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1 Introduction

Convexity is an important concept in many branches of mathematics, pure and applied.
In particular, many important integral inequalities are based on a convexity assumption
of a certain function, such as Jensen’s inequality, the Hermite-Hadamard inequality, the
Hardy-Littlewood-Pélya majoration inequality, Petrovi¢’s inequality, Popoviciui’s convex
function inequality, and many others. For more details as regards inequalities via con-
vex functions, we refer the reader to the monograph [1]. However, for many encountered
problems, convexity is not satisfied. This leads to the necessity to extend this concept.

In the last 60 years, great attention has been focused on the generalization of the no-
tion of convexity. Let us cite some references in this direction. In [2], Definetti introduced
the class of quasi-convex functions. In [3], Mangasarian introduced the notion of pseudo-
convex functions. Polyak [4] defined the concept of strongly convex functions. The class
of e-convex functions was introduced by Hyers and Ulam [5]. In [6], Varosanec intro-
duced the notion of s-convexity that includes the class of s-convex functions (see Hudzik
[7]). For other work in this direction, we refer the reader to [8—12] and the references
therein.

In this paper, we present a new concept of convexity that depends on a certain function
satisfying some axioms. This new notion generalizes different types of convexity, including
g-convex functions, o-convex functions, #-convex functions, and many others. Moreover,
some integral inequalities are established via this new notion of convexity. As particular
cases, we retrieve several existing inequalities from the literature.
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2 An implicit convexity concept
We denote by F the family of mappings F : R x R x R x (0,1) — R satisfying the following
axioms:

(A1) Ifu; € L1(0,1), i = 1,2,3, then for every A € (0,1), we have

1 1 1 1
/0 F(ul(t),uz(t),ug,(t),k)dt:F( /0 w1 (t) dt, /0 uy(t) dt, /0 ug(t)dt,k).

(A2) For every u € L(0,1), w € L*(0,1), and (z1,2,) € R?, we have

1

1
[ Fome, w0 w1z 1) de = T ([ wiemsrdz 2 ),
0 0

where Tp,, : R x R x R — R is a function that depends on (F,w), and it is
nondecreasing with respect to the first variable.
(A3) For any (w, uy, us, u3) € R%, uy € (0,1), we have

WEF (1, to, u3, us) = F(Wur, wig, wus, ug) + Ly,

where L, € R is a constant that depends only on w.
We introduce the new concept of convexity as follows.

Definition 2.1 Letf:[a,b] — R, (a,b) € R?>,a<b,bea given function. We say that f is a

convex function with respect to some F € F (or F-convex function) iff
F(f(tx+ (- ) S0, S0 ) <0, (3,0) € [a,b] x [a,b] x (0,1). 1)
The following property follows immediately from (2.1).

Proposition 2.2 Let f : [a,b] — R, (a,b) € R?, a < b, be an F-convex function, for some
Fe F.Then

F(f(x),f(x),f(x),£) <0, (x,8) € [a,b] x (0,1).
Proof Taking x = y in (2.1), the desired inequality follows. d
Now, we give some examples of F-convex functions.

Example 2.3 Let ¢ > 0, and let f: [a,b] — R, (a,b) € R?, a < b, be an e-convex function,
that is (see [5]),

flx+@-t)y) <f@)+A-t)f ) +e, (%0 € [a,b] x [a,b] x [0,1].
Define the function F: R x R x R x [0,1] — R by

F(uy, uy, Uz, ug) = uy — gty —(L—ug)us —&, (ur,uz,us3,us) € Rx R xR x[0,1]. (2.2)
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Let u; € L1(0,1),i=1,2,3, and let A € [0,1]. We have
1 1
/ F(ur(2), ua(t), us(t),A) dt = / (wa(8) = Aua(£) = (1 = Mus(e) — &) dt
0 0

1 1 1
=/0 ul(t)dt—A/O uz(t)dt—(l—k)/o uz(t)dt — ¢

1 1 1
:F(/O ul(t)dt,fo uz(t)dt,/o Mg(t)dt,)»).

Therefore, the function F satisfies axiom (A1). Now, let u € L1(0,1), w € L*°(0,1), and
(z1,22) € R?. We have

1
f F(w(t)u(t), w(t)z,, w(£)zp, t) dt
0
1
= / (w(e)u(t) — tw(t)z — (1 - )w(t)zp — €) dit
0

1 1 1
= /(; w(t)u(t) dt — z; /0 tw(t)dt — z, ./o A-w(t)dt-e¢

1
= TF,W </ W(t)u(t) dt, Z1,Z2>,
0

where Tp,, : R x R x R — R is defined by

Tr (U1, U, u3) = 1y — </01 tw(t) dt) Uy — (/01(1 —Bw(t) dt) Uz — &,

(u1, un,u3) e R x R x R. (2.3)

Then the function F satisfies axiom (A2). Now, let (w, u1, us, u3) € R* and uy € (0,1). We
have

WF (1, Uy, U3, Ug) = w(u1 —ugtty — (1 — ug)us — 8)
= wuy — ug(Wuz) — (1 — ug)(wusz) — we
= (wu1 —ugs(Witn) — (1 — ug)(Wuz) — 8) +(1-w)e

= F(wuy, wiy, wuz, ug) + (1 — w)s.
Therefore, axiom (A3) is satisfied with
L,=(0-w)e. (2.4)

Thus we proved that F € F. On the other hand, since f is e-convex, for all (x, y,t) € [a, b] X
[a,b] x (0,1), we have

F(f(tx + (1= 1) f @), O ) = f (& + (L= £)y) — tf (@) — (1 - ) () = 6 < 0.

As a consequence, f is an F-convex function.
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Remark 2.4 Taking ¢ = 0 in the above example, we observe that any convex function
f:la,b] — R, (a,b) € R?, a < b, is an F-convex function with respect to the function F :
R xR x R x (0,1) — R defined by

F(ur, oy, uz, ug) = g — tatiy — (1 — ug)uz, (w1, uo,uz,us) €ER x R x R x (0,1).

Example 2.5 Letf:[a,b] > R, (a,b) € R2, a < b, be an a-convex function, 0 < & < 1, that

is,
Sltx+ @ -t)y) <*f )+ (1-t)f (), (xp1) €ab] x [a,b] x [0,1].
Define the function F: R x R x R x [0,1] — R by
F(uy, ug, us, ) = Uy — Uy thy — (1 - MZ)Mg, (1, un,u3,us) e R x R x R x [0,1]. (2.5)

Let u; € L1(0,1),i=1,2,3, and let A € [0,1]. We have
1 1
/ Fonn(8), 02(8), u3(8), 1) it = / (11(6) = 2 us(0) — (1 — A%)u3(0)) dt
0 0
1 1 1
=/0 ul(t)dt—xaf() uz(t)dt—(l—xa)/o us(t) dt

1 1 1
:F(/o ul(t)dt,/o uy(t) dt,/o us3(z) dt,k).

Therefore, the function F satisfies axiom (Al). Now, let u € L1(0,1), w € L*°(0,1), and
(z1,22) € R?. We have

1
/ F(w(t)u(t), w(t)z1, w(t)za, t) dt
0
1
= f (w@)u(e) — t*w(t)z — (1 - ) w(t)z2) dt
0
1 1 1
- dt — Cyw(t) dt — 1-¢% d
/Ow(t)u(t) t 21/0 w(t) dt Z2fo( ) w(t) dt

1
=Ty (/ w(t)u(t) dt, zl,z2>,
0

where Tp,, : R x R x R — R is defined by

Tr (U1, Uup, u3) = 1y — </01 t*w(t) dt)uz - (/OI(I - t“)w(t) dt) us,

(u1,uz,u3) e R x R x R. (2.6)

Then the function F satisfies axiom (A2). Now, let (w, uy, us, u3) € R* and uy € (0,1). We
have

WF (11, uo, Uz, Ug) = w(ul — Uglhy — (1 - MZ)M:;) = wuy — uy (Wip) — (1 - MZ)(WMg)

= F(wuy, witp, Wi, Ua).
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Therefore, axiom (A3) is satisfied with
L,=0. (2.7)

Thus we proved that F € F. On the other hand, since f is a-convex, for all (x, y, £) € [a, b] X
[a, b] x (0,1), we have

F(f(tx+ (- 2)9),f (0,01, ) = f (e + (1= 1)) = 5 (@) — (1= £2)/ )

<0.

As a consequence, f is an F-convex function.

Example 2.6 Let /:J — [0,00) be a given function which is not identical to 0, where J is
an interval in R such that (0,1) CJ. Let f : [a,b] — [0,00), (a,b) € R?, a < b, be a h-convex

function, that is (see [6]),
f(tx +(1- t)y) <ht)f(x)+h(1-20)f(), &3¢ €la b]xlab]x(0,1).
We suppose that % € L}(0,1). Define the function F: R x R x R x (0,1) — R by

F(uy, g, u3, ua) = uny — h(ua)us — h(1 — us)us,

(Ltl, U, U3, M4) eRxRxRx (0, 1) (28)

Let u; € L1(0,1),i=1,2,3, and let A € [0,1]. We have

1

1
/0 F(u1(8), ua(2), uz(8), 1) dt = /O (u1(8) = B (£) — h(1 = 1uz(0)) dt
1 1 1
= /0 ul(t)dt—h()»)‘/o u (£) dt — h(1 —A)/O us(t) dt

1 1 1
=F</O' Ltﬂt)dt,\/(; MQ(t)dt,/O Mg(t)dt,)\,).

Therefore, the function F satisfies axiom (Al). Now, let u € L1(0,1), w € L°°(0,1), and
(z1,22) € R?. We have

1
f F(w(O)u(t), w(t)z1, w(t)zo, t) dt
0
1
= / (w(®)u(t) - h(t)w(t)z — h(1 - )w(t)z,) dt
0

1 1 1
= / w(t)u(t) dt — z; f h(t)yw(t)dt — z, f h(1 - t)w(t) dt
0 0 0

1
= TF,W(/ w(t)u(t) dt,zl,22>r
0
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where Tp,, : R x R x R — R is defined by

1 1
T (ot i h3) = 1t — ( / Hew(e) dt) o ( / H(L— yw(t) dt) s
0 0

(u1,uz,u3) e R x R x R. (2.9)

Then the function F satisfies axiom (A2). Now, let (w, u1, us, u3) € R* and u, € (0,1). We
have

WE (11, 1y, 3, ta) = w(uy — h(ua)uy — h(1 - ug)us)
= wuy — h(ua)(witz) — h(1 - us)(wuz)

= F(wuy, wuy, wis, Uy).
Therefore, axiom (A3) is satisfied with
L,=0. (2.10)

Thus we proved that F € F. On the other hand, since f is #-convex, for all (x, y, £) € [a, b] X
[a, b] x (0,1), we have

F(f(tx+ (L= 1)y).f@).f 0),t) = f(tx + (1= 2)y) = h(t)f (x) = h(1 - £)f (5)
<o.

As a consequence, f is an F-convex function.

3 Integral inequalities involving F-convex functions

Some integral inequalities via F-convex functions are presented in this section.

Theorem 3.1 Letf : [a,b] — R, (a,b) € R2,a < b, bean F-convex function, for some F € F.
Suppose that f € L (a, b). Then

a+b\ 1 [ 1 [ 1
F<f< 5 ),m/af(x)dx,m/af(x)dx,5>§0, (3.1)

1 b
(5 [ fwans@nse) <o 62)

Proof Since f is an F-convex function, for every u,v € [a, b], we have

e )
Taking

u=ta+ (1-1t)b, v=th+(1-t)a, te€l0,1],
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we obtain

F(f(“ ; b),f(ta +(L-1)b),f(th+(1-1)a), %) <o0.

Using axiom (A1), we get

F([)lf(ﬂ;b)dt,/olf(m+(l—t)b)dt,/olf(tb+(l—t)a)dt,%) <o0.

On the other hand, we have

b
/Olf(m+(l—t)b)dt:/Olf(th+(1—t)oz)dt:ﬁ/a‘ f(x)dx.

Therefore,

V (a+b 1 b 1 b 1

which proves (3.1).

Again, since f is an F-convex function, for every ¢ € (0,1), we have

F(f(ta+ (1= £)b),f(a),f (), 1) <O.

Using axiom (A2) with w = 1, and integrating over (0, 1) with respect to the variable ¢, we
obtain

1
Tes ( / f(ta+ Q- 0)b)dt,f(a), f(b)) <o,
0

that is,

1 b
(55, [ F@ds @) <o

which proves (3.2). O

Remark 3.2 Note that in the proof of Theorem 3.1, we used only the axioms (Al) and
(A2). So, Theorem 3.1 holds true for any function F satisfying (A1) and (A2).

The following lemma will be useful later (see [13]).

Lemma 3.3 Let f: I° € R — R be a differentiable mapping on I°, (a,b) € I° X I°, a < b.
Then

fl@)+fb)
2

1 [t b-—a (1
b_g/ﬂf(x)dsza/O 1 -28)f'(ta + (1 - t)b) dt.

We have the following result.
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Theorem 3.4 Letf:1° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b.
Suppose that

(i) |f'| is F-convex on [a, b], for some F € F.

(i) The function t € (0,1) > L,y belongs to L1(0,1), where w(t) = |1 - 2t].

Then
2 1
TF,W( ) ) +/ Lyydt <0. (3.3)
b-a o

Proof Since |f’| is F-convex, we have
E(|f'(ta+ (1 -1)b)|, b)|.t) <

Multiplying this inequality by w(¢) and using axiom (A3), we get

(@

Integration over (0, 1) with respect to the variable ¢ and using axiom (A2), we obtain

1
) +/ Lyydt <0.
0

@ f6)_ 1 [
HOTO L [Cfwas) @

0, te(0,1).

F(w@)|f'(ta+ 1 -2t)b)|,

) + Ly <0, te(0,1).

1
Ten ( [ wolr (ear a-op)
0

On the other hand, from Lemma 3.3, we have

2 |fla) +f ®) / ) da| <

b-a

f w(t)|f (ta + (1 - t)b)| dt.

Since T, is nondecreasing with respect to the first variable, we deduce that

2 b 1 b 1
TF””(b-af(a)Jrf( )_b_a/af(x)dx,V(a) )>+/0 Ly dt <0,

2
which proves (3.3). O

Another similar result is given by the following theorem.

Theorem 3.5 Let f:I° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a <
b, and let p > 1. Suppose that |f’ |P/e-V is F-convex on la,b], for some F € F, and |f'| €
LP/®D(q,b). Then

Trs (A f) [f (@] 7, | ()| 77) <, (3.4)

where

L
-1

Aavh)-(525) v

P
p-1

a1 f@+f) 1 (*
2 b-a /a &) dx

2
Proof Since |f'|7T is F-convex, we have

L

F(If (ea+ 0= 00) [, [F @, o),

£)<0, te(0,1).
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Using axiom (A2) with w = 1, and integrating over (0, 1) with respect to the variable ¢, we
get

1 » » .
Tm( /0 [f(ta+ (1= 6)b) [P dt, |f (@) |*, lf/(b>|p-‘) <0.

P
-1

» 1
(p+1)P1

P
p-1

On the other hand, using Lemma 3.3 and Holder’s inequality, we obtain
@+f) 1 (*
U 2f - b—a/ fx)dx
a

= p

1
5/0 If'(ta + (1 - 0)b)| 7 dt,

that is,

1 2
Ap.f) < / If' (ta + (1 - )b)| 7 dt.
0
Since Tp, is nondecreasing with respect to the first variable, we obtain

Tea(Ap.f), f (@), | (6)]77) <0,
which proves (3.4). O

4 Particular cases
As consequences of the presented theorems, we obtain in this section some integral in-
equalities for different (and independent) kinds of convexity.

4.1 The case of e-convexity
We have the following Hermite-Hadamard inequalities for e-convex functions.

Corollary 4.1 Letf:[a,b] — R, (a,b) € R?, a < b, be an s-convex function, ¢ > 0. Suppose
that f € LY(a, b). Then

b
H(450) o= 50 [ fwasTOTO

Proof From Example 2.3, we know that an ¢-convex function is an F-convex. Using (2.2)
and (2.3) with w =1, we have

F(uy, thg, U3, ua) = iy — thatty — (1 —us)us —&, (ur,u,u3,us) € R x R x R x [0,1],

and

Uy + us

Tr(ur, uo, uz) = g — —-¢&, (upuru3z) eRxR xR
So, applying Theorem 3.1, we obtain the desired result. O

Taking & = 0 in Corollary 4.1, we obtain the following standard Hermite-Hadamard in-
equalities for convex functions.
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Corollary 4.2 Let f : [a,b] — R, (a,b) € R?, a < b, be a convex function. Suppose that
f € LYa,b). Then

f(zz;b)_b_ /f(x)d <f(ﬂ)+f(b)

Corollary 4.3 Let f:I° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b.
Suppose that the function |f'| is e-convex on [a,b], e > 0. Then

8 4|

f@s®) 1
LSO [Crwas <

Proof Using (2.4) with w(t) = |1 — 2¢|, we obtain

1 1 1
/Lw(t)dt:z?/ (1—w(t))dt=s(1— |1—2t|dt):—
0 0 0

Using (2.3) with w(t) = |1 — 2¢|, we obtain

1 1
Tpw(uy, up, u3) = ug — (/ t|1—2t|dt>u2— (/ (1—t)|1—2t|dt)u3 -8,
0 0

for all (u1, 43, u3) € R x R x R. On the other hand, simple computations yield

1 1 1
/t|1—2t|dt=/(1—t)|1—2t|dt=—.
0 0 4

Therefore, we have

S ACETLLINE

Uy + U3

T (U, tn, u3) = Uy — —&, (upupus) eRxRxR.

Then
2 b 1 b 1
Tp,w(b_d‘f(a“f( ) b—a/ fx)dx|, )+/ Ly dt
2 |fa)+f(b) If'(@|+[f(d) e
“b-a 2 /f( )dx ‘ 4 T2

Now, by Theorem 3.4, we have

2
TF,w<b — f@) +f / fx)dx|, ) / we)dt <0,
that is,
f@+f) 1 (* '@+ /'@ e
‘ - b_ﬂ/ﬂ ) dx| < (b—a)[T . ﬂ,
which proves the desired inequality. O

Taking ¢ = 0 in Corollary 4.3, we obtain the following result (see [13]).
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Corollary 4.4 Letf :1° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b.
Suppose that the function |f'| is convex on [a, b]. Then

/@ 0 ff( i

Corollary 4.5 Let f :I° € R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b,
and let p > 1. Suppose that |f'|P'?~V is e-convex on [a,b], ¢ > 0, and |f'| € L"'?"V(a,b).
Then

(& - a)(|f"(@)] + |f'(B)])
2 :

/(@) +f(b) / ) ds 223:)); <Lf’(a Ll;lf(b) & )—
Proof Using (2.3) with w = 1, we obtain

o1, iy s) = thy — 2 ; B e, (unuzus) €R xR xR
Then

Tea (A@.f), [f @70, ()]

Ay V@ ' reE

where

A(p,f):(b%a)il(p+1)p1f()+f(b /f( )de1
By Theorem 3.5, we have

Tea(Apf), [f @] 77, [f (5)] 71 <0,
that is,

fla )+f(b /f( i 2(Z+f))p <lf’(a) Ll;lf’(bn% +8>”7'1,
which proves the desired inequality. O

Taking ¢ = 0 in Corollary 4.5, we obtain the following result (see [13]).

Corollary 4.6 Letf:1° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b,
and let p > 1. Suppose that |f' "'V is convex on [a, b), and |f'| € LP'*D(a, b). Then

/@ 0 /f( i

p_ p1

(b-a) <lf’(a) |71+ |f/(b)| 71 >7.
2(p+1)1’ 2
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4.2 The case of ¢-convexity
We have the following Hermite-Hadamard inequalities for «-convex functions.

Corollary 4.7 Let f : [a,b] — R, (a,b) € R?, a < b, be an a-convex function, a € (0,1].
Suppose that f € L (a, b). Then

b
f<ﬂ> Eﬁ / s < L@ O)

+
2 a+1

Proof From Example 2.5, we know that an «-convex function is F-convex. Using (2.5) and
(2.6) with w =1, we have

F(u, up, uz, ug) = iy — uyuy — (1—u§)us, (w1, uz,u3,us) € R x R x R x [0,1],

and

Uy o

us, (u,upu3) € RxR xR,

a+l o+l

Tpa(u1, uz,u3) = ug —
So, applying Theorem 3.1, we obtain the desired result. O

Remark 4.8 Taking o =1 in Corollary 4.7, we obtain the standard Hermite-Hadamard

inequalities for convex functions (see Corollary 4.2).

Corollary 4.9 Letf :I° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b.
Suppose that the function |f'| is a-convex on [a,b], o € (0,1]. Then

b
(R

(b—a) ) ((2“ v o) |fl(a)] + Ll D+ 20 2 277)] [}”(b)}).

< - - 7
T2+ 1)(x+2 2

Proof Using (2.7), we have

1
/ Lywdt=0.
0

Using (2.6) with w(¢) = |1 — 2¢|, we obtain

1 1
Tr o (t, Uy, u3) = Uy — (/ t°‘|1—2t|dt)u2— (/ (1—t°‘)|1—2t|dt>u3,
0 0

for all (41, 43, u3) € R x R x R. Simple computations yield

1 1 i
/(; t|1—2t|dt=m(2 +Ol)

and

1 Y Cala+1)+2(1-27)
/0 (1-e)in ~2rde = 2(c + D)o +2)
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Therefore,

Ty )= QY +a)uy  [ala+1)+2(0-27%)]usz
Bl U = DN +2) | 2a+D@+2)

for all (11, 4o, u3) € R x R x R. Now, we have

TFW<b2df(a);rf(b)_bia/hf(x)dx, )|>+/:Lw(t)dt
:TFvW<b%afa) +f() ff( ) dxl, b)|)
miﬁ‘ SRR a/ S
“+a)lf' (@] [ale+1)+2(1-27)]|f(b)]
(a +1) (o +2) 2(c + (o +2) '
So, applying Theorem 3.4, we obtain the desired result. O

Remark 4.10 Taking o =1 in Corollary 4.9, we obtain the result given by Corollary 4.4.

Corollary 4.11 Letf :I° C R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b,
and let p > 1. Suppose that |f'|P'®~D is a-convex on [a,b], a € (0,1], and |f'| € LP'*~V(a, b).
Then

17T+ alf ()7 )—

a+1

b
LRy RE

Proof Using (2.6) with w = 1, we obtain

(b-a) <lf’(a
2p+1)r

Uy o

a+l o+l

us, (u,upu3) € RxR xR,

Tra(u1, Uz, uz) = ug —

Then

Ty (A f), [f @] 7, | (B)| )
/(@) 71 +alf/(b)lp-

a+1

=Ap.f) -

where

L
-1

Aavh)-(525) orve

P
p-1

1 |f@+fb) 1 P
2 b-a /a &) dx

By Theorem 3.5, we have

Ty (A f), [f (@] 7L, | (0)]77) <0,
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that is,
:a 2l
f@+f®) 1 /b o] < 0=9)_ (L@ ol 9T
2 b-a, T 21y a+1 ’
which is the desired inequality. g

Remark 4.12 Taking @ =1 in Corollary 4.11, we obtain the result given by Corollary 4.6.

4.3 The case of h-convex functions
Let i: ] — [0, 00) be a given function which is not identical to 0, where J is an interval in
R such that (0,1) € J. We suppose that # € L(0,1) and h(%) Z0.

We have the following Hermite-Hadamard inequalities for z-convex functions (obtained
by Sarikaya et al. [14]).

Corollary 4.13 Letf : [a,b] — [0,00), (a,b) € R?, a < b, be a h-convex function. Suppose
that f € L'(a, b). Then

1 (a+b 1 h !
i/ (5) =i [ foe= ([ mode) oo

Proof From Example 2.6, we know that a /i-convex function is F-convex. Using (2.8) and
(2.9) with w =1, we have

F(uy, vy, uz, ug) = g — h(ug) iy — (1 — ug)us, (u1, s, u3,us) € R x R x R x (0,1).

and
1
Tra(u1, Uz, u3) = Uy — </ h(t) dt) (U +us3), (m,uz,u3) eRxR xR
0

So, applying Theorem 3.1, we obtain the desired result. O

Corollary 4.14 Letf :1° C R — R be a differentiable mapping on I°, (a,b) € I° X I°, a < b.
Suppose that the function |f'| is h-convex on [a, D). Then

E (b—ﬂ)(/lh(t)ll -2 dt> (M)
0

b
CHLI R

Proof Using (2.10), we have

1
/ Lypdt=0.
0

Using (2.9) with w(t) = |1 — 2¢|, we obtain

1
Trw(u, us, us) = g — (f h(t)|1 -2t dt)(u2 +uz), (u,uzuz) e RxRxR.
0
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Now, we have

2 |fl@)+f(b)
TFW(b P 5 ]f(x)dx (b)|) /oLW)dt
) 2 |f@+f(b)
_TF’W<b—a 2 Cb- a,/f Jdz). |>
2 [f@+fB) 1
" b-a 2 _b—a/;f(x)dx

_ (/()lh(t)ﬂ —2t| dt) (IF' @] +|f'®))).

So, applying Theorem 3.4, we obtain the desired result. O

Corollary 4.15 Letf :I° € R — R be a differentiable mapping on I°, (a,b) € I° x I°, a < b,
and let p > 1. Suppose that |f'|P'?~V is h-convex on [a, b], and |f'| € LP'*=V(a,b). Then

b
CHLI

(b-a) ( ! ) M 1 ) 5
<—7 h(t) dt (@71 +|f(b)|P 1) 7.
2+ 1) /0 (If @ ')

Proof Using (2.9) with w =1, we obtain

1
Tr(ur, uo, uz) = g — (/ h(t) dt) (U +us), (w,ug,u3) eRxR xR
0

Then

Tea (AR, [f @77, | (B)] 71
where

P
-1

A(p,f)=(ﬁ> (0 + D

f(a) +f ®) / fwds|

By Theorem 3.5, we have

Tea (A, [f @] 71, | B)]7T) <0

that is,
‘f (@) +f(b) / ) dx
(b-a) ( ' )”p .
<—7 (t)dt pl (b)|P 1) 7
(. (@l o))

which is the desired inequality. O
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