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HIV effects on age-associated neurocognitive
dysfunction: premature cognitive aging or
neurodegenerative disease?
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Abstract

Marked improvements in survival and health outcome for people infected with HIV have occurred since the advent
of combination antiretroviral therapy over a decade ago. Yet HIV-associated neurocognitive disorders continue to
occur with an alarming prevalence. This may reflect the fact that infected people are now living longer with chronic
infection. There is mounting evidence that HIV exacerbates age-associated cognitive decline. Many middle-aged
HIV-infected people are experiencing cognitive decline similar that to that found among much older adults. An
increased prevalence of vascular and metabolic comorbidities has also been observed and is greatest among
older adults with HIV. Premature age-associated neurocognitive decline appears to be related to structural and
functional brain changes on neuroimaging, and of particular concern is the fact that pathology indicative of
neurodegenerative disease has been shown to occur in the brains of HIV-infected people. Yet notable differences
also exist between the clinical presentation and brain disturbances occurring with HIV and those occurring in
neurodegenerative conditions such as Alzheimer’s disease. HIV interacts with the aging brain to affect neurological
structure and function. However, whether this interaction directly affects neurodegenerative processes, accelerates
normal cognitive aging, or contributes to a worsening of other comorbidities that affect the brain in older adults
remains an open question. Evidence for and against each of these possibilities is reviewed.
Introduction
HIV continues to be a major public health problem [1].
During the early years of the HIV epidemic, the cognitive
and functional consequences of HIV were devastating for
patients and their families [2]. HIV-associated encephalop-
athy and dementia were among the most common diag-
noses in people with AIDS at the time of death [3,4].
The proportion of HIV-infected people who are older

than 45 years of age is approaching 50% in the US and
other developed nations and this is due in large part to the
effectiveness of antiretroviral therapies [5]. HIV-infected
adults over age 55 comprise the fastest-growing age group
in the HIV-positive population [6], and advanced age at
the time of seroconversion increases the risk for neurocog-
nitive impairment [7]. These epidemiological trends point
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to the potential significance of the effects of HIV on the
aging brain.
Neurocognitive manifestations
Prior to the availability of antiretroviral drugs, dementia
occurred in over 20% of HIV-infected people [4]. The term
AIDS dementia complex (ADC) was coined as a diagnosis
of severe decline secondary to HIV, typically involving
areas of cognitive, motor, and behavioral function [3].
Patients with severe ADC usually experienced the greatest
impairments in attention, working memory, and executive
functions, along with fine motor and information pro-
cessing speed [8,9]. Primary amnestic disturbances did
not typically occur, and language, semantics, comprehen-
sion, visual-spatial processing, and other sensory and per-
ceptual functions were usually preserved. Although brain
disturbances due to opportunistic infections acquired
during periods of severe immunosuppression were
common [10], ADC was shown to be directly related to
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Figure 1 Change in delayed recall performance on the Hopkins
Verbal Learning Test Revised (HVLT-R) as a function of age for
HIV+ and HIV− groups. The HIV+ group showed performance declines
with increasing age, whereas the HIV− group had either stable or slight
improvements in recall over 1 year, showing a clear interaction between
age and HIV effects on verbal recall. Results are displayed as means
with 95% confidence bands. Change is defined as the difference
between baseline and follow-up scores (12 months - 0 months).
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HIV infection, predominantly involving macrophages,
in the absence of opportunistic infection [11].
In recent years, diagnostic classification of HIV-associated

neurocognitive disorder (HAND) was developed as an
alternative to ADC staging. HAND encompasses a range
of cognitive impairment from mild cognitive difficulties
with no functional impairment (asymptomatic neurocog-
nitive impairment, or ANI) to cognitive difficulties with
mild functional impairment (mild neurocognitive disorder,
or MND) to dementia with significant functional im-
pairment (HIV-associated dementia, or HAD). The ad-
vent of combination antiretroviral therapy (cART) in the
late 1990s led to reductions in HIV-associated mortality
and morbidity [5] and a precipitous decline in incidence
of dementia [12]. Overall, cART use led to improved
cognitive functioning [13] and reduced neurological dam-
age [14]. Yet HAND continues to occur in 30% to 50% of
infected people [8,15-17]. In the cART era, as before, cog-
nitive and motor slowing are major elements of HAND,
along with impairments of attention, working memory,
and executive functioning [17]. Learning efficiency is
reduced, along with memory retrieval, although primary
amnestic disturbances are still rare. Though less severe
than dementia, ANI and MND affect occupational and
psychosocial functioning, quality of life, and health out-
comes [9,18,19].

Age-associated cognitive decline in HIV
For several reasons, the effect of HIV on the aging brain
has become the subject of much greater concern over the
past decade. First, HIV has become a chronic illness, with
infected people now having nearly normal life expectancy
[20]. Second, there has been a significant increase in the
number of older adults living with HIV. Third, although
cART has been very effective in reducing viral replication
and AIDS and restoring immunological function, HAND
remains prevalent. Finally, there is mounting evidence that
HIV and aging may interact to adversely affect the brain
and neurocognitive functions.
Advanced age is among demographic factors associated

with reduced neurocognitive performance and suscep-
tibility to HAND in HIV-infected people [21-24], as
greater neurocognitive impairment exists among older
HIV-infected adults relative to normative data and com-
pared with younger infected individuals. Although greater
cognitive and neurological deficits in older people with
HIV may result from independent additive effects of the
pathophysiological mechanisms of aging and HIV [25,26],
longitudinal studies show significant interaction effects
of HIV and age [27,28], suggesting that the mechanisms
are synergistic. For example, Seider and colleagues [27]
showed that older people with HIV showed significant
memory decline in 1 year, but no decline was seen in
younger people with HIV or in seronegative controls
regardless of age (Figure 1). These data indicate that
HIV is associated with accelerated cognitive aging such
that people with HIV in their 50s and 60s are function-
ing cognitively more like people typically do in their 70s
and 80s. It is interesting to note that problems with learn-
ing and memory are reported to a greater extent in the
cART era [15,16,29-31], indicating a change in the typical
presentation of HAND in older adults with HIV. These
changes as well as neuroimaging and neuropathological
findings described below raise the question of whether
typical age-related neurodegenerative diseases, particularly
Alzheimer’s disease (AD), are affecting the development
of HAND. In the sections that follow, evidence for and
against the idea that AD is contributing to HAND will
be discussed, as will research findings that address some
of the mechanisms underlying HAND and how they may
escalate as infected people reach advanced age.

Neuroimaging
HIV-associated cortical and subcortical volume reductions,
white matter changes, metabolite abnormalities, and re-
gional glucose metabolism that vary relative to HIV
clinical factors (for example, viral load, nadir CD4), and
HAND severity are evident on magnetic resonance im-
aging (MRI), magnetic resonance spectroscopy (MRS), and
positron emission tomography (PET) [32-34]. Although
neuroimaging abnormalities are usually most significant
in cases of opportunistic brain infection, HIV also has
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direct and indirect effects on brain structure and func-
tion. Historically, research focused on the basal ganglia
and cerebral white matter, regions considered to be par-
ticularly vulnerable to HIV [35]. Yet when compared with
seronegative controls, people with HIV also show reduced
grey matter and cortical thinning [32-34,36], especially
in frontal and temporal regions [37]. A study of asymp-
tomatic individuals with HIV revealed decreased frontal
grey matter volumes in the absence of other brain changes
[38], suggesting that cortical atrophy begins in frontal
areas. White matter hyperintensities (WMHs) on MRI
reflect white matter damage, and studies show WMHs
occurring at younger ages in people with HIV than they
do in adults aging without HIV [39,40]. Case-controlled
diffusion tensor imaging (DTI) studies show that HIV
is associated with lower white matter integrity globally
[41] and in specific areas such as the corpus callosum,
internal capsules, and the frontal and parietal lobes [42,43].
There is evidence that the earliest HIV-associated white
matter effects occur in the frontal lobes [44], with more
widespread damage occurring as the disease increases in
severity [43,45]. MRS studies show increased myoinositol
(MI), choline (Cho), and total creatine (Cr) in brain dis-
orders with chronic inflammation and glial activation,
including HIV [32,34,46,47]. N-acetylaspartate (NAA),
a marker of neuronal integrity that decreases in response
to neuronal damage, has been shown to be lower in people
with HIV compared with age-matched controls, especially
in the basal ganglia and frontal white matter [46,48].
Although NAA associations with plasma HIV-RNA show
that neuronal injury is related to current viral replication,
neuronal injury is also found in virologically suppressed
patients and may be attributed to the effects of chronic
immune activation and inflammation. PET studies have
shown that glucose hypometabolism in the frontal cor-
tex, suggesting deficient functioning, and basal ganglia
hypermetabolism occur in HIV [49]. Increased basal
ganglia metabolism may seem counterintuitive, although
HIV-infected astrocytes require increased glucose to
proliferate [50], and the basal ganglia are known to be
particularly vulnerable to HIV [35].
The neuroimaging abnormalities that have been observed

historically among HIV-infected people are similar to those
observed among older adults without HIV. As people reach
advanced age, cortical and subcortical volumes gradually
decrease [51]. Additionally, older age in healthy cohorts
has consistently been found to be one of the most im-
portant independent predictors of greater WMH volume
[52]. WMHs in frontal and parietal regions have been
especially associated with older age and greater cognitive
dysfunction [53], and longitudinal studies show greater
age-related volumetric decline in anterior versus posterior
white matter regions [54]. Declines in DTI measures of
white matter integrity also occur with increased age [55],
with anterior regions showing the greatest changes [56].
Furthermore, MRS research indicates that there is an
age-related decline in NAA and increases in Cho and Cr
[57]. Finally, PET research shows age-related declines in glu-
cose metabolism, beginning with frontal lobe changes [58].
cART-era research shows that the neuropathology of

HIV appears to be changing in that it now involves cor-
tical as well as subcortical structures [33]. This signifies
that HIV may progress to involve processes that bear a
greater resemblance to age-related neurodegenerative dis-
eases, such as AD, of which cortical atrophy and ventricu-
lar enlargement are hallmarks [59]. As in HIV, WMHs
have been shown to occur in frontal and parietal lobes
in AD, and the degree of WMH in parietal lobes and
posterior periventricular areas corresponds with level of
cognitive impairment [60]. AD is also associated with
widespread DTI abnormalities [61]. However, cortical
changes in AD cases are typically more pronounced than
in cases of HIV, and hippocampal atrophy occurs early
and ubiquitously in AD whereas the hippocampus is not
as vulnerable in HIV [62,63]. Also, unlike in HIV, in AD
the largest DTI effects are in hippocampal areas. A recent
review of MRS abnormalities in AD showed NAA de-
creases and MI increases similar to HIV. In AD, decreased
NAA is generally found in all major lobes of the brain
as well as the medial temporal lobe and the posterior
cingulate gyrus [64]. MI increases are also common, and
changes in NAA and MI are associated with level of AD
neuropathology. PET research in AD shows parietal,
temporal, and posterior cingulate glucose metabolism
decreases that predict cortical volume loss [65], with
decreases in the frontal cortex as the disease progresses
[66], whereas in HIV frontal hypometabolism is seen early
on in the disease.

Neuropathology and pathophysiology
HIV enters the brain soon after infection, and the brain
continues to be a reservoir for HIV even among patients
who receive cART [67]. The absence of circulating HIV-
RNA in the blood and cerebrospinal fluid (CSF) does not
guarantee that infected people are free of the virus, its
adverse immunological effects, or risk for HAND [68].
Persistent and progressive neuronal loss occurs in people
with chronic HIV despite successful viral suppression by
cART [69], suggesting that they are developing a con-
current neurodegenerative disorder in the setting of stable
HIV infection, that HIV is causing neurodegenerative
changes or that both are occurring.

Beta-amyloid
Abnormal beta-amyloid (Aβ) accumulation is a hallmark
of AD that has been found to occur in HIV [70,71]. Aβ
abnormalities are more consistent in AD than in HIV,
particularly among younger HIV-infected people. Increasing
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age is a risk factor for Aβ deposition in HIV, but recent
evidence suggests that HIV and aging independently affect
Aβ deposition [72], whereas AD and aging clearly interact.
In HIV, plaques tend to be diffuse, and amyloid depo-
sitions commonly occur in neuronal somas as well
as in extracellular plaques and along axonal tracks
[70,71,73]. In AD, however, plaques are neuritic and
occur particularly in extracellular space [74]. Neuro-
pathology studies suggest that, in HIV, Aβ aggregates
preferentially in the hippocampus, frontal lobe, and
basal ganglia [70,75]. The location of Aβ accumulation
varies in AD but tends to occur in neocortical areas
first [74]. There is some evidence that long-term cART
use may contribute to Aβ accumulation [70].
Aggregated Aβ can also occur in older people without

cognitive disturbances, but whereas it is ubiquitous and
extensive in AD [76], it is not a fundamental aspect of
normal cognitive aging. Aβ aggregates in similar brain
areas in healthy aging as in AD but usually more slowly
and with less neurotoxicity [77]. Overall, although Aβ is
highly associated with AD, evidence is limited to suggest
that it is a driving force in HAND.

Phosphorylated tau
Neurofibrillary tangles composed of hyperphosphory-
lated tau (pTau) are another hallmark of AD that occurs
in people with HIV. Unlike amyloid plaques, pTau occurs
in the majority of older adults. However, elevated pTau
occurs at earlier ages in people with HIV than in healthy
controls [78]. Although pTau levels appear to be unrelated
to HIV viral levels in the brain [79], pTau is associated
with microglial activation. Tau phosphorylation in HIV
may result from pro-inflammatory cytokines and viral
proteins that alter amyloidosis, which precede the forma-
tion of tau tangles [80]. Higher levels are also associated
with antiretroviral treatment [78]. In the context of
HIV, pTau is generally found in the hippocampus and
entorhinal cortex and later spreads to surrounding areas
[78], which mirrors the pattern seen in normal aging and
AD [81].

Cerebrospinal fluid markers
CSF concentrations of pTau and Aβ correspond with
concentrations in the brain, although for Aβ an inverse
relationship exists, reflecting problems with clearance.
Elevated pTau and decreased Aβ have been reported in
the CSF of people with symptomatic HIV [82], mirroring
the pattern found in people with AD, although this find-
ing has been inconsistent, particularly for total tau and
pTau [83]. In one study, decreased CSF Aβ, but not ele-
vated total tau or pTau, was found in people with HAND
[84]. In contrast, elevated CSF pTau was shown in patients
with asymptomatic HIV compared with controls in a
recent study [85], and recent findings yet to be published
by our group indicate elevated CSF pTau among older
HIV-infected people with HAND. Accordingly, similar-
ities exist between HIV and AD with respect to CSF Aβ
and tau [82], although greater disturbances are found in
AD, particularly compared with young adults with neuroa-
symptomatic HIV.

Blood–brain barrier disturbances
The permeability of the blood–brain barrier (BBB) is al-
tered in HIV, allowing leakage of toxic substances, includ-
ing infected macrophages from the blood into the brain
parenchyma. HIV affects neuronal endocytosis, which
alters the integrity of the microvascular endothelial cells
that compose the BBB [86]. HIV-induced disruption of the
tight cell junctions and upregulation of adhesion molecules
facilitate BBB passage [87]. BBB dysfunction has been
linked to Aβ accumulation in HIV and other diseases
resulting from a failure to filter amyloid peptides [88].
HIV has been shown to increase in vitro intracellular
Aβ accumulation in microvascular endothelial cells [89].
BBB dysfunction is associated with neurodegeneration in
AD, acting as both a cause and a consequence of cerebral
Aβ accumulation, and AD and HIV share several common
pathophysiological mechanisms that affect BBB perme-
ability and Aβ accumulation [88,90].

Risk factors and pathophysiological mechanisms
Genetic predisposition
The apolipoprotein-E ε4 allele (ApoEε4) is a well-
established AD risk factor [91] that has been associated
with increased amyloid accumulation, reduced brain vol-
umes, impaired neurocognitive functioning, and accelerated
systemic progression of HIV [92,93]. ApoEε4 has been
shown to increase cell susceptibility to HIV infection
in vitro [93]. ApoEε4 has also been linked to reduced
cognitive performance in HIV compared with age-matched
seronegative ApoEε4+ participants [92], although some
research does not support a significant association be-
tween ApoEε4 and HAND [94]. The relationship be-
tween ApoEε4 and cognitive functioning is more robust
in AD than in HIV, as carriers with two alleles have up
to a 90% chance of having AD by age 80, and ApoEε4
has been said to account for the majority of the risk as-
sociated with developing AD [91]. Although pre-existing
genetic factors may influence the impact of HIV on neuro-
logical structure and function, HIV also causes epigenetic
changes that may contribute to neurodegeneration and
cognitive impairment as well [95].

Cerebral metabolism
Converging lines of evidence indicate that cerebral me-
tabolite disturbances are common among HIV-infected
individuals and contribute to neurocognitive and brain
abnormalities [47,87,96]. Mitochondrial disturbances in
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these individuals cause oxidative stress through the
overproduction of reactive oxygen species (ROS), which
affects viral replication, inflammation, immune function,
sensitivity to drug toxicities, and HAND development
[87,96,97]. The oxidative stress and cell damage caused
by ROS have been proposed as a major driver underlying
brain aging [98] and may also contribute to HIV effects
on the aging brain, along with abnormal insulin signaling
[99]. Mitochondrial dysfunction has also been associated
with increased neuroinflammation, glutamate overpro-
duction, and calcium accumulation, all of which can be
neurotoxic [100]. Similarly, alterations in brain mitochon-
drial function, glucose metabolism, and oxygen utilization
have been implicated in AD [101,102]. Oxidative stress oc-
curs at early stages of AD and may promote the formation
of Aβ plaques and tau tangles [101].

Inflammation and neuroimmunological disturbances
HIV spreads from infected monocytes to uninfected cere-
bral microglia and astrocytes, activating inflammatory
immune responses involving the release of cytokines, chemo-
kines, and ROS. Chronic neuroinflammation resulting from
prolonged glial and astrocyte activation has been shown to
lead to neuronal dysfunction and death [87,96] and has
been linked to HIV-associated brain abnormalities [97].
Regional microglial activation measured by PET has been

shown to correspond to executive dysfunction in HIV
[103], consistent with autopsy findings showing frontal
cortical accumulation of DNA oxidative damage induced
by ROS in people with AIDS [104]. Increased glial activa-
tion was found in cases of neuroasymptomatic HIV,
with significant increases in frontal and parietal activa-
tion among people with HAD, suggesting that excessive
glial activation and neuroinflammation precede cogni-
tive decline [105]. PET studies show that widespread
microglial activation also occurs in AD and is linked
to cognitive dysfunction [106]. Similar immunological
responses also occur, with Aβ accumulation leading to
astrocyte upregulation and inflammatory response [90].
Neurofibrillary tangles and neuronal degeneration also
promote neuroinflammation.

Neurotoxicity
HIV-associated brain dysfunction is potentiated by a cas-
cade of excitotoxic and apoptotic processes that amplify
immunologic and inflammatory responses to the virus
[87,96,99]. T-cell depletion and apoptosis are affected
directly by HIV gene expression and indirectly by apop-
tosis in uninfected cells. Among the substances that have
been implicated in HIV-associated neurotoxicity are trans-
activator of transcription (Tat), glycoproteins (such as
gp120), and complementary proteins (such as Fas). Both
Tat and gp120 impair glutamate uptake by astrocytes, caus-
ing glutamate excitotoxicity, which leads to inflammation
and apoptosis. They also cause calcium accumulation,
which has similar neurotoxic effects. Furthermore, Tat can
induce astrocytosis and neuronal death and interacts with
amyloid precursor protein to increase Aβ [107]. These
viral structure and regulatory proteins also cause cere-
bral mitochondrial dysfunction and ROS overproduc-
tion, causing oxidative toxicity that, as previously described,
contributes to BBB dysfunction and tissue damage [97,100].
Neurotoxicity has also been implicated in AD, other neuro-
degenerative diseases, and normal brain aging [90,108].
Neurotoxicity may also result from the antiretroviral

drugs used to treat HIV [109], particularly certain nucleo-
side analog reverse transcriptase inhibitors. Certain anti-
retroviral drugs penetrate the BBB and enter the brain
more easily than others, making them good candidates
to treat HIV-associated brain dysfunction [110]. Yet cART-
treated HIV patients show higher levels of cerebral Aβ and
pTau than cART-naïve patients in recent studies [70,78].
Findings have been mixed [30,84], but overall it seems
unlikely that cART is the major cause of brain dysfunction
in most patients. Nonetheless, more research on cART-
associated neurotoxicity is needed, especially given the
chronic cART use among people aging with HIV and
the large number of new drugs under development.
Neurotoxicity also occurs indirectly as a result of infec-

tion of other organ systems outside of the brain, such as
gut, liver, and vascular systems. For example, HIV causes
leaky gut syndrome by infecting the gut and altering the
permeability of the intestinal lining, enabling bacteria and
toxins to enter the blood, which causes systemic and
ultimately cerebral inflammation [111]. Hepatic ceramides
produced in response to HIV have also been linked to meta-
bolic syndrome, apoptosis, and neurodegeneration [112].

Vascular and metabolic comorbidities
Some comorbid conditions, like chronic substance abuse,
contribute to HIV transmission, functional outcomes, and
cognitive problems in their own right, largely independent
of the direct effects of HIV [113]. Others, like hepatitis
C, exacerbate the neurocognitive effects of HIV through
similar mechanisms [29,42]. Vascular and metabolic
comorbidities, including diabetes, metabolic syndrome,
obesity, and vascular disease, are now occurring with
increased prevalence as chronically HIV-infected people
age [114], and there is mounting evidence that HIV con-
tributes to their development or expression [115]. Each of
these conditions can adversely affect neurocognitive func-
tioning [116,117]. For example, abnormal glucose metab-
olism leads to hyperglycemia and hyperinsulinemia, which
induce ROS production, tau hyperphosphorylation,
amyloid oligomerization, and widespread brain micro-
angiopathy, and can lead to reduced Aβ clearance [116].
Thus, vascular cognitive impairment may be an important
component of HAND caused by contribution of HIV
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to the development of vascular comorbidities. Still, the
unique contribution of vascular cognitive impairment
to HAND may be difficult to ascertain. It should also
be emphasized that vascular risk factors are highly
prevalent in the elderly, and there is strong evidence
that these can be associated with vascular cognitive im-
pairment, even in the absence of discrete cerebrovascular
events [118]. Epidemiological studies have long suggested
that these conditions increase risk for developing AD
[116,117,119], and increased vascular risk is associated
with greater amyloid burden in both HIV [120] and AD
[111,121]. Given the modifiable nature of vascular and
metabolic risk factors, these may ultimately be important
targets for treatment as a way of preventing or diminish-
ing cognitive dysfunction in HIV.

Premature cognitive aging, neurodegenerative
disease, or both?
The findings described above illustrate multiple common-
alities as well as notable differences between the cognitive
Table 1 Summary of neurocognition, neuroimaging, neuropa
HIV and Alzheimer’s disease

HIV Alzhei

Neurocognitive manifestations Psychomotor slowing Primary

Executive dysfunction Anomi

Selective cognitive
impairments

Global

Cerebral volumetric changes Early declines in basal ganglia
and frontal lobe volumes

Greater
ventric

DTI findings Early frontal lobe changes Early h

MRS findings Elevated Cho

Aβ Diffuse Neuriti

Extracellular and intracellular Primari

pTau

CSF markers Inconsistent Tau findings Elevate

ApoEε4 Robust
dysfun

BBB

Glucose metabolism Increased in basal ganglia Decrea
posteri
tempoDecreased in frontal lobes

Mitochondrial function

Neurotoxicity

Oxidative stress

Inflammation

Vascular and metabolic influences May occur as a result of HIV

Findings common to both diseases are listed, along with findings unique to each. Aβ,
CSF, cerebrospinal fluid; DTI, diffusion tensor imaging; FA, fractional anistropy; MI, myo
hyperphosphorylated tau.
disturbances and brain dysfunction that occur secondary
to HIV versus AD and other neurodegenerative diseases
(Table 1). The fact that many people living with chronic
HIV are experiencing cognitive and neurological decline
during mid-life and resembling the neurological func-
tioning of older adults provides compelling evidence
that premature cognitive aging is occurring despite cART
effectively reducing HIV-associated morbidity. Yet obvious
differences exist with respect to the clinical course and
cognitive domains affected in HIV and AD. Progressive
cognitive decline resulting in severe dementia is ubiqui-
tous in AD. Eventually, patients with AD experience
profound cognitive dysfunction that affects memory en-
coding and storage, language, and higher-order intellec-
tual abilities. This is not the case with HAND, and severe
dementia is currently rare among people whose HIV is
well controlled. Different trajectories of cognitive decline
also exist for HIV and AD, and the usual age of onset is
much younger in HAND than in AD. Furthermore, the
correspondence between viral pathogen, immunological
thology, and pathophysiology of brain disturbances in

mer’s disease Both

amnestic disturbance Memory disturbances

a

cognitive dysfunction

cortical atrophy and
ular enlargement

Early white matter changes

ippocampal changes Globally decreased FA

Decreased NAA

Elevated MI

c Occur in neocortical areas

ly extracellular

Elevated in medial temporal lobe

d pTau Decreased amyloid

relationship with cognitive
ction and dementia risk

Increases risk for Aβ, cerebral atrophy,
cognitive dysfunction, and disease
progression

Altered function

sed in parieto-temporal areas,
or cingulate cortices, and medial
ral lobes

Impaired

Increased

Increased

Increased

Exacerbate cognitive effects

Increase Aβ burden

beta-amyloid; ApoEε4, apolipoprotein-E ε4; BBB, blood–brain barrier; Cho, choline;
inositol; MRS, magnetic resonance spectroscopy; NAA, N-acetylaspartate; pTau,
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disturbance, and cognitive decline that is an essential
feature of HAND does not exist for AD or most other
neurodegenerative disorders. These clinical considerations
might lead one to conclude that HIV and AD affect the
brain and cognition in very different ways.
Although AD and HIV share some structural, functional,

and metabolic brain abnormalities and neuropathology,
there are important differences. Aβ accumulation oc-
curs at much higher rates in AD than in HIV or normal
aging, while pTau findings are inconclusive. Furthermore,
neurodegeneration generally occurs in hippocampal re-
gions first in AD, whereas HIV shows a fronto-subcortical
pattern. AD and HIV share some common pathophysio-
logical mechanisms, including altered BBB activity, oxida-
tive stress, and neuroinflammation, but HIV has a number
of more specific brain effects caused by toxic glycopro-
teins, such as gp120, ongoing viral replication in certain
brain areas despite overall systemic and CSF viral suppres-
sion, HIV co-receptors on lymphocytes, macrophages,
neurons and microglial cells, and genetic or epigenetic
alterations in response to the virus that may cause neur-
onal damage. These specific pathophysiological mecha-
nisms obviously differentiate HIV from AD. The extent to
which AD is caused by related mechanisms remains to be
determined.

The verdict
Based on existing evidence, several conclusions can be
reached. HIV causes premature cognitive and brain aging.
These effects are caused by direct damage from the virus
as well as indirectly through increased risk of cardiovascu-
lar disease, chronic drug use, and potentially toxic long-
term antiretroviral use. There has been some controversy
over whether HIV causes neurodegeneration as such, and
over whether HAND should be considered a neurodegen-
erative disease. Evidence for neurodegeneration is pro-
vided by recent longitudinal studies showing declines in
memory and other cognitive functions over time as well
as relatively high rates of HIV-infected people transition-
ing from being asymptomatic to having HAND. Brain
pathophysiology also suggests that HIV causes neurode-
generative changes, at least in some people. Despite the
many commonalities between HIV and AD, it seems
unlikely that HIV causes AD per se. Besides differences
in their usual clinical, cognitive, and neuropathological
presentation, HIV is clearly caused by virus, whereas
AD is not. Nonetheless, common pathophysiological path-
ways exist in HIV and typical neurodegenerative diseases
that contribute to accelerated age-associated cognitive
decline. In the current era of cART, when HIV can be
well controlled from the time of diagnosis, it may be
that people will not show the same effects of chronic
infection as they age, or at least not to the same degree.
Future research is necessary to address this question,
examining newer cohorts of HIV-infected people who
have not experienced severe immunocompromise. Beyond
targeting viral replication with cART, targeting vascular
and metabolic factors will likely be important for delaying
or mitigating HAND. Future studies should examine
whether modifying these factors through clinical interven-
tions results in improved cognitive function in people with
HIV.
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