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Abstract In this study, we give a thorough analysis of
a general affine gravity with torsion. After a brief expo-
sition of the affine gravities considered by Eddington and
Schrödinger, we construct and analyze different affine grav-
ities based on the determinants of the Ricci tensor, the tor-
sion tensor, the Riemann tensor, and their combinations. In
each case we reduce equations of motion to their simplest
forms and give a detailed analysis of their solutions. Our
analyses lead to the construction of the affine connection
in terms of the curvature and torsion tensors. Our solutions
of the dynamical equations show that the curvature tensors
at different points are correlated via non-local, exponential
rescaling factors determined by the torsion tensor.

1 Introduction

The general theory of relativity is based on the relativistic
gravitational action known as the Einstein–Hilbert action [1,
2]. The metric tensor is the fundamental dynamical variable.
With the addition of an appropriate extrinsic curvature the
Einstein field equations can be derived. The theory is purely
metrical.

Proceeding from Einstein’s metric formulation, Edding-
ton considered in 1919 [3,4] a reformulation of the theory in
terms of only a connection, not a metric. His suggestion was
altering the metrical gravitational field through the affine con-
nection, which was first realized by Weyl [5]. Within this con-
text, he proposed a kind of gravitational action constructed
by the square root of the determinant of the symmetric Ricci
tensor:

IEdd =
∫

d4x
√|R| (1)

with R being the determinant of Rμν corresponding to the
symmetric part of the Ricci tensor.
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Without the notion of metric, introducing the affine con-
nection � as the gravitational field and choosing its symmet-
ric one, the variation of the Ricci tensor with respect to that
connection is given as follows:

δRμν = ∇ρ

(
δ�ρ

μν

)
− ∇ν

(
δ�ρ

μρ

)
, (2)

where ∇ is defined as the covariant derivative operator with
respect to the affine connection �. Then, by keeping the pro-
posed action (1) stationary, the variation (2) leads to the equa-
tion of motion:

∇ρ

[√|R|
(
R−1

)μν] = 0. (3)

A solution to the last equation is provided by defining an
invertible tensor field gμν such that

√|R|
(
R−1

)μν = �
√|g|

(
g−1

)μν

, (4)

where g is the determinant of gμν and � is a constant. Then
Eq. (4) ends up in the same form as the Einstein field equa-
tions with a purely cosmological constant �:

Rμν = �gμν, (5)

which shows the significance of the Eddington approach to
the theory of gravity by giving a dynamical origin to the
general relativity. Moreover, having the equation of motion
(3) and its solution (4) directly result in the compatibility
condition∇ρgμν = 0 for our metric solution in Eq. (5), which
shows the crucial result that the symmetric affine connection
�

ρ
μν used in Eddington gravity turns out to be the Levi-Civita

connection {ρμν}g itself used in general relativity:

{ρμν}g = 1

2

(
g−1

)ρσ [
∂μgσν + ∂νgσμ − ∂σ gμν

]
. (6)

Having obtained the Einstein field equations only in vacuum
(5) without its matter part, which is described by the energy-
mometum tensor Tμν , is the essential problem of this theory,
thus Eddington gravity is not a complete theory.
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To include matter into Eddington’s affine gravity, “Eddi-
ngton-inspired Born–Infeld gravity” was proposed with its
metric–affine formulation in which both metric and connec-
tion fields are taken into account independently [6]. An alter-
native formulation of purely affine gravity in the presence of
matter fields was also formulated in [7]. Recently, another
attempt for incorporating matter into the field equations
in Eddington’s affine picture was provided by “Riemann-
improved Eddington theory” [8]. In this study, the Edding-
ton action (1) was extended by Riemann curvature so that it
led to a dynamical derivation for the complete Einstein field
equations. Another recent work was proposed by construct-
ing torsional metric which after using a given Lagrangian
density with curvature led to the matter coupling to the affine
gravity [9]. It was also shown that matter can be incorporated
when Eddington gravity is formulated in a spacetime that is
immersed in a larger eight dimensional space [10,11]. As
well as making use of an affine framework to include matter
into gravity as clarified above, it should also be noticed that
the affine framework is particularly useful for addressing the
cosmological constant problem properly [8,10].

Eddington gravity is based on the symmetric (torsionless)
affine connection field and on the symmetric Ricci tensor of
that connection. In addition to Eddington’s approach, a more
generalized formulation was given by Schrödinger in that he
used a nonsymmetric (torsionful) connection field and intro-
duced a nonsymmetric metric tensor [3]. Unlike Eddington
gravity, this metric structure was not obtained dynamically;
it was considered as just a prescription. However, using the
nonsymmetric metric structure, which was suggested earlier
by Einstein and Straus [12], resulted in the unification of
the electromagnetism and gravitation, in which the electro-
magnetic field is represented by the antisymmetric part of
the metric tensor itself [13]. Some detailed examinations of
the nonsymmetric purely affine gravity can also be found in
[9,14–16].

In the present work, we give a detailed study of the tor-
sion effects on the purely affine gravity, where we propose
torsional action models based on the Ricci and Riemann cur-
vatures as well as the torsion tensor. In our study, the metric
structure is not obtained dynamically, then we exclude the
metric tensor from our affine formulation. In this respect, we
keep the affine connection as the fundamental gravitational
field itself.

In the two torsional actions involving Ricci curvature, we
obtain the gravitational field equations for the general, sym-
metric, and antisymmetric Ricci tensors so that we are able
to construct a nonsymmetric connection field in the case
of the symmetric Ricci tensor and the nonsymmetric con-
tracted connection in the case of an antisymmetric one. The
torsionful connection structures together with the torsionful
gravitational field equations lead to the non-local, exponen-
tial rescaling of the Ricci curvatures considered as general,

symmetric, and antisymmetric, and some of the rescalings
are determined by the torsion tensor explicitly. Moreover,
achieving the affine connection for symmetric Ricci ten-
sor brings about the examination of geodesic equation. In
the action involving the Ricci tensor in which the torsion
determinant appears explicitly, we introduce a scalar func-
tion including a torsion determinant such that it modifies the
results of our action model based on the purely Ricci deter-
minant, except that in both action models for the rescaling of
symmetric Ricci tensor we obtain the same form.

In the other two torsional actions involving the Riemann
curvature, we also show the gravitational field equations and
for the Riemann curvature in both actions we also define
the non-local, exponential rescaling determined by the tor-
sion tensor. In the action including the Riemann tensor in
which the torsion determinant is again seen explicitly, we
introduce another scalar function involving the torsion deter-
minant such that it also appears as the modification to the
results obtained from the action constructed by the purely
Riemann determinant.

Our paper is organized as follows: in Sect. 2, without the
notion of metric, we review the Schrödinger’s generaliza-
tion of Eddington gravity. In Sect. 3, we propose the action
model, where the torsion determinant appears as an exten-
sion to the Ricci curvature. In Sect. 4, inspired by the model
given in Sect. 2, we analyze the torsional action based on
the Riemann determinant, and in Sect. 5 we examine the last
action in which Riemann curvature is modified by the torsion
determinant. In Sect. 6, we summarize our results.

2 Schrödinger’s generalization of Eddington gravity

We start the examination by considering an elegant action
in which our Lagrangian density is constructed by only the
Ricci tensor including the affine connection, such that

IR =
∫

d4x
√|R|, (7)

where R ≡ Det
[
Rμν

]
and R ≡ R (�).

To see the dynamics of this type of gravitational action (7),
let us apply the variational principle with respect to the non-
symmetric connection in question as the fundamental gravi-
tational field itself. To this end, the variation of the action is
given by

δ IR =
∫

d4xδ
√|R| = 1

2

∫
d4x

√|R|
(
R−1

)νμ

δRμν. (8)

As we are interested in the variation according to the con-
nection, we take into account the Palatini formula [4,17],

δRμν = ∇ρ

(
δ�ρ

μν

)
− ∇ν

(
δ�ρ

μρ

)
− 2Sσ

ρνδ�
ρ
μσ . (9)
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In this paper, as we consider the antisymmetric part of the
connection, i.e., Sρ

μν = �
ρ
[μν], as well as the symmetric part

of it the last torsional term in the variation (9) comes out as the
starting point of the torsional contribution to the Eddington
gravity, and here we should also notice the tensorial form of
the variation of the connection δ�

ρ
μν [4].

Then our action becomes

δ IR = 1

2

∫
d4x

√|R|
(
R−1

)νμ [
∇ρ

(
δ�ρ

μν

)
− ∇ν

(
δ�ρ

μρ

)

− 2Sσ
ρνδ�

ρ
μσ

]
. (10)

We improve Eq. (10) by the integration by parts for the terms
involving covariant derivatives so that we can take advantage
of the identity [4,18]
∫

d4x∇μ

(
JVμ

)
= 2

∫
d4xSμ JV

μ, (11)

where J is any scalar density and it corresponds to
√|R| in

our formalism.
The identity given above is verified by applying the Gaus-

sian theorem to the relation given by combining the covariant
derivative of a scalar density J [4],

∇ρ J = ∂ρ J − �σ
σρ J, (12)

with the same derivative of a contravariant vector Vμ in
which process we consider a vanishing hypersurface inte-
gral.

Thus, by taking advantage of Eq. (11), the variation under
an arbitrary connection becomes

δ IR =
∫

d4x

{
− 1

2
∇ρ

[√|R|
(
R−1

)νμ]

+ 1

2
∇σ

[√|R|
(
R−1

)σμ]
δν
ρ + √|R|

(
R−1

)νμ

Sρ

−√|R|
(
R−1

)σμ

Sσ δν
ρ −√|R|

(
R−1

)σμ

Sν
ρσ

}
δ�ρ

μν,

(13)

for which the principle of least action, δ IR = 0, results in
the most general field equations:

∇ρ

[√|R|
(
R−1

)νμ]
− ∇σ

[√|R|
(
R−1

)σμ]
δν
ρ

− 2
√|R|

(
R−1

)νμ

Sρ + 2
√|R|

(
R−1

)σμ

Sσ δν
ρ

+ 2
√|R|

(
R−1

)σμ

Sν
ρσ = 0. (14)

One may go further than Eq. (14) by carrying out the con-
traction with respect to the indices ρ and ν such that it results
in

∇σ

[√|R|
(
R−1

)σμ]
= 4

3

√|R|
(
R−1

)σμ

Sσ , (15)

which, after plugging it into the most general field equations,
leads to

∇ρ

[√|R|
(
R−1

)νμ]
− 2

√|R|
(
R−1

)νμ

Sρ

+ 2

3

√|R|
(
R−1

)σμ

Sσ δν
ρ + 2

√|R|
(
R−1

)σμ

Sν
ρσ = 0.

(16)

Here, one more thing to obtain the desired tensorial field
equations is to get rid of the scalar density

√|R|. With this
aim, multiplying the last equation by Rμν and implementing
to the first term partial differentiation with the fact that

∇ρ

√|R| = −1

2

√|R|Rμν∇ρ

[(
R−1

)νμ]
, (17)

we obtain

∇ρ

√|R| = 8

3

√|R|Sρ. (18)

After checking, one may realize that Eq. (17) is naturally
compatible with Eq. (12) in which we regard the Jacobi for-
mula that the differential of a determinant [19], say Det [A]
(such as Det

[
Rαβ

]
in our notation) is equivalent to the trace

of the adjoint of a matrix A multiplied by its differential dA,
that is,

d (Det [A]) = Det [A]Tr
[
A−1dA

]
. (19)

Then after using Eq. (18) in Eq. (16), we obtain the field
equations with the inverse Ricci tensor such that

∇ρ

[(
R−1

)νμ]
+ 2

3
Sρ

(
R−1

)νμ + 2

3
Sσ δν

ρ

(
R−1

)σμ

+ 2Sν
ρσ

(
R−1

)σμ = 0. (20)

After multiplying with Rμκ and Rξν , the last equation can
also be expressed as

∇ρ

[
Rμν

] − 2

3
SρRμν − 2

3
SνRμρ − 2Sσ

ρνRμσ = 0. (21)

We are now in a position to show significant effects of the
tensorial field equations (21) on our Ricci tensor, where the
situation is now clearly different from Eddington gravity due
to the torsion, i.e. the antisymmetric part of the connection,
contributions. Let us first see the case by multiplying Eq. (21)
by the inverse Ricci tensor

(
R−1

)νμ
as follows:

(
R−1

)νμ ∇ρ

[
Rμν

] = 16

3
Sρ, (22)

which can also be seen from Eqs. (17) and (18). Then we
have
(
R−1

)νμ

∂ρ

[
Rμν

] = 16

3
Sρ + 2�

β
βρ. (23)
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Via Eq. (19), the last equation leads to

Det
[
Rμν

(
xσ

)] = exp

{ ∫ xσ

xσ
0

(16

3
Sρ + 2�

β
βρ

)
dxρ

}

×Det
[
Rμν

(
xσ

0

)]
. (24)

Let us now consider the general coordinate transformations
xσ

0 → xσ (xσ
0 ) under which the Ricci tensor transforms as

Rμν

(
xσ

) = ∂xα
0

∂xμ

∂xβ
0

∂xν
Rαβ

(
xσ

0

)
. (25)

Then taking the determinant of Eq. (25) leads to

Det
[
Rμν

(
xσ

)] =
(
Det

[
∂xμ

0

∂xν

])2

Det
[
Rμν

(
xσ

0

)]
. (26)

One may here see that the equality of the right-hand sides of
Eqs. (26) and (24) results in the determinant being given by

Det
[
Jμ
ν

] = exp

{∫ xσ

xσ
0

(
8

3
Sρ + �

β
βρ

)
dxρ

}
, (27)

where we have introduced the Jacobian matrix Jμ
ν = ∂xμ

0
∂xν

responsible for the transformation of the coordinates from
xν to xμ

0 .
In affine spacetime, a simple relation for the determinant

in (27) of the Jacobian can be given by

Jμ
ν = δμ

ν exp

{∫ xσ

xσ
0

(
2

3
Sρ + 1

4
�

β
βρ

)
dxρ

}
, (28)

which has a significant implication on our Ricci tensor; plug-
ging it into Eq. (25) leads to the non-local, exponential rescal-
ing of the Ricci curvature:

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

(
4

3
Sρ + 1

2
�

β
βρ

)
dxρ

}
Rμν

(
xσ

0

)
.

(29)

The exponential factor

K
(
xσ , xσ

0

) = exp

{∫ xσ

xσ
0

(
4

3
Sρ + 1

2
�

β
βρ

)
dxρ

}
(30)

is here totally responsible for this non-local rescaling such
that the torsion vector shifted by the contracted connection
provides the Ricci tensor with a conformal mapping from
a point xσ

0 to another one xσ over the spacetime structure
including the nonsymmetric affine field [20].

Having studied the Ricci tensor with nonsymmetric con-
nection, the field equations (21) can now be written in both
cases, with symmetric and antisymmetric parts, as [4]

∇ρR(μν) − 2

3
SρR(μν) − 1

3
SμRνρ − 1

3
SνRμρ − Sσ

ρμRνσ

− Sσ
ρνRμσ = 0, (31)

∇ρR[μν] − 2

3
SρR[μν] + 1

3
SμRνρ − 1

3
SνRμρ + Sσ

ρμRνσ

− Sσ
ρνRμσ = 0. (32)

Here, we have used the indices μ and ν as expected from
our nonvanishing Ricci determinant in the action (7), and it
should be noticed that Rμν = R(μν) + R[μν].

One may now examine Eq. (31) in the special case where
the Ricci tensor is taken to be symmetric, i.e. Rμν = R(μν).
In this case, we get

∇ρRμν = 2

3
SρRμν + 1

3
SμRνρ + 1

3
SνRμρ + Sσ

ρμRνσ

+ Sσ
ρνRμσ . (33)

Owing to the appearance of the symmetric Ricci tensor, the
last equation is the best expression so that only it can provide
us with a solution for the nonsymmetric connection. There-
fore, after cyclic permutation, Eq. (33) gives

∇μRνρ + ∇νRρμ − ∇ρRμν = 2

3
SμRνρ + 2

3
SνRμρ

+ 2Sσ
μρRνσ + 2Sσ

νρRμσ .

(34)

In addition, using covariant derivatives in Eq. (34), we also
have

∇μRνρ + ∇νRρμ − ∇ρRμν = ∂μRνρ + ∂νRρμ − ∂ρRμν

− 2�σ
μνRρσ + 2Sσ

μνRρσ + 2Sσ
μρRσν + 2Sσ

νρRμσ , (35)

where we have used the definition of the affine connection,
i.e. �

ρ
μν = �

ρ

(μν) + �
ρ
[μν] with �

ρ
[μν] = Sρ

μν . Equating the

last two equations and multiplying the sides by
(
R−1

)αρ
, we

end up with the nonsymmetric connection in the case of the
symmetric Ricci tensor:

�ρ
μν = {ρμν}Rs (�) − 1

3

(
δρ
μSν + δρ

ν Sμ

) + Sρ
μν, (36)

where the symbol

{ρμν}Rs (�) = 1

2

(
R−1

)ρσ [
∂μRσν + ∂νRσμ − ∂σ Rμν

]
(37)

is for the notion of a connection known as Christoffel-
brackets [21] in terms of the symmetric Ricci tensor. Thus,
the parallel displacement of our vectors from one tangent
space to another one over torsionful geodesics is due to the
functions of Rμν and their linear first derivatives in addition
to the torsion tensor.

It is now also possible to search a conformal factor for the
symmetric Ricci tensor by multiplying Eq. (33) by

(
R−1

)νμ
,

(
R−1

)νμ ∇ρ

[
Rμν

] = 16

3
Sρ, (38)

which, by considering the general coordinate transforma-
tions, leads to

123



Eur. Phys. J. C (2016) 76 :164 Page 5 of 14 164

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

(
4

3
Sρ + 1

2
�

β
βρ

)
dxρ

}
Rμν

(
xσ

0

)
.

(39)

As clearly seen from Eqs. (38) and (39), and as expected,
they have the same form as Eqs. (22) and (24), except that
our Ricci tensor is here symmetric, i.e. R[μν] = 0; hence
we can take advantage of the connection (36) by using it in
Eq. (39). Then the contraction of the connection with respect
to ρ and μ leads to

�
β
βρ = {ββρ}Rs (�) − 8

3
Sρ, (40)

which after plugging into Eq. (39) results in the final expres-
sion for the rescaling of the symmetric Ricci tensor:

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

1

2
{ββρ}Rs (�)dx

ρ

}
Rμν

(
xσ

0

)
, (41)

where Rμν is therefore rescaled by the non-local, exponential
factor given by

Ks
(
xσ , xσ

0

) = exp

{∫ xσ

xσ
0

1

2
{ββρ}Rs(�)dx

ρ

}
. (42)

It can also be seen that Eq. (41) can be directly obtained from
the contracted Christoffel-brackets.

Thus, it is essential to emphasize that although we keep the
nonsymmetricity of the connection, the torsion effects do not
appear explicitly in the conformal mapping of the symmetric
Ricci tensor. In other words, the contracted connection (40)
eliminates the explicit contribution of torsion to the rescaling,
and it leaves only the Christoffel-brackets, which have been
written in terms of Rμν(�), as responsible for the conformal
transformation.

Additional to the examinations given above, one can
decompose the symmetric Ricci tensor under the change of
the connection from the Christoffel one such that the separa-
tion of the connection can be written as

�ρ
μν = {ρμν}Rs (�) + Eρ

μν, (43)

where Eρ
μν is a tensor due to the difference between the two

connections. Then Eq. (43) leads to the decomposition of the
Ricci tensor,

Rμν (�) = Rμν

({ρμν}Rs (�)

) + ∇ρEρ

(μν) − ∇(νEρ

μ)ρ

+ Eρ
σρEσ

(μν) − Eρ

σ(νEσ
μ)ρ, (44)

where we should be aware of two different Ricci tensors
together with two different connection structures such that
the first term on the right-hand side is the Ricci tensor
Rμν

({ρμν}R(�)

)
constructed from the connection known as

Christoffel-brackets {ρμν}R(�), which is with respect to the
other Ricci tensor Rμν (�) constructed from the affine con-
nection �

ρ
μν . The covariant derivatives are here taken with

respect to the Christoffel-brackets. Actually, since Rμν (�) is
repeated in Rμν

({ρμν}R(�)

)
Eq. (44) is not a finite expression,

however; it may be good to write the decomposition to see
the difference from the torsional action as will be examined
after this section. Then by considering the affine connection
(36), plugging

Eρ
μν = −1

3

(
δρ
μSν + δρ

ν Sμ

) + Sρ
μν (45)

into Eq. (44) we end up with the decomposition determined
by the torsional terms:

Rμν (�) = Rμν

({ρμν}R(�)

) − 1

3
SμSν − Sρ

μσ S
σ
νρ. (46)

As a final study for the symmetric Ricci tensor, let us con-
sider the geodesic equation in curved spacetime such that it
is produced by the condition defined by the parallel displace-
ment of the tangent vector dxμ

dλ
over a path xμ(λ) [22]:

dxσ

dλ
∇σ

dxμ

dλ
= 0. (47)

With the condition given above the geodesic equation is then
formed into

d2xρ

ds2 + �ρ
μν

dxμ

ds

dxν

ds
= 0, (48)

by which it is also obvious that in flat spacetime owing to
a vanishing affine connection the geodesics become straight
lines.

Since dxμ and dxν are symmetric, the contribution to the
equation of motion (48) comes from just the symmetric part
of the affine connection, which is known from Eq. (36) to be

�
ρ

(μν) = {ρμν}R(�) − 1

3

(
δρ
μSν + δρ

ν Sμ

)
. (49)

Putting Eq. (49) into (48), we get

ẍρ + {ρμν}R(�) ẋ
μ ẋν − 2

3
Sμ ẋ

μ ẋρ = 0, (50)

where ẍμ ≡ d2xμ

ds2 and ẋμ ≡ dxμ

ds . After writing the explicit
form of the Christoffel-brackets and using the symmetry of
ẋμ and ẋν , Eq. (50) becomes

ẍρ +
(
R−1

)ρσ dRσμ

ds
ẋμ − 1

2

(
R−1

)ρσ (
∂σ Rμν

)
ẋμ ẋν

− 2

3
Sμ ẋ

μ ẋρ = 0. (51)

Multiplying the last equation by Rρβ ẋβ gives

Rρβ ẋ
β d

ds
ẋρ + 1

2

dRρβ

ds
ẋβ ẋρ − 2

3
Rρβ Sμ ẋ

μ ẋβ ẋρ

= d

ds

(
Rρβ ẋ

β ẋρ
) − 4

3
Rρβ Sμ ẋ

μ ẋβ ẋρ = 0. (52)

123



164 Page 6 of 14 Eur. Phys. J. C (2016) 76 :164

Finally, dividing by Rρβ ẋβ ẋρ , Eq. (52) leads to

d ln
(
Rρβ ẋ

β ẋρ
) = 4

3
Sμdxμ, (53)

which after integrating results in the relation

Rμν

(
xσ

)
dxμdxν = exp

{
4

3

∫ xσ

xσ
0

Sρdxρ

}

× Rμν

(
xσ

0

)
dxμ

0 dxν
0 . (54)

The importance of the last expression comes from the metri-
cal interpretation of the Ricci tensor proposed by Eddington
[3]; with his interpretation, we can identify the line element
ds̃2 = Rμν (xσ ) dxμdxν which is conformally transported
in spacetime because of the torsion effect:

ds̃2 (
xσ

) = exp

{
4

3

∫ xσ

xσ
0

Sρdxρ

}
ds̃2 (

xσ
0

)
. (55)

After writing the field equations as symmetric and anti-
symmetric parts, we first considered the case of the symmet-
ric Ricci tensor such that it was the only condition to get and
make use of the affine connection (36) which led to some
results of the affine space of the symetric Ricci tensor. Next,
we will see the case where the Ricci tensor is taken anti-
symmetric, i.e. Rμν = R[μν]. In this case, from Eq. (32) we
have

∇ρRμν = 2

3
SρRμν − 1

3
SμRνρ + 1

3
SνRμρ − Sσ

ρμRνσ

+ Sσ
ρνRμσ . (56)

Here, by implementing the cyclic permutation, we are
allowed to acquire only a contracted connection:

�
β
βρ = 1

2
{ββρ}Ra(�) − 8

3
Sρ. (57)

We have here denoted another kind of contracted bracket
symbol with respect to the antisymmetric Ricci tensor given
by

{ββρ}Ra(�) = 1

2

(
R−1

)βσ [
∂[β Rσ ]ρ + ∂ρRσβ − ∂[σ Rβ]ρ

]
,

(58)

which has the same form as the contracted Christoffel-
brackets with respect to the symmetric Ricci tensor written
as

{ββρ}Rs (�) = 1

2

(
R−1

)βσ [
∂(β Rσ)ρ + ∂ρRσβ − ∂(σ Rβ)ρ

]
.

(59)

If we look at the rescaling of the antisymmetric Ricci ten-
sor Rμν , we can see from Eq. (56), after applying

(
R−1

)νμ

product [or directly from Eq. (29)], that

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

(
4

3
Sρ + 1

2
�

β
βρ

)
dxρ

}
Rμν

(
xσ

0

)
,

(60)

and plugging (57) into the last equation, we again see that the
contracted connection eliminates the explicit torsion effects
in Eq. (60), and then we end up with the non-local, exponen-
tial rescaling of the antisymmetric Ricci tensor, where only
the contracted Christoffel-brackets are found, as follows:

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

1

4
{ββρ}Ra(�)dx

ρ

}
Rμν

(
xσ

0

)
, (61)

where the non-local conformal factor is then written as

Ka
(
xσ , xσ

0

) = exp

{∫ xσ

xσ
0

1

4
{ββρ}R(�)dx

ρ

}
. (62)

In addition to all considerations given above, if we apply
the same cyclic permutation procedure directly (without any
restrictions on the general Ricci tensor) to Eqs. (31) and (32),
we can see the relations between the symmetric and anti-
symmetric parts of the connection [4]; Eq. (31) leads to the
symmetric part of the connection as a linear function of the
antisymmetric or torsional part of the connection:

�σ
(μν)R(ρσ) = Sσ

μρR[σν] + Sσ
νρR[σμ] − 1

3
SμRρν − 1

3
SνRρμ

+ 1

2

[
∂μR(νρ) + ∂νR(μρ) − ∂ρR(μν)

]
, (63)

and Eq. (32) gives the torsion tensor as a linear function of
its vector and of the symmetric part of the connection:

Sσ
μνR(ρσ) = �σ

(μρ)R[νσ ] + �σ
(νρ)R[σμ]

+ 1

3
SμRνρ − 1

3
SνRμρ − 2

3
SρR[μν]

+ 1

2

[
∂μR[ρν] + ∂νR[μρ] − ∂ρR[νμ]

]
. (64)

Equations (63) and (64) result in the linear combination of
the affine connection as a linear function of the torsion vector
and of the derivatives of the Ricci tensor:

�σ
μνR(ρσ) + �σ

ρμR[σν] + �σ
νρR[μσ ] = 2

3
SμR[νρ] − 2

3
SνR(μρ)

− 2

3
SρR[μν] + 1

2

[
∂μRρν + ∂νRμρ − ∂ρRνμ

]
. (65)

As expected, the last equation is also provided directly by
the general field equations (21) after applying the cyclic per-
mutation.
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3 Torsional extension to Ricci determinant

In order to see the torsion effects on the affine dynamics more
explicitly, we extend our argument with a torsional action,

IRS =
∫

d4x{a√|R| + b|S|}, (66)

where S ≡ Det
[
Sρ
μν

]
and the constants a and b are dimen-

sionless. In the action (66), the determinant of the torsion
tensor is defined as

Det[Sρ
μν] =

( 1

4!ε
α0α1α2α3εβ0β1β2β3 Sρ0

α0μ0
Sμ0
ρ0β0

× Sρ1
α1μ1

Sμ1
ρ1β1

Sρ2
α2μ2

Sμ2
ρ2β2

Sρ3
α3μ3

Sμ3
ρ3β3

) 1
2
, (67)

which is due to the fact that the construction of an even rank
tensor as the direct product of an original odd-rank tensor is
the recipe to define the determinant of the odd-rank tensor
[23–25].

Varying the action leads to

δ IRS = a

2

∫
d4x

√|R|
(
R−1

)νμ

δRμν

+ b
∫

d4x |S|
(
S−1

)νμ

ρ
δSρ

μν. (68)

Since we are concerned with the variation with respect to the
nonsymmetric gravitational field, we obtain from the second
term in Eq. (68)

b
∫

d4x |S|
(
S−1

)νμ

ρ
δSρ

μν

= b

2

∫
d4x |S|

(
S−1

)νμ

ρ

[
δ�ρ

μν − δ�ρ
νμ

]

= b

2

∫
d4x |S|

[(
S−1

)νμ

ρ
−

(
S−1

)μν

ρ

]
δ�ρ

μν

= b
∫

d4x |S|
(
S−1

)νμ

ρ
δ�ρ

μν. (69)

Then adding Eq. (69) to the variation (13), and keeping our
action stationary the most general field equations become

∇ρ

[√|R|
(
R−1

)νμ]
− ∇σ

[√|R|
(
R−1

)σμ]
δν
ρ

− 2
√|R|

(
R−1

)νμ

Sρ + 2
√|R|

(
R−1

)σμ

Sσ δν
ρ

+ 2
√|R|

(
R−1

)σμ

Sν
ρσ − 2b

a
|S|

(
S−1

)νμ

ρ
= 0. (70)

Applying the contraction with respect to the indices ρ and ν

gives the inverse torsion vector
(
S−1

)μ
as the contribution to

Eq. (15):

∇σ

[√|R|
(
R−1

)σμ]
= 4

3

√|R|
(
R−1

)σμ

Sσ

− 2b

3a
|S|

(
S−1

)μ

. (71)

Then after multiplying Eq. (70) by Rμν and plugging Eq.
(71) into (70) by taking advantage of Eq. (17), we obtain

∇ρ

√|R| = 8

3

√|R|Sρ

− b

a
|S|

(
1

3

(
S−1

)μ

δν
ρ −

(
S−1

)νμ

ρ

)
Rμν, (72)

which, by using Eq. (70) together with Eq. (71), gives

∇ρ

[(
R−1

)νμ]
+ 2

3
Sρ

(
R−1

)νμ + 2

3
Sσ δν

ρ

(
R−1

)σμ

+ 2Sν
ρσ

(
R−1

)σμ − F

{
Rαβ

[1

3

(
S−1

)α

δβ
ρ

−
(
S−1

)βα

ρ

] (
R−1

)νμ − 2

3

(
S−1

)μ

δν
ρ + 2

(
S−1

)νμ

ρ

}

= 0, (73)

where F ≡ f (R, S) = b|S|
a
√|R| is a scalar function since the

torsion and Ricci parts in the action (66) are the scalar density
of the identical weights+1, which means that the ratio of both
parts results in a scalar of weight 0.

Lowering the indices of the inverse Ricci tensor in Eq. (73)
is equivalent to the sufficient final equations for the gravita-
tional field:

∇ρ

[
Rμν

] − 2

3

[
Sρ − 3F

2
Rασ

(1

3

(
S−1

)α

δσ
ρ

−
(
S−1

)σα

ρ

)]
Rμν − 2

3

[
Sν + FRαν

(
S−1

)α]
Rμρ

− 2

[
Sσ
ρν − FRαν

(
S−1

)σα

ρ

]
Rμσ = 0. (74)

If we compare Eq. (74) with (21) we can see the contributions
of the torsion determinant to the case of the purely Ricci
determinant such that the contributions come from inverse
torsion tensor and vector, which are coupled to the Ricci
tensor and scalar function.

Let us now see the effects of the torsional gravitational
equations (74) on our Ricci tensor such that after the

(
R−1

)νμ

product of Eq. (74) [or directly from Eqs. (72) and (17)], we
get

(
R−1

)νμ ∇ρ

[
Rμν

]

= 16

3
Sρ − 2F

(
1

3

(
S−1

)μ

δν
ρ −

(
S−1

)νμ

ρ

)
Rμν, (75)

which leads to
(
R−1

)νμ

∂ρ

[
Rμν

]

= 16

3
Sρ + 2�

β
βρ − 2F

(
1

3

(
S−1

)μ

δν
ρ −

(
S−1

)νμ

ρ

)
Rμν.

(76)
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Thus, using the Jacobi formula (19), we have

Det
[
Rμν

(
xσ

)] = exp

{∫ xσ

xσ
0

[
16

3
Sρ + 2�

β
βρ

− 2F

(
1

3

(
S−1

)α

δβ
ρ −

(
S−1

)βα

ρ

)
Rαβ

]
dxρ

}

×Det
[
Rμν

(
xσ

0

)]
, (77)

which, via the general transformation of the coordinates,
results in the rescaling of Ricci tensor as

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

[
4

3
Sρ + 1

2
�

β
βρ − F

2

(1

3

(
S−1

)α

δβ
ρ

−
(
S−1

)βα

ρ

)
Rαβ

]
dxρ

}
Rμν

(
xσ

0

)
. (78)

It is finally obvious that the non-local rescaling factor is
directly given by the exponential term:

K
(
xσ , xσ

0

) = exp

{ ∫ xσ

xσ
0

[
4

3
Sρ + 1

2
�

β
βρ

− F

2

(
1

3

(
S−1

)α

δβ
ρ −

(
S−1

)βα

ρ

)
Rαβ

]
dxρ

}
.

(79)

As clearly understood from the conformal factor (79),
because of the appearing of Ricci tensor in it, Eq. (78) is
not an exact solution, that is to say, due to the torsional deter-
minant, the Ricci tensor is also responsible for the conformal
transformation of itself. However, after applying some pro-
cedures to our field equations (74), we will have a simplified
solution form, which will be the same as the first action model
(7).

As we did in the previous section, we can now write the
field equations (74) as symmetric and antisymmetric parts
with respect to the indices μ and ν:

∇ρR(μν) − 2

3

[
Sρ − 3F

2
Rασ

(1

3

(
S−1

)α

δσ
ρ

−
(
S−1

)σα

ρ

)]
R(μν) − 1

3

[
Sν + FRαν

(
S−1

)α]
Rμρ

− 1

3

[
Sμ + FRαμ

(
S−1

)α]
Rνρ

−
[
Sσ
ρν − FRαν

(
S−1

)σα

ρ

]
Rμσ

−
[
Sσ
ρμ − FRαμ

(
S−1

)σα

ρ

]
Rνσ = 0 (80)

and

∇ρR[μν] − 2

3

[
Sρ − 3F

2
Rασ

(1

3

(
S−1

)α

δσ
ρ

−
(
S−1

)σα

ρ

)]
R[μν] − 1

3

[
Sν + FRαν

(
S−1

)α]
Rμρ

+ 1

3

[
Sμ + FRαμ

(
S−1

)α]
Rνρ

−
[
Sσ
ρν − FRαν

(
S−1

)σα

ρ

]
Rμσ

+
[
Sσ
ρμ − FRαμ

(
S−1

)σα

ρ

]
Rνσ = 0. (81)

Eliminating the antisymmetric part of the Ricci tensor, i.e.
Rμν = R(μν), Eq. (80) becomes

∇ρRμν = 2

3

[
Sρ − F

2
Rαρ

(
S−1

)α
]
Rμν

+ 1

3

[
Sν + FRαν

(
S−1

)α]
Rμρ

+ 1

3

[
Sμ + FRαμ

(
S−1

)α]
Rνρ

+ Sσ
ρνRμσ + Sσ

ρμRνσ . (82)

From now on, we are ready to obtain a nonsymmetric con-
nection structure by taking advantage of Eq. (82) such that

∇μRνρ + ∇νRρμ − ∇ρRμν

= FRαρ

(
S−1)α

Rμν + 2

3

[
Sμ − F

2
Rαμ

(
S−1)α

]
Rνρ

+ 2

3

[
Sν − F

2
Rαν

(
S−1)α

]
Rμρ + 2Sσ

μρRνσ + 2Sσ
νρRμσ .

(83)

Thus, Eq. (83) with Eq. (35) results in the affine connection
given by

�ρ
μν = {ρμν}Rs (�) − F

2

(
S−1

)ρ

Rμν

− 1

3

[
δρ
μ

(
Sν − F

2
Rαν

(
S−1

)α
)

+ δρ
ν

(
Sμ − F

2
Rαμ

(
S−1

)α
)]

+ Sρ
μν, (84)

by which it is clear that due to the additional torsion deter-
minant, the shift from the connection Eq. (36) is given by

− F

2

[ (
S−1

)ρ

Rμν

− 1

3

(
δρ
μRαν

(
S−1

)α + δρ
ν Rαμ

(
S−1

)α
)]

. (85)

Furthermore, multiplying Eq. (82) by
(
R−1

)νμ
or taking the

symmetric Ricci tensor from Eq. (78) directly, we obtain

Rμν

(
xσ

) = exp

{ ∫ xσ

xσ
0

[4

3
Sρ + 1

2
�

β
βρ

− F

6

(
S−1

)α

Rαρ

]
dxρ

}
Rμν

(
xσ

0

)
, (86)

for which we are able to use the connection found in Eq. (84)
such that

�
β
βρ = {ββρ}Rs (�) − 8

3
Sρ + F

3

(
S−1

)α

Rαρ. (87)
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By substituting into Eq. (86), the contracted connection (87)
eliminates all explicit torsion contributions in the exponen-
tial conformal factor. Thus, we end up with the same map-
ping form of the symmetric Ricci tensor with our first action
model:

Rμν

(
xσ

) = exp

{∫ xσ

xσ
0

1

2
{ββρ}Rs (�)dx

ρ

}
Rμν

(
xσ

0

)
, (88)

which then has the same non-local rescaling factor form:

Ks
(
xσ , xσ

0

) = exp

{∫ xσ

xσ
0

1

2
{ββρ}Rs(�)dx

ρ

}
. (89)

However, with the decomposition we can see that the struc-
ture of the symmetric Ricci tensor Rμν(�) is now different
from the first action model and it is given by

Rμν (�) = Rμν

({ρμν}Rs (�)

) − 1

3
SμSν − Sρ

μσ S
σ
νρ

− 1

2
∇ρ

[
F

(
S−1

)ρ

Rμν

]
+ F

9

[
Sμ

(
S−1

)σ

Rσν

+ Sν

(
S−1

)σ

Rσμ

]
+ F2

18

[
3
(
S−1

)σ (
S−1

)ρ

RμνRρσ

− 5
(
S−1

)σ (
S−1

)ρ

RρμRσν

]
, (90)

which then implies that although for the action models (7)
and (66) the forms of he rescalings are the same in the case of
the symmetric Ricci tensor, they indeed have different values,
that is, the Christoffel-brackets {ββρ}Rs (�) are different in each
form due to the differences of the symmetric Ricci tensors.

Next, we examine the geodesic equation such that substi-
tuting the symmetric part of affine connection (84) into the
geodesic equation (48) with the same procedure given in the
previous section, we get

ẍρ +
(
R−1

)ρσ dRσμ

ds
ẋμ − 1

2

(
R−1

)ρσ (
∂σ Rμν

)
ẋμ ẋν

− F

2

(
S−1

)ρ

Rμν ẋ
μ ẋν

− 2

3

(
Sμ − F

2
Rαμ

(
S−1

)α
)
ẋμ ẋρ = 0. (91)

Multiplying by Rρβ ẋβ , Eq. (91) becomes

d

ds

(
Rρβ ẋ

β ẋρ
) − 4

3Rρβ Sμ

ẋμ ẋβ ẋρ

− F

3
Rρβ Rαμ

(
S−1

)α

ẋμ ẋβ ẋρ = 0, (92)

which dividing by Rρβ ẋβ ẋρ leads to

Rμν

(
xσ

)
dxμdxν

= exp

{ ∫ xσ

xσ
0

[
4

3
Sρ + F

3
Rαρ

(
S−1

)α
]

dxρ

}

×Rμν

(
xσ

0

)
dxμ

0 dxν
0 . (93)

If we consider the metrical interpretation of the Ricci tensor,
the non-local rescaling of the line element is then written as

ds̃2 = exp

{∫ xσ

xσ
0

[
4

3
Sρ + F

3
Rαρ

(
S−1

)α
]

dxρ

}
ds̃2

0 . (94)

Therefore, the torsion vector found in the rescaling factor of
the line element in the previous section is here modified by
the torsional determinant.

As the final step, let us search the case of the antisymmetric
Ricci tensor, i.e. Rμν = R[μν], for which Eq. (81) takes the
form

∇ρRμν = 2

3

[
Sρ − 3F

2
Rασ

(1

3

(
S−1

)α

δσ
ρ

−
(
S−1

)σα

ρ

)]
Rμν + 1

3

[
Sν + FRαν

(
S−1

)α]
Rμρ

− 1

3

[
Sμ + FRαμ

(
S−1

)α]
Rνρ − 2FRαν

(
S−1

)σα

ρ
Rμσ

+ Sσ
ρνRμσ − Sσ

ρμRνσ . (95)

Applying the cyclic permutation, Eq. (95) gives the con-
tracted connection:

�
β
βρ = 1

2
{ββρ}Ra(�) − 8

3
Sρ

+ F

(
5

6

(
S−1

)α

δβ
ρ −

(
S−1

)βα

ρ

)
Rαβ. (96)

After taking the
(
R−1

)νμ
product of Eq. (95), we get

Rμν

(
xσ

) = exp

{ ∫ xσ

xσ
0

[
4

3
Sρ + 1

2
�

β
βρ − F

2

(1

3

(
S−1

)α

δβ
ρ

−
(
S−1

)βα

ρ

)
Rαβ

]
dxρ

}
Rμν

(
xσ

0

)
, (97)

which is, as expected, compatible with Eq. (78).
Thus, substituting Eq. (96) into (97) results in the final

expression for the non-local conformal transformation of the
antisymmetric Ricci tensor:

Rμν

(
xσ

) = exp

{ ∫ xσ

xσ
0

[
1

4
{ββρ}Ra(�)

+ F

4

(
S−1

)β

Rβρ

]
dxρ

}
Rμν

(
xσ

0

)
, (98)

where the non-local, exponential conformal factor is then
written as

Ka
(
xσ , xσ

0

) = exp

{∫ xσ

xσ
0

[
1

4
{ββρ}Ra(�)

+ F

4

(
S−1

)β

Rβρ

]
dxρ

}
. (99)

In contrast to the case of the symmetric Ricci tensor, the form
of the rescaling of the antisymmetric Ricci tensor is now not
the same as Eq. (61) given for the first action model (7), and

123



164 Page 10 of 14 Eur. Phys. J. C (2016) 76 :164

we can see from Eq. (98) that owing to the torsional determi-
nant, the antisymmetric Ricci tensor is also responsible for
the conformal mapping of itself from one point to another
one.

4 Riemannian action based on the affine connection

Up to now we fully examined the Ricci tensor by imposing
to it a torsional meaning, and as the Ricci tensor is a subset
of Riemann curvatures itself, it is essential to analyze the
torsionful Riemannian action as given below:

I� =
∫

d4x
√|�|, (100)

where � ≡ Det
[�ρ

μσν

]
and � ≡ � (�), with the definition

Det[�ρ
μσν] = 1

(4!)2 ερ0ρ1ρ2ρ3ε
μ0μ1μ2μ3εσ0σ1σ2σ3εν0ν1ν2ν3

×�ρ0
μ0σ0ν0

�ρ1
μ1σ1ν1

�ρ2
μ2σ2ν2

�ρ3
μ3σ3ν3

. (101)

Under variation, we write the action as follows:

δ I� = 1

2

∫
d4x

√|�|
(
�−1

)νσμ

ρ
δ�ρ

μσν. (102)

In order to examine the dynamics of the action (100), we
should consider the affine connection field such that using
the Palatini formula [4,17], our variation becomes

δ I� = 1

2

∫
d4x

√|�|
(
�−1

)νσμ

ρ

[
∇σ

(
δ�ρ

μν

)

−∇ν

(
δ�ρ

μσ

)
− 2Sλ

σνδ�
ρ
μλ

]
. (103)

After applying integration by parts, by using the identity (11)
we obtain

δ I� =
∫

d4x

(
− 1

2
∇σ

[√|�|
(
�−1

)νσμ

ρ

]

+ 1

2
∇σ

[√|�|
(
�−1

)σνμ

ρ

]
+ √|�|

(
�−1

)νσμ

ρ
Sσ

−√|�|
(
�−1

)σνμ

ρ
Sσ − √|�|

(
�−1

)λσμ

ρ
Sν
σλ

)
δ�ρ

μν.

(104)

With the principle δ I� = 0, and the fact that the Riemann
tensor �ρ

μσν is antisymmetric in its last two indices σ and ν,
Eq. (104) leads to the most general field equations:

∇σ

[√|�|
(
�−1

)νσμ

ρ

]
− 2

√|�|
(
�−1

)νσμ

ρ
Sσ

+√|�|
(
�−1

)λσμ

ρ
Sν
σλ = 0. (105)

We can improve Eq. (105) by applying the differentiation
by parts for the first term and multiplying it by �ρ

μαν in
which processes the Riemann matrix multiplications with

its inverse obey the relations
(�−1

)ναμ
ρ ×�ρ

μσν = δα
σ and(�−1

)αβμ
ρ�ρ

μσν = 1
3

(
δ
β
σ δα

ν − δ
β
ν δα

σ

)
, which is expected

owing to the antisymmetric property of the Riemann tensor
in its last two indices. Then by the calculations mentioned
above we conclude with the relation

∇α

[√|�|
]

= 4

3

√|�|Sα − √|�|�ρ
μαν∇σ

[(
�−1

)νσμ

ρ

]
,

(106)

and using this last expression in the first term of Eq. (105),
we obtain the field equations without scalar density:

(
�−1

)νσμ

ρ
�ξ

κσβ∇α

[(
�−1

)βακ

ξ

]
− ∇σ

[(
�−1

)νσμ

ρ

]

+ 2

3

(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ = 0. (107)

Due to the Riemann product by its inverse with the common
σ index in the first term, Eq. (107) is not the end for us, that is
to say, we can express the Kronecker delta definitions for that
term. To do this, it is enough to consider the inverse Riemann
expression [23–25]
(
�−1

)νσμ

ρ
= 1

(3!)2

1

Det[�ρ
μσν]ερρ1ρ2ρ3ε

νν1ν2ν3εσσ1σ2σ3

× εμμ1μ2μ3�ρ1
μ1σ1ν1

�ρ2
μ2σ2ν2

�ρ3
μ3σ3ν3

(108)

with the definition of the determinant of the Riemann tensor
(101). Then multiplying each side of Eq. (108) by �ξ

κσβ , and
considering all possible contractions by taking into account
the determinant (101), we obtain the relation
(
�−1

)νσμ

ρ
�ξ

κσβ = aδξ
ρδμ

κ δν
β + bδν

ρδμ
κ δ

ξ
β + bδμ

ρ δξ
κ δν

β

+ cδν
ρδξ

κ δ
μ
β + dδμ

ρ δν
κδ

ξ
β + eδξ

ρδν
κδ

μ
β ,

(109)

where a =
(

�+�−2�+12
360

)
, b =

(−2�−2�+�+24
360

)
,

c =
(

7�+�−2�−12
360

)
, d =

(
�+7�−2�−12

360

)
, and

e =
(−2�−2�+7�

360

)
with � ≡ (

R−1
)[αβ]

Qβα ,

� ≡ (
Q−1

)αβ
R[βα], and � ≡ (�−1

)α[σβ]
γ �γ

[ασ ]β such
that Qμν is the rank-two antisymmetric tensor correspond-
ing to the contraction of the Riemann tensor with respect to
its first and second indices, �ρ

ρμν , and one may realize that,
as we are not interested in a purely symmetric connection,
we cannot relate the antisymmetric part of Ricci tensor to
Qμν , i.e. Qμν �= 2R[μν], for our torsionful gravity.

One may check Eq. (109) by noticing that the first three
possible contractions on the right-hand side should, respec-
tively, give

(�−1
)βσα

γ �γ
ασβ ,

(
R−1

)αβ
Rβα , and

(
Q−1

)αβ

Qβα , and these multiplications are naturally equal to 4 which
can also be seen directly from Eqs. (108) and (101); however,
for the last three possibilities the situation is now different, so
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that the last three possible contractions should, respectively,
lead to �, �, and �, which means that our results for now
are not scalars like 4 but locally scalar functions. Expecting
all these results of the contractions, one can also obtain the
expressions for a, b, c, d, and e.

After the explanations given above, we are now ready to
substitute Eq. (109) into Eq. (107), and hence, our field equa-
tions get the more useful form

(a − 1)∇σ

[ (
�−1

)νσμ

ρ

]
+ e∇σ

[ (
�−1

)μσν

ρ

]

− δν
ρ

{
b∇σ

[ (
R−1

)σμ ]
+ c∇σ

[ (
Q−1

)σμ ]}

− δμ
ρ

{
d∇σ

[ (
R−1

)σν ]
+ b∇σ

[ (
Q−1

)σν ]}

+ 2

3

(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ = 0. (110)

After applying the contractions with respect to indices ρ, ν

first and ρ, μ second to the last equation, we, respectively,
obtain

ã∇σ

[ (
R−1

)σμ ]
+ b̃∇σ

[ (
Q−1

)σμ ]
− 2

3

(
R−1

)σμ

Sσ

−
(
�−1

)λσμ

ρ
Sρ
σλ = 0, (111)

c̃∇σ

[ (
R−1

)σμ ]
+ d̃∇σ

[ (
Q−1

)σμ ]
− 2

3

(
Q−1

)σμ

Sσ

−
(
Q−1

)λσ

Sμ
σλ = 0, (112)

with ã =
(

�+44
60

)
, b̃ =

(−�+1
15

)
, c̃ =

(−�+1
15

)
, and d̃ =(

�+44
60

)
.

Equations (111) and (112) can be solved to obtain two
field equations as follows:

∇σ

[ (
R−1

)σμ ]
− 2

3
˜̃d
(
R−1

)σμ

Sσ − ˜̃d
(
�−1

)λσμ

ρ
Sρ
σλ

+ 2

3
˜̃b
(
Q−1

)σμ

Sσ + ˜̃b
(
Q−1

)λσ

Sμ
σλ = 0 (113)

and

∇σ

[ (
Q−1

)σμ ]
− 2

3
˜̃a
(
Q−1

)σμ

Sσ − ˜̃a
(
Q−1

)λσ

Sμ
σλ

+ 2

3
˜̃c
(
R−1

)σμ

Sσ + ˜̃c
(
�−1

)λσμ

ρ
Sρ
σλ = 0, (114)

in which we have the equations ˜̃a ≡ ã
ãd̃−b̃c̃

, ˜̃b ≡ b̃
ãd̃−b̃c̃

,

˜̃c ≡ c̃
ãd̃−b̃c̃

, and ˜̃d ≡ d̃
ãd̃−b̃c̃

. Thus, by putting the last two
equations into Eq. (110) we get the final expression for the
field equations as given below:

(a − 1)∇σ

[ (
�−1

)νσμ

ρ

]
+ e∇σ

[ (
�−1

)μσν

ρ

]

− δν
ρ

(2

3
a

(
R−1

)σμ

Sσ + 2

3
b

(
Q−1

)σμ

Sσ

+ b
(
Q−1

)λσ

Sμ
σλ + a

(
�−1

)λσμ

ρ
Sρ
σλ

)

− δμ
ρ

(2

3
c
(
R−1

)σν

Sσ + 2

3
d

(
Q−1

)σν

Sσ

+ d
(
Q−1

)λσ

Sν
σλ + c

(
�−1

)λσν

ρ
Sρ
σλ

)

+ 2

3

(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ = 0, (115)

where a ≡ bd̃−cc̃
ãd̃−b̃c̃

, b ≡ cã−bb̃
ãd̃−b̃c̃

, c ≡ dd̃−bc̃
ãd̃−b̃c̃

, and d ≡ bã−db̃
ãd̃−b̃c̃

.
Here, we can continue considering our most general field

equations such that from Eq. (105) we are able to state that

∇σ

[(
�−1

)νσμ

ρ

]
= −∇σ

[√|�|][√|�|]
(
�−1

)νσμ

ρ

+ 2
(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ

(116)

and by changing the order of the indices ν and μ we also
have

∇σ

[(
�−1

)μσν

ρ

]
= −∇σ

[√|�|][√|�|]
(
�−1

)μσν

ρ

+ 2
(
�−1

)μσν

ρ
Sσ −

(
�−1

)λσν

ρ
Sμ
σλ.

(117)

Thus, by plugging Eqs. (116) and (117) into Eq. (115) and
then by multiplying the result by �ρ

μαν , where we use the

fact that
(�−1

)μσν
ρ�ρ

μαν = �
4 δσ

α ,
(�−1

)λσν
ρ ×�ρ

μαν =
�
12

(
δλ
μδσ

α − δλ
αδσ

μ

)
with the same notion given in Eq. (109),

we obtain the equation

∇α

[√|�|][√|�|] = 2ASα − 2
(
aRμα

(
�−1

)λσμ

ρ

+ 2bRρα

(
Q−1

)λσ + 2cQμα

(
�−1

)λσμ

ρ

+ dQρα

(
Q−1

)λσ )
Sρ
σλ (118)

with a ≡ 2 bd̃−cc̃
(ãd̃−b̃c̃)(4−4a−e�)

, b ≡ cã−bb̃
(ãd̃−b̃c̃)(4−4a−e�)

,

c ≡ dd̃−bc̃
(ãd̃−b̃c̃)(4−4a−e�)

, d ≡ 2 bã−db̃
(ãd̃−b̃c̃)(4−4a−e�)

, and A =
2
3

(
1 − 2(bd̃−cc̃+bã−db̃)+ 1

2 (cã−bb̃+dd̃−bc̃)

(ãd̃−b̃c̃)(4−4a−e�)

)
.

Furthermore, by using Eq. (12) and applying the Jacobi
formula (19), Eq. (118) leads to the determinant relation for
the Riemann curvatures at different points:

Det[�ρ
μσν(x

σ )] = exp

{ ∫ xσ

xσ
0

[
4ASα

− 4
(
aRμα

(
�−1

)λσμ

ρ
+ 2bRρα

(
Q−1

)λσ
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+ 2cQμα

(
�−1

)λσμ

ρ
+ dQρα

(
Q−1

)λσ )
Sρ
σλ

+ 2�
β
βα

]
dxα

}
Det[�ρ

μσν(x
σ
0 )]. (119)

We are now in a position to consider that under the general
coordinate transformations xσ

0 → xσ (xσ
0 ) the Riemann cur-

vature transforms as

�ρ
μσν(x

σ ) = ∂x0α

∂xρ

∂xβ
0

∂xμ

∂xκ
0

∂xσ

∂xγ
0

∂xν
�α

βκγ (xσ
0 ), (120)

which, after taking the determinant of each side and compar-
ing with Eq. (119), gives the simple relation for the transfor-
mation of coordinates as given below:

Jμ
ν = δμ

ν exp

{ ∫ xσ

xσ
0

[ A
4
Sα − 1

4

(
aRμα

(
�−1

)λσμ

ρ

+ 2bRρα

(
Q−1

)λσ + 2cQμα

(
�−1

)λσμ

ρ

+ dQρα

(
Q−1

)λσ )
Sρ
σλ + 1

8
�

β
βα

]
dxα

}
. (121)

As the final step, using Eq. (121) in Eq. (120) results in the
final expression for the Riemannian curvature as the non-
local, exponential rescaling of it:

�ρ
μσν

(
xσ

) = exp

{∫ xσ

xσ
0

[
ASα −

(
aRμα

(
�−1

)λσμ

ρ

+ 2bRρα

(
Q−1

)λσ + 2cQμα

(
�−1

)λσμ

ρ

+ dQρα

(
Q−1

)λσ )
Sρ
σλ + 1

2
�

β
βα

]
dxα

}
�ρ

μσν

(
xσ

0

)
.

(122)

Thus, we can conclude that all fundamental tensors given in
the gravity, Rμν , Qμν , Sμ, �ρ

μσν , and Sρ
μν , where the first

two of them are the subsets of the Riemann curvature and
the third one is of the torsion tensor, are now responsible
for the non-local conformal transformations of the Riemann
curvature such that in the exponential rescaling factor they
are coupled to each other with the inverses of some of them,
and they are also found as a coupling to construct locally

scalar functions included in A, a, b, c, and d. One may also
take care that the mapping of Riemann tensor differs from
the Ricci one (29) with the appearance of the torsion tensor
in the conformal factor of (122).

5 Riemannian action with torsion determinant

In this last section, since the Riemann and torsion are the most
fundamental two tensors in gravity we will give some results
of an action involving a torsion determinant as a contribution
to the curvature as follows:

I�S =
∫

d4x{a′√|�| + b|S|}, (123)

where a′ and b are dimensionless constants. Applying the
variation gives

δ I�S = a′

2

∫
d4x

√|�|
(
�−1

)νσμ

ρ
δ�ρ

μσν

+ b
∫

d4x |S|
(
S−1

)νμ

ρ
δSρ

μν, (124)

by which we are then able to write the most general field
equations as the modification of the torsional determinant to
Eq. (105):

∇σ

[√|�|
(
�−1

)νσμ

ρ

]
− 2

√|�|
(
�−1

)νσμ

ρ
Sσ

+√|�|
(
�−1

)λσμ

ρ
Sν
σλ − b

a′ |S|
(
S−1

)νμ

ρ
= 0. (125)

Here, following the same processes given in the previous
section we obtain

∇α

[√|�|
]

= 4

3

√|�|Sα + b

a′ |S|�ρ
μαν

(
S−1

)νμ

ρ

−√|�|�ρ
μαν∇σ

[(
�−1

)νσμ

ρ

]
. (126)

Then by substituting Eq. (126) into Eq. (125), the field equa-
tions take the form(
�−1

)νσμ

ρ
�ξ

κσβ∇α

[(
�−1

)βακ

ξ

]
− ∇σ

[(
�−1

)νσμ

ρ

]

+ 2

3

(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ

− F ′
((

�−1
)νσμ

ρ
�ξ

κσβ

(
S−1

)βκ

ξ
−

(
S−1

)νμ

ρ

)
= 0,

(127)

with F ′ ≡ f′ (�, S) = b|S|
a′√|�| being a scalar function. Equa-

tion (109) is now necessary to improve our last equation such
that after using (109) in Eq. (127), we end up with the mod-
ified equation of (110) due to the torsional determinant:

(a − 1)∇σ

[ (
�−1

)νσμ

ρ

]
+ e∇σ

[ (
�−1

)μσν

ρ

]

− δν
ρ

{
b∇σ

[ (
R−1

)σμ ]
+ c∇σ

[ (
Q−1

)σμ ]}

− δμ
ρ

{
d∇σ

[ (
R−1

)σν ]
+ b∇σ

[ (
Q−1

)σν ]}

+ 2

3

(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ − F ′[B (

S−1
)νμ

ρ

+Cδν
ρ

(
S−1

)μ + Dδμ
ρ

(
S−1

)ν ]
= 0, (128)

where B =
(

�+�−3�−116
120

)
, C =

(−3�−�+�+12
120

)
, and

D =
(

�+3�−�−12
120

)
. Then after applying two contractions

with respect to the indices ρ, ν first and ρ, μ second for the
last equation, we obtain two expressions in which Eqs. (111)
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and (112) is modified by, respectively, −C̃ F ′ (S−1
)μ

and

−D̃F ′ (S−1
)μ

with C̃ =
(−�−8

12

)
and D̃ =

(
�+8

12

)
such

that from these modified equations we are able to find

∇σ

[ (
R−1

)σμ ]
− 2

3
˜̃d
(
R−1

)σμ

Sσ − ˜̃d
(
�−1

)λσμ

ρ
Sρ
σλ

+ 2

3
˜̃b
(
Q−1

)σμ

Sσ + ˜̃b
(
Q−1

)λσ

Sμ
σλ + ˜̃DF ′ (S−1

)μ

= 0 (129)

and

∇σ

[ (
Q−1

)σμ ]
− 2

3
˜̃a
(
Q−1

)σμ

Sσ − ˜̃a
(
Q−1

)λσ

Sμ
σλ

+ 2

3
˜̃c
(
R−1

)σμ

Sσ + ˜̃c
(
�−1

)λσμ

ρ
§ρ
σλ + ˜̃CF ′ (S−1

)μ

= 0, (130)

where ˜̃C ≡ C̃ c̃−D̃ã
ãd̃−b̃c̃

and ˜̃D ≡ D̃b̃−C̃d̃
ãd̃−b̃c̃

. Thus, by plugging
Eqs. (129) and (130) into Eq. (128) we obtain the final form
of the gravitational field equations:

(a − 1)∇σ

[ (
�−1

)νσμ

ρ

]
+ e∇σ

[ (
�−1

)μσν

ρ

]

− δν
ρ

(2

3
a

(
R−1

)σμ

Sσ + 2

3
b

(
Q−1

)σμ

Sσ

+ b
(
Q−1

)λσ

Sμ
σλ + a

(
�−1

)λσμ

ρ
Sρ
σλ

)

− δμ
ρ

(2

3
c
(
R−1

)σν

Sσ + 2

3
d

(
Q−1

)σν

Sσ

+ d
(
Q−1

)λσ

Sν
σλ + c

(
�−1

)λσν

ρ
Sρ
σλ

)

+ 2

3

(
�−1

)νσμ

ρ
Sσ −

(
�−1

)λσμ

ρ
Sν
σλ − F ′[B (

S−1
)νμ

ρ

+Cδν
ρ

(
S−1

)μ + Dδμ
ρ

(
S−1

)ν ]
= 0, (131)

where we introduced C ≡ C −c
(
C̃ c̃−D̃ã
ãd̃−b̃c̃

)
−b

(
D̃b̃−C̃d̃
ãd̃−b̃c̃

)
and

D ≡ D−d
(
D̃b̃−C̃d̃
ãd̃−b̃c̃

)
−b

(
C̃ c̃−D̃ã
ãd̃−b̃c̃

)
. Finally, using Eqs. (116)

and (117) in Eq. (131) and then applying the �ρ
μαν product

we obtain

∇α

[√|�|][√|�|] = 2ASα − 2
(
aRμα

(
�−1

)λσμ

ρ

+ 2bRρα

(
Q−1

)λσ + 2cQμα

(
�−1

)λσμ

ρ

+ dQρα

(
Q−1

)λσ )
Sρ
σλ − 2F ′[B�ρ

μαν

(
S−1

)νμ

ρ

−CRμα

(
S−1

)μ − DQνα

(
S−1

)ν ]
(132)

with B ≡ 2B
4−4a−e� , C ≡ 2C

4−4a−e� , and D ≡ 2D
4−4a−e� .

Thus, the last equation leads to the non-local conformal map-
ping of Riemann curvature as given below:

�ρ
μσν

(
xσ

) = exp

{∫ xσ

xσ
0

[
ASα + F ′

(
CRρα

+ DQρα

) (
S−1)ρ −

(
aRμα

(�−1)λσμ

ρ
+ 2bRρα

(
Q−1)λσ

+ 2cQμα

(�−1)λσμ

ρ
+ dQρα

(
Q−1)λσ

)
Sρ
σλ

− F ′
(
B�ρ

μαν

(
S−1)νμ

ρ

)
+ 1

2
�

β
βα

]
dxα

}
�ρ

μσν

(
xσ

0

)
.

(133)

The torsion determinant included in the scalar function F ′
now affects the mapping of the Riemann curvature by giving
the inverse torsion tensor and the inverse torsion vector to the
conformal factor.

6 Summary

The main purpose of this study was to examine torsion
effects on the non-metrical affine gravity by considering
curvature- and torsion-based actions. For each action model,
we obtained the torsionful gravitational field equations, and
from these equations we found that the Ricci and Rie-
mann curvatures must obey a non-local, exponential rescal-
ing affected by the torsion tensor. In the actions including
the Ricci curvature, we also examined the symmetric and
antisymmetric Ricci tensors, where the dynamical equations
allowed us to construct connection structures such that we
are able to obtain the affine connection in the case of a sym-
metric Ricci tensor and the contracted affine connection in
the case of an antisymmetric Ricci tensor. For the action
(7), we found that the contracted connections obtained in the
case of symmetric and antisymmetric Ricci tensors killed the
explicit torsion contribution to the rescaling of each kind of
Ricci curvature. Moreover, the actions (7) and (66) resulted
in the same form of the rescaling of the symmetric Ricci ten-
sor. In the actions including a torsion determinant in addition
to the curvature contribution, we introduced the scalar func-
tions which modified the results of the actions including a
purely curvature determinant.

We want to emphasize that our action models are novel
and general enough to reveal salient features of affine grav-
ity. We expect that our work will be important in constructing
more realistic models if not for including matter. The mod-
els we constructed can be taken further by considering ways
of incorporating matter into the affine framework. One of
the essential ways for matter coupling to the affine gravity
was proposed by making use of the analogy between the
affine formalism and canonical mechanics [7]. In this theory,
incorporating matter to affine gravity can then be provided by
applying the covariant Legendre transformations to the affine
Lagrangian densities including matter fields. Although these
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Lagrangian densities do not depend on any metric, the fields
can be equipped with a metric tensor due to the canonical
structure of this affine formulation, where the metric and the
connection of that metric play the roles of the momentum
and the generalized coordinate. Another way was based on
the construction of the metric tensor only from the affine
connection through the symmetric, contracted square of the
torsion tensor [9]. Proposing a Lagrangian density composed
from this torsional metric tensor together with the curvature
it can be shown that if the matter fields couple to the torsion
square through the metric tensor one may then obtain the
Einstein field equations with its matter part as well as the
cosmological constant. However, how to incorporate matter
into the affine theory of gravity in our models is not trivial
and has not been developed yet. But following the same tech-
niques as used in [7,9], that is, by extending our models with
the Lagrangian densities involving matter fields or propos-
ing a torsion dependent metric, we leave this construction to
near future detailed work, and in this case, one may clearly
see shifts of these models from the general relativity when
applied to the Solar System so that possible explanations of
some phenomena such as dark matter or the avoidance of
singularities will be explored.

In addition, there has been a recent claim in Ref. [26] that
the naturalness problem in the standard model may be dealt
with by the Eddington formulation of gravity. This idea also
addresses the relevancy of the affine formulation of gravity to
the standard model to clarify some fundamental problems in
it. In this respect, our purely affine actions with their results
may also be useful for and applied to the standard model in
the future within the claim in [26].

In summary, it is crucial and necessary to properly study
and develop the affine theory of gravity due to its more funda-
mental nature and generality than general relativity. Although
it is not trivial and has not been studied yet, via the improve-
ment of the purely affine theory we expect important appli-
cations and contributions of our results to the standard model
of particle physics, cosmology, astroparticle physics, black
holes, neutron stars, supernovas, and other physical areas,
where the gravitational field is very strong, to clarify some
fundamental problems emerging from them.
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