. Using

�2(t) = −E′(t)/E, �3(t) = −N ′(t)/N(0)

we find

ε

∫ ∞

0
�(τ)dτ =

(
1 − (n2

j + m2
k)

4N∞/N(0) + 12(1 − ν2∞)h−2(k2n
2
j + k1m

2
k)E∞/E

(n2
j + m2

k)
4 + 12(1 − ν2∞)h−2(k2n

2
j + k1m

2
k)

)

×
(

1 − N10

N1∗
− N20

N2∗

)−1

.

If Poisson’s ratio is constant, then

ε

∫ ∞

0
�(τ)dτ =

(
1 − G∞

G

)(
1 − N10

N1∗
− N20

N2∗

)−1

,
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where the sub index ∞ denotes the long-time moduli. For the viscoelastic solids G∞/G < 1,
N∞/N < 1 and for viscoelastic fluid G∞ = 0.

Later on we will assume that the inequality

ε

∫ ∞

0
�(τ)dτ < 1 (8)

is satisfied. We will serve the small positive parameter ε as the separation parameter for
different degrees of approximation terms.

2.2 A circular cylindrical shell

Assume that the circular cylindrical shell of radius R and a thickness h is loaded by a
uniformly distributed radial load q0 +q1ϕ(t), and, in addition, compressed by a longitudinal
force P0 +P1ϕ(t). We introduce a non-dimensional longitudinal coordinate α = z/R, where
0z is the axis of the cylinder, and the central angle β . If the effect of the tangential inertia
forces and of the tangential components of the reduced loads is ignored, then the vibration
of circular cylindrical elastic shells can be represented by a single equation (Bolotin 1964)

mR4 ∂2

∂t2
∇2∇2F + R2

[
N1

∂2

∂α2
+ N2

(
∂2

∂β2
+ 1

)]
∇2∇2F + D(∇2 + 1)2∇2∇2F

− Gh3

6

∂2

∂α2

(
∂2

∂α2
− ∂2

∂β2

)
∇2F + EhR2 ∂4F

∂α4
= 0,

where

∇2 = ∂2

∂α2
+ ∂2

∂β2
, N1 = 1

2πR
[P0 + P1ϕ(t)], N2 = R[q0 + q1ϕ(t)].

As a boundary conditions, we will assume that at the edges of the shell (z = 0, z = l, l is
the length of the shell) the radial displacement is zero.

Using the above mentioned approach we find the equation for the viscoelastic circular
cylindrical shell

mR4 ∂2

∂t2
∇2∇2F + R2

[
N1

∂2

∂α2
+ N2

(
∂2

∂β2
+ 1

)]
∇2∇2F + D(∇2 + 1)2∇2∇2F

− Gh3

6

∂2

∂α2

(
∂2

∂α2
− ∂2

∂β2

)
∇2F + EhR2 ∂4F

∂α4

= D

∫ t

0
�3(t − τ)(∇2 + 1)2∇2∇2Fdτ + Gh3

6

∫ t

0
�1(t − τ)

∂2

∂α2

(
∂2

∂α2
− ∂2

∂β2

)
∇2Fdτ

+ EhR2
∫ t

0
�2(t − τ)

∂4F

∂α4
dτ. (9)

We will seek the solution of (9) in the form

F(t,α,β) =
∞∑

j,k=1

fjk(t) sinnα cos kβ, (10)



Mech Time-Depend Mater (2010) 14: 153–171 159

where n = jπR/l. Here j denotes the number of half waves in the meridian direction, and k

gives the number of half waves in the circumferential direction. Substituting (10) in (9) and
taking into account the expressions of N1, N2, we obtain (jk indices are omitted)

f
′′
(t) + [λ2 + μϕ(t)]f (t) = ελ2

∫ t

0
�(t − r)f (r)dr, (11)

where

λ2 = Dg(n, k)

mR4

(
1 − N10

N1∗
− N20

N2∗

)
, μ = 1

mR2
[N11n

2 + N21(k
2 − 1)]

g(n, k) = (n2 + k2)−2[(n2 + k2 − 1)2(n2 + k2)2 + (1 − ν)n2(n4 − k4)

+ 12(1 − ν2)n4h−2R2],

ε�(t) = 1

λ2mR4

[
Gh3n2

6

(
n2 − k2

n2 + k2

)
�1(t) + EhR2n4

(n2 + k2)2
�2(t) + D(n2 + k2 − 1)2�3(t)

]
,

N10 = P0

2πR
, N11 = P1

2πR
, N20 = Rq0, N21 = Rq1,

N1∗ = Dg(n, k)

n2R2
, N2∗ = Dg(n, k)

(k2 − 1)R2
.

Thus the problem is reduced to above obtained (7).

Example 1 Let us consider the simplest relaxation functions G(t) = Ge−qt , K(t) = Ke−rt ,
where G,K,q and r are positive constants. It is not difficult to obtain

8Ḡ(Ḡ + 3K̄)

3K̄ + 4Ḡ
= 2G

(
e−qt + 1 + ν

1 − ν
e−σ t

)
= N(t),

ν(t) = ν − 2

3
(1 + ν)(q − r)e−[r+ 2

3 (1+ν)(q−r)]t

where σ = q + 2(1−2ν)

3(1−ν)
(r − q). Using the derivative of N(t) we find

�3(t) = 1 − ν

2
qe−qt + 1 + ν

2
σe−σ t .

By the same way we find

�1(t) = qe−qt , �2(t) =
[
r + 2

3
(1 + ν)(q − r)

]
e−[r+ 2

3 (1+ν)(q−r)]t .

If ν(t) = ν = const for t > 0, then σ = r = q and �1(t) = �2(t) = �3(t) = qe−qt , but if
K̄ = K = const for t > 0, i.e. if r = 0, then

�1(t) = qe−qt , �2(t) = 2

3
qe− 2

3 qt , �3(t) = 1 − ν

2
qe−qt + (1 + ν)2

6(1 − ν)
qe

− 1+ν
3(1−ν)

qt

are obtained.
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3 The integro-differential Hill equation

By means of various methods (separation of variables, finite differences with respect to space
coordinates, Bubnov-Galerkin method, etc.) the problem of dynamic stability of viscoelastic
plates, shells, columns etc. is reduced to the investigation of stability of zero solution of (7).
Solution of the problem for any �(t) is practically very important and difficult. We will
reduce integro-differential equation (7) to a new integro-differential one, more explicitly
describing the main mechanical properties of material and shells.

Using the Laplace transform, defined as Laplace-Carson integral without the factor s,
from (7), for zero initial conditions, we get

f̄ = −μ(ϕf )

s2 + λ2 − ελ2�̄
(12)

where the line over the function denotes its Laplace transform with the complex parameter s.
The function f̄ represented by (12) and the image of kernel �̄ are analytic in the right half-
plane Re s > 0. We will suppose that these functions are analytically continued into the
whole complex plane. In order to evaluate the inverse transform of (12) it is necessary to
know the poles of this function which are the roots of the equation

s2 + λ2 − ελ2�̄ = 0. (13)

Equation (13) is the frequency equation of free vibrations of viscoelastic shells.

Theorem 1 Let �(t) be a positive monotonically decreasing convex and piecewise contin-
uous function for t ≥ 0, let it vanish for t < 0 and let the inequality (8) be satisfied. (13) has
just two complex conjugate roots having negative real parts and real negative roots.

Proof Let −α ± iβ be the roots of equation (13). Substituting s = −α + iβ for (13) and
splitting in real and imaginary parts, gives

�̂c ≡
∫ ∞

o

eατ�(τ) cosβτdτ = α2 + λ2 − β2

ελ2
,

�̂s ≡
∫ ∞

o

eατ�(τ) sinβτdτ = 2αβ

ελ2
. (14)

Thus (13) is equivalent to the system of two equations (14) for α and β . As we know the
Fourier integrals �̂c and �̂s are convergent either the function eαt�(t) satisfies the Dirichlet
conditions for 0 < t < ∞, or the function is monotonically decreasing. Each of the functions
�̂c(α,β) and �̂s(α,β) are continuous and tends to zero as β tends to infinity through any set
of values.

From (14) we find

ε

√
�̂2

c + �̂2
s = λ−2[(α2 + λ2 − β2)2 + 4α2β2]1/2

= 2ε

λ

√
α2 + (λ − β)2

(
1 − λ − β

λ
+ α2 + (λ − β)2

4λ2

)1/2

and

ε

√
�̂2

c + �̂2
s < 1. (15)
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The inequalities 0 < ε�̂c < 1 give β2 > α2 > 0. Thus α and β are real and we may put
β > 0. As �̂s > 0, from the second of the (14) we deduce α > 0.

The roots α and β may be calculated by iteration procedure. From (14) we define the
following system of iterations: α0 = 0, β0 = λ

αn+1 = ελ2

2βn

�̂s(αn,βn), βn+1 = [λ2 + α2
n+1 − ελ2�̂c(αn+1, βn)]1/2,

n = 0,1,2, . . . (16)

Consider the integrals

�̂1c =
∫ ∞

o

τeατ�(τ) cosβτdτ, �̂1s =
∫ ∞

o

τeατ�(τ) sinβτdτ.

Using the Dirichlet theorem we can prove the uniform convergences with respect to α and
β for 0 ≤ α ≤ ε�(0)/2, λ[1 − ε

∫ ∞
0 �(τ)dτ ]1/2 ≤ β ≤ λ of integrals �̂1s and �̂1c . Therefore

by the theorem on differentiation of an integral with respect to the parameter, the differen-
tiation under the integral sign in (16) with respect to α and β is valid. The derivatives of
iteration vector-function with respect to α and β are described by the integrals �̂1s and �̂1c .
To estimate these integrals, consider the product

2�̂s �̂c = 2
∫ ∞

0

∫ ∞

0
eα(ς+τ)�(ς)�(τ) sinβς cosβτdςdτ

=
∫ ∞

0

∫ ∞

0
�(ς, τ)eα(ς+τ)�(ς + τ) sinβ(ς + τ)dςdτ

where �(ς, τ) = �(ς)�(τ)/�(ς + τ) is a monotonically decreasing convex function of
two variables in the domain X = {(ς, τ ) : ς ≥ 0, τ ≥ 0}. Besides �(0, τ ) = �(ς,0) =
�(0,0) = �(0), limς→∞,τ→∞ �(ς, τ) = �0 > 0 (for the exponential kernel the function
� is constant, � = �(0)). By the second mean-value theorem of integral calculus there is a
point (ς∗, τ ∗) ∈ X so that

2�̂s �̂c = �(ς∗, τ ∗)
∫ ∞

0

∫ ∞

0
eα(ς+τ)�(ς + τ) sinβ(ς + τ)dςdτ.

Using functions

ς = s cosϕ√
2 cos(π/4 − ϕ)

, τ = s sinϕ√
2 cos(π/4 − ϕ)

, 0 ≤ s < +∞, 0 ≤ ϕ ≤ π/2,

and taking ς + τ = s into account, after changing variables in the double integral, we
find 2�̂s �̂c = �(ς∗, τ ∗)�̂1s . By the same way �̂2

c − �̂2
s = �(ς∗∗, τ ∗∗)�̂1c is obtained, here

(ς∗∗, τ ∗∗) ∈ X. The last two relations together with inequality (15) secure the convergence
of iteration (14) to a unique limit. �

Example 2 The kernel of constitutive equation for the Kelvin material is written as ε�(t) =
− η

E
δ̇(t), where δ(t) is Dirac’s delta. It is easy to get ε�s = ηλ/E, ε�c = 0. From (14) we

obtain

α = ηλ2

2E
, β2 = λ2 − η2λ4

4E2
.
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For sufficiently small ε we find the following solutions from (16)

α = ελ�s

2
+ ε2λω1 + ε3θ1 + · · · , β = λ − γ, γ = ελ�c

2
+ ε2λω2 + ε3θ2 + · · · ,

(17)
where

ω1 = 1

4
(�s�c − λ�c�1c + λ�s�1s),

ω2 = 1

8
(�2

c − �2
s + 2λ�s�1c + 2λ�c�1s),

θ1 = λ

2

[
�sω2 + �cω1 − λω2�1c + λω1�1s − λ2

4
�s�c�2c + λ2

8
�2s(�

2
s − �2

c )

]
,

θ2 = λ

2

[
�cω2 − �sω1 + λω1�1c + λω2�1s + λ2

4
�s�c�2s + λ2

8
�2s(�

2
s − �2

c )

]
,

�kc =
∫ ∞

0
tk�(t) cosλtdt, �ks =

∫ ∞

0
tk�(t) sinλtdt, k = 0,1,2

and �0c = �c , �0s = �s denote the cos- and sin- Fourier transforms of �(t), respectively.
From (14) we deduce the known in literature results

lim
λ→∞

β

λ
= 1, lim

λ→∞α = ε�(0)

2
; (18)

β2 ≈ λ2

[
1 − ε

∫ ∞

0
�(τ)dτ

]
= λ2E∞/E0, α ≈ 0 for λ 
 1. (19)

As we see for λ � 1, the frequencies of elastic and viscoelastic vibrations coincide and
the damped coefficient has its maximum value. If the creep is restricted, i.e. the long-time
modulus E∞ > 0, the limiting state of a viscoelastic body as t → ∞ is described by the
equations of the theory of elasticity with long-time moduli.

Let us rewrite (12) in the form

f̄ [(s + α)2 + β2] + μ(ϕf ) + μ
B̄(s)(ϕf )

1 − B̄(s)
= 0 (20)

where

B̄(s) = ελ2�̄ + 2αs + α2 + β2 − λ2

(s + α)2 + β2
= 2α(s + α) + ελ2(�̄ − �̂c)

(s + α)2 + β2
.

Here we find

B(0) = lim
s→∞ sB̄(s) = 2α, B(∞) = lim

s→0
sB̄(s) = 0.

The numbers −α ± iβ are the zeros of divisor, indeed

D(−α ± iβ) = 2α(±iβ) ∓ iελ2�̂s = i(±2αβ ∓ ελ2�̂s),

which is equal to zero according to (14). By using L’Hospital’s rule, the limits

lim
s→−α±iβ

B̄(s) = lim
s→−α±iβ

2α + ελ2 d
ds

�̂(s)|s=−α±iβ

2(s + α)
= 2α − ελ2(�̂1c ∓ i�̂1s)

±2iβ

are obtained. Thus the numbers −α ± iβ are not the poles of the function B̄(s).
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Using (14) we find the following inverse transformation of the function

B(t) = ελ2

β
e−αt

∫ ∞

t

�(τ )eατ sinβ(τ − t)dτ.

This is a monotonically decreasing continuous function having series expression

B(t) = e−αt

[
2α − ελ2�ct + t2

2
ελ2(�0 − β�̂s) + · · ·

]
,

where for the regular kernel �0 = �(0). It is seen that B(t) ≤ 2αe−αt for t ≥ 0. Representing

B(t) = ελ2

β

∫ ∞

0
�(t + τ)eατ sinβτdτ = �(t)

ελ2

β

∫ ∞

0

�(t + τ)

�(t)
eατ sinβτdτ,

we see that B(t) = O(�(t)) for t � 1.
Let us denote

�̄(s) = 1

2α

B̄(s)

1 − B̄(s)
= s + α + ελ2

2α
(�̄ − �̂c)

s2 + λ2(1 − ε�̄)
.

Theorem 2 Let �(t) satisfies the conditions of Theorem 1. The numbers −α ± iβ are not
the poles of the function �̄(s). Moreover, the function �(t) is positive, continuous, monoton-
ically decreasing so that �(0) = 1, �(∞) = 0 and have the series expansion

�(t) = e−αt

[
1 − t

(
ελ2

2α
�̂c − 2α

)
+ t2ελ2

(
�0 − β�̂s

4α
− �̂c

)
+ · · ·

]
. (21)

Proof From the expression of �̄(s) the limits �(0) = lims→∞ s�̄(s) = 1, �(∞) =
lims→0 s�̄(s) = 0 are obtained. Using L’Hospital’s rule we find

lim
s→−α±iβ

�̄(s) = 1 − ελ2

2α
(�̂1c ∓ i�̂1s)

−2α ± 2iβ + ελ2(�̂1c ∓ i�̂1s)
.

Thus −α ± iβ are not the poles of the function �̄(s). As |B̄(s)| < 1 for Re s > Re s0 > 0,
we have the absolutely and uniformly convergent series

�̄(s) = 1

2α
[B̄(s) + B̄2(s) + · · · ].

Here the original

�(t) = 1

2α
B(t) + 1

2α

∫ t

0
B(t − τ)B(τ)dτ + · · ·

and the series expansion (21) are obtained. Note that the second term is proportional to the
parameter α. Using B(t) ≤ 2αe−αt and the convolution of functions we find

Bn(t) ≤ 2α
(2αt)n−1

(n − 1)! e−αt , n = 1,2, . . . ;
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Bn(t) =
∫ t

0
Bn−1(t − τ)B1(τ )dτ, B1(t) = B(t).

Then

|�(t)| ≤
∞∑

n=1

(2αt)n−1

(n − 1)! e−αt = eαt ,

thus the series for �(t) is absolutely convergent for any finite t . �

Example 3 For the kernel �(t) = ∑N

k=1 qke
−ηk t (0 < η1 < · · · < ηN ) it is not difficult to

find B(t) = ∑N

k=1 εcke
−ηk t , �(t) = ∑N

k=1 χke
−ρkt , where the real negative numbers −ρk ≈

−ηk + εck(k = 1,2, . . . ,N) are the roots of the equation 1 − B̄(s) = 0, so that

ck = λ2qk/[β2 + (ηk − α)2],

χk = 1

2α

(
N∑

i=1

εci

ηi − ρk

)[
N∑

j=1

cj ε

(ηj − ρk)2

]−1

,

N∑
k=1

εck = 2α.

Moreover, B(t) <
∑N

k=1 εcke
−η1t = 2αe−η1t < 2αe−αt for t > 0. For N = 1 we have B(t) =

2αe−ηt , �(t) = e−(η−2α)t ,2α = ελ2q[β2 + (η − α)2]−1. From (8) we find η > εq . As the
product of the roots −α ± iβ and −η+2α are equal to −λ2(η− εq), that is (α2 +β2)(−η+
2α) = −λ2(η − εq), then η > 2α is obtained.

From (20) we get the following integro-differential equation

f ′′ + 2αf ′ + [ω2 + μϕ(t)]f + 2αμ

∫ t

0
�(t − τ)ϕ(τ)f (τ )dτ = 0 (22)

where ω2 = α2 + β2. If we neglect the integral term, Hill’s equation will be obtained. This
term is proportional to the product of the two small parameters α and μ. Thus the prob-
lem of dynamic stability analysis of viscoelastic shells is reduced to the determination of
the stability criteria for the zero solution of (22). In the problems of dynamic stability of
elastic systems with damping α,ω,μ are independent parameters (Bolotin 1964). But for
viscoelastic vibrations α and β are defined from (16) or (17) and ω2 = α2 + β2, β = λ − γ ,
with λ the frequency of elastic vibrations. If viscosity of material is absent then α = γ = 0
and ω = β = λ.

Theorem 3 Equations (7) and (22) are equivalent, i.e. the solution of (7) for some initial
conditions is the solution of (22) for the same initial conditions and vice versa.

Proof Let the function f (t) be the solution of (7) for some initial conditions. We will show
that this function returns (22) into identity. Subtracting identity (7) for the function f (t)

from (22) we get the equation

2αf ′ + (ω2 − λ2)f + 2αμ

∫ t

0
[2αμ�(t − τ)ϕ(τ) + ελ2�(t − τ)]f (τ)dτ = 0

with zero initial conditions. Using the Laplace transform we obtain

(2αs + β2 + α2 − λ2 + ελ2�̄)f̄ + 2αμ�̄(ϕf ) = 0.
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Substituting the expression for �̄ gives

[s2 + λ2(1 − ε�̄)]f̄ + μ(ϕf ) = 0.

This is the Laplace transform of the identity (7) with zero initial conditions. �

4 The regions of dynamic instability and parametric resonance

Equation (22) contains three parameters α,ω,μ and the function �(t). Finding the stability
and instability domains in the parameter space is the main problem for the stability the-
ory. We will investigate how the stable vibrations of shells become unstable or vice versa
changing these parameters.

Using f = x1, ḟ = x2 we reduce (22) to the system of linear differential equations

ẋ1 = x2, ẋ2 = −[ω2 + μϕ(t)]x1 − 2αμ

∫ t

0
�(t − τ)ϕ(τ)x1(τ )dτ − 2αx2. (23)

Matrix of this system is represented as

A(t) = A0 + μϕA1 + 2μα

∫ t

0
�(t − τ)ϕ(τ)A1(◦)dτ,

A0 =
(

0 1
−ω2 −2α

)
, A1 =

(
0 0
−1 0

)

where the sign (◦) denotes the place of multiplied function of variable τ . The solution of the
problem ẋ = A(t)x, x(0) = x0 is written as x(t) = U(t)x0, where the evolution matrix U(t)

is the solution of the problem

U̇ = A(t)U, U(0) = I. (24)

If ω > α the solution of this problem for the matrix A0 is

U0(t) = eA0t = e−αt

(
cosβt + α

β
sinβt 1

β
sinβt

−ω2

β
sinβt cosβt − α

β
sinβt

)

where β = √
ω2 − α2 is the frequency of damped vibrations and α is a damping factor. If

ω = α, the matrix A0 has two equal eigenvalues ω and the vibration does not take place.
If ω < α, the eigenvalues of matrix A0 are real and negative and the vibration does not yet
happen. For last two cases the solutions, corresponding to matrix A0, are stable. Further only
the first case will be taken into account.

Let U(t) = U0(t)V (t), then the problem (24) is reduced to

V̇ = μϕU−1
0 A1U0V +2μα

∫ t

0
�(t −τ)ϕ(τ)U−1

0 (t)A1U0(τ )V (τ)dτ, V (0) = I. (25)

If the matrices U−1
0 and U0 depend on the same argument t , then

U−1
0 A1U0 =

( 1
2β

sin 2βt + α

2β2 (1 − cos 2βt) 1
2β2 (1 − cos 2βt)

− ω2

2β2 − β2−α2

2β2 cos 2βt − α
β

sin 2βt − 1
2β

sin 2βt − α

2β2 (1 − cos 2βt)

)
.



166 Mech Time-Depend Mater (2010) 14: 153–171

Assuming μ is sufficiently small, we see that system (25) has a standard form and its solution
may be obtained by the averaging method. After averaging we find

1

T

∫ T

0
ϕU−1

0 A1U0dt =
(

a − α(b−c)

β
c−b
β

α2−β2

β
b − 2αa − ω2c

β
−a + α(b−c)

β

)
≡ C

where

a = 1

2βT

∫ T

0
ϕ(τ) sin 2βτdτ, b = 1

2βT

∫ T

0
ϕ(τ) cos 2βτdτ,

c = 1

2βT

∫ T

0
ϕ(t)dt.

Let us average the last term in (25). Remembering that �(t) ≤ e−αt and using the main-value
theorem for integral in the point τ ∈ [0, T ] we get

1

T

∫ T

0

∫ t

0
�(t − τ)U−1

0 (t)ϕU−1
0 A1U0dτdt ≈ 1

2

∫ T

0
ϕ(τ)U−1

0 (τ )A1U0(τ )dτ = T

2
C.

Averaging problem (25) is written as follows

V̇ = μ(1 + αT )CV, V (0) = I.

The problem has the solution V (t) = exp(μ̄Ct) where μ̄ = μ(1 + αT ). It is easy to verify

C2 = (a2 + b2 − c2)I.

Denoting r = √
a2 + b2 − c2, we find C2k = r2kI , C2k+1 = r2kC, k = 1,2, . . . and

V (t) = I + μ̄tC + 1

2! μ̄
2t2C2 + 1

3! μ̄
3t3C3 + · · ·

= I

(
1 + 1

2! μ̄
2t2r2 + 1

4! μ̄
4t4r4 + · · ·

)
+ C

(
μ̄t + 1

3! μ̄
3t3r2 + · · ·

)

= I cosh(μ̄tr) + C

r
sinh(μ̄tr).

Approximate solution of problem (24) is written as

U(t) = U0(t) cosh(μ̄rt) + U0(t)C
1

r
sinh(μ̄rt). (26)

This is the approximate value of fundamental matrix of system (23). As we see this approach
does not change the frequency of vibrations, but the damping factor and the character of the
solution have been changed: if μ ≤ α/r(1 + αT ) the solution is stable and if μ > α/r(1 +
αT ) it is instable. It is seen that the effect of the last term in (25) to the results may be
essential.

If we put t = T the monodromy matrix is obtained from (26). Eigenvalues of monodromy
matrix U(T ) are the roots of the equation det[U(T ) − ρI ] = 0, which may be written as

ρ2 − ρ TrU(T ) + detU(T ) = 0. (27)
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Since

detU(T ) = exp

(∫ T

0
TrAdτ

)
= exp(−2αT )

obtained exactly, we use monodromy matrix to find its trace TrU(T ). Solve for the eigen-
value ρ via the quadratic formula

ρ1,2 = TrU ± √
(TrU)2 − 4 detU

2
.

The sign of the discriminant � = (TrU)2 − 4 detU determines whether we have two dis-
tinct real eigenvalues, one repeated real eigenvalue or a complex conjugate pair of eigen-
values. The condition � = (TrU)2 − 4 detU = 0 gives us two equal roots, of which
|ρ1| = |ρ2| = exp(−αT ). Since x(t + nT ) = ρx(t + (n − 1)T ) = · · · = ρnx(t) and the state
t → ∞ is equivalent to n → ∞, then if |ρ| = 1 the zero solution x ≡ 0 is stable, if |ρ| < 1 is
asymptotic stable, and if |ρ| > 1 is instable. If ρ = 1 the solution is T -periodical. For α > 0
we see that |ρi < 1|, therefore the zero solution of system (23) is asymptotic stable, if α = 0
it is stable and if α < 0 it is instable.

It is not difficult to verify

TrU(T ) = 2e−αT cosh(μ̄rT ) cosβT − 2c

r
e−αT sinh(μ̄rT ) sinβT .

So (27) is written as

ρ2 − 2ρe−αT

[
cosh(μ̄rT ) cosβT − c

r
sinh(μ̄rT ) sinβT

]
+ e−2αT = 0 (28)

and has the solutions

ρ1,2 = e−αT

{
cosh(μ̄rT ) cosβT − c

r
sinh(μ̄rT ) sinβT

±
√[

cosh(μ̄rT ) cosβT − c

r
sinh(μ̄rT ) sinβT

]2

− 1

}
. (29)

If μ = 0 we get

ρ1,2 = e−αT (cosβT ± i sinβT )

For the values βT �= kπ , k = 1,2, . . . multiplicators are complex-conjugate and |ρ1| =
|ρ2| = exp(−αT ). For the values βT = kπ , k = 1,2, . . . multiplicators are real and one
of them may be greater than unity. In this case from (29) for |ρ1| > 1 we find

∣∣∣∣ cosh(μ̄rT ) cosβT − c

r
sinh(μ̄rT ) sinβT

∣∣∣∣ > coshαT . (30)

This inequality defines the regions of instability of the zero solution of (22). Note that the
condition � = (TrU)2 − 4 detU > 0, which corresponds to existence of two distinct real
eigenvalues, gives us the inequality like (30), for which the right hand side is equal to one.
Such condition is not sufficient for appearance instability of solution for α > 0. It is obvious
that for appearance of instability the amplitude of periodic load should satisfy the inequality
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μ > α/r(1 + αT ). As we see the last term in (22) reduces to decreasing the amplitude of
external force required to cause dynamic instability of the plate. The inequality

d

dα

(
α

1 + αT

)
= 1

(1 + αT )2
> 0

shows that the greater the viscous strength of material of the plate (with the same values of
other parameters), the greater the amplitude of force required to cause dynamic instability
of the shell.

Theorem 4 In the parameter space (α,μ,ω) inequality (30) defines the half-conical do-
mains of instability of the solution of (22).

Proof Since the damping factor α and the amplitude of external force μ are usually very
small in comparison with the unit, we can simplify formula (30) by neglecting the terms
containing higher powers of α and μ. For α = 0, μ = 0 considering β → ω, from (30) we
get | cosωT | ≥ 1, i.e. ωT = kπ , k = 1,2, . . . Expanding inequality (30) the series around
the values

α = 0, μ = 0, ω = kπ

T
(k = 1,2, . . .)

up to μ2 we will get

r2
k μ̄2 ≥ α2 +

(
ω − kπ

T
− γ + μ̄ck

)2

, α ≥ 0 (31)

where r2
k = a2

k + b2
k ,

ak = 1

2kπ

∫ T

0
ϕ(r) sin

2kπr

T
dr, bk = 1

2kπ

∫ T

0
ϕ(r) cos

2kπr

T
dr,

ck = 1

2kπ

∫ T

0
ϕ(r)dr.

The region of instability corresponding to k = 1 is called the principal region of dynamic
instability. For k = 1,3,5, . . . the period of solution is 2T , but for k = 2,4,6, . . . the period
is equal to T . As it is seen two solutions of identical periods bound the region of instability
and two solutions of different periods bound the region of stability (Fig. 1). The parameter
space is divided into stability and instability domains.

In the space of parameters (α,μ,ω) condition (31) defines the half conical domains with
the axis ω = kπ

T
+ μck and the generators ω = kπ

T
+ μck ± μrk on the plane α = 0, as far as

α = 0 implies ε = 0 and γ = 0. Since rk decreases for increasing k, the angle between these
lines becomes narrower. The intersections of conies (31) with the plane α = const > 0 are
the following hyperbolas

(1 + αT )2r2
k

α2
μ2 −

(
ω − kπ

T
− γ + μ(1 + αT )ck

α

)2

≥ 1. (32)

Here the lower bound μmin ≥ α
rk(1+αT )

for the amplitude of external force is found. For
increasing k the fraction α

rk(1+αT )
also increases, therefore the corresponding domains of

instability is far away from the ω axis. Hyperbola (32) does not intersect with the ω axis, its
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Fig. 1 The domains of
instability

real semi-axis equals to α/rk(1 +αT ), the vertex is situated on the point μ = α/rk(1 +αT )

and the asymptotes are found from the inequalities

−ck − rk <
ω − kπ/T

μ
< rk − ck, α = 0 (33)

i.e. for α = 0 the resonance domains begin from the points ω = kπ
T

. We see that the width
of the region of dynamic instability rapidly decreases as the number of the region increases.
The numbers μck indicate the differences between the resonance frequencies and the num-
bers kπ/T .

The bound of domain (33) are defined by the equations

μ = 1

rk − ck

(
ω − kπ

T

)
, μ = −1

rk + ck

(
ω − kπ

T

)
.

Tangent of the doubled angle between the axis of the cone and the vertical line to the ω axis
is equal to 2ck/(1 + r2

k − c2
k). For ck = 0, i.e. if the middle value of the periodic actions is

zero, the axis of the cone is perpendicular to the ω axis. For increasing k the numbers ck and
rk are decreasing, therefore the axis of resonance cones becomes perpendicular to ω axis.
With increasing viscosity the parameter γ also increases and the vertex of the cone retires
to the right-hand side of the plane ω = kπ/T as γ and to the left-hand side as μck .

Cross-section of half-cone (31) by the plane μ = const provides half-circle with the ra-
dius μ̄rk and the center is on the point α = 0, ω = kπ

T
− μck . While increasing α the insta-

bility domains along ω axis becomes narrower and vanishes for α/(1 + αT ) = μrk at all.
This means that the motion cannot be unstable if the damping is so high that the inequal-
ity α/(1 + αT ) > μrk holds. Since for increasing k the numbers ak , bk , ck , rk decrease,
cones (31) also become narrower with increasing the number of resonance domains. In this
case the amplitude of external perturbation μmin = α

rk(1+αT )
also increases. �

Example 4 If T -periodic function ϕ(t) in the domain 0 < t < T is given as Dirac’s delta

ϕ(t) = δ(t − T
2 ), we find ak = 0, bk = (−1)k

2kπ
, ck = rk = 1

2kπ
. Inequality (31) becomes

μ2 ≥
(

2kπ

T (1 + αT )

)2[
α2T 2 +

(
ωT − kπ − γ T + μ(1 + αT )T

2kπ

)2]
.

For the parametric resonance could take place, the amplitudes of the external actions should
be greater than the certain positive numbers for the above mentioned formula. Moreover, the
lower bound increases while the numbers of instability regions increase.
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Example 5 For the T -periodic function

ϕ(t) =
{

p, 0 ≤ t ≤ T/2,

−p, T /2 ≤ t ≤ T

we find bk = ck = 0, k = 1,2,3, . . . and a2m = 0, a2m−1 = Tp

π2(2m−1)2 , r2m−1 = a2m−1, m =
1,2,3, . . . Thus all even regions of instability are degenerated and for odd regions we get

μ2 ≥ π4(2m − 1)4

T 2p2(1 + αT )2

[
α2 +

(
ω − (2m − 1)π

T
− γ

)2]
, m = 1,2,3, . . .

from (31). As we see the third, the fifth. . . regions of instability can occur only with suffi-
ciently large amplitudes of the external force.

Example 6 For the function ϕ(t) = cos θt we obtain a1 = c1 = 0, b1 = r1 = 1
2θ

and θ = 2ω
k

.
Equation θ = 2ω

k
(k = 1,2,3, . . .) gives the relationship between the frequency of external

force and the frequencies of free vibrations of the shell. Near the points the formation of
vibrations with unboundedly increasing amplitudes are possible. Since θ = 2ω for k = 1,
the parametric resonance takes place when the frequency θ of the external action is equal to
the double eigenvalues of the system. From (31) it follows that

μ̄2 ≥ α2 + γ 2

r2
1

= 4θ2(α2 + γ 2).

In addition to the above mentioned results we may note that if θ = 2ω and

(a) if μ̄2 > 4θ2(α2 + γ 2) the vibrations are instable; there will be parametric resonance;
(b) if μ̄2 = 4θ2(α2 + γ 2) the vibrations are stable and tend to periodic motion;
(c) if μ̄2 < 4θ2(α2 + γ 2) the vibrations are asymptotically stable.

Generally, the resonance domain in the space (α,ω,μ) consists of the union of half space
α < 0 with the half horn domains on α ≥ 0 satisfied the conditions μ̄2 ≥ α2

r2
k

. Horn domains

begin from the points ω = kπ/T on ω axis and incline towards α0μ plane with the increas-
ing viscosity.

5 Conclusion

The partial integro-differential equations for dynamic stability of isotropic homogeneous
viscoelastic extremely shallow and the circular cylindrical shells with any hereditary proper-
ties, including time-dependence of Poisson’s ratio, are derived. These equations are reduced
to the ordinary integro-differential equation with variable coefficients. Using the Laplace
integral transform, the ordinary integro-differential equation is reduced to the new integro-
differential one, the main part of which coincides with damped Hill’s equation. The pa-
rameter of Hill’s equation depends on the Fourier transforms of the hereditary kernel and
the frequency of elastic vibrations. The integral term in the obtained integro-differential
equation is proportional to the product of two small parameters and tends to zero by time.
The monodromy matrix for the integro-differential equation is obtained using the averaging
method. Supposing the module of the eigenvalue of the monodromy matrix is greater than
the unit, the stability condition is obtained. Analysis of the obtained inequality in the three-
dimensional space of parameters is carried out. The effect of viscoelasticity on the instability
region is investigated and it is found that viscoelasticity increases the stability of the shell.
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