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Abstract
In this paper, a new iterative process by the hybrid projection method is constructed.
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1 Introduction
Let C be a nonempty closed convex subset of a Hilbert space H . A subset C ⊂H is called
proximal if for each x ∈H there exists an element y ∈ C such that

‖x – y‖ = dist(x,C) = inf
{‖x – z‖ : z ∈ C

}
.

We denote by CB(C) and P(C) the collection of all nonempty closed bounded subsets and
nonempty proximal bounded subsets ofC, respectively. TheHausdorffmetricH onCB(H)
is defined by

H(A,B) :=max
{
sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)
}
,

for all A,B ∈ CB(H).
Let T :H → H be a multivalued mapping. An element x ∈ H is said to be a fixed point

of T , if x ∈ Tx. The set of fixed points of T will be denoted by F(T).

Definition . A multivalued mapping T :H → CB(H) is called
(i) nonexpansive if

H(Tx,Ty)≤ ‖x – y‖, x, y ∈H .
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(ii) quasi-nonexpansive if F(T) �= ∅ and H(Tx,Tp) ≤ ‖x – p‖ for all x ∈H and all
p ∈ F(T).

Recently, J. Garcia-Falset, E. Llorens-Fuster andT. Suzuki [] introduced a new condition
on singlevalued mappings, called condition (E), which is weaker than nonexpansiveness.

Definition . A mapping T :H →H is said to satisfy the condition (Eμ) provided that

‖x – Ty‖ ≤ μ‖x – Tx‖ + ‖x – y‖, x, y ∈ H .

We say that T satisfies the condition (E) whenever T satisfies (Eμ) for some μ ≥ .

Now we modify this condition for multivalued mappings as follows (see also []):

Definition . Amultivalued mapping T :H → CB(H) is said to satisfy the condition (P)
provided that

H(Tx,Ty) ≤ μdist(x,Tx) + η‖x – y‖, x, y ∈ H ,

for some μ,η ≥ .

It is obvious that every nonexpansive multivalued mapping satisfies the condition (P).
The theory of multivalued mappings has applications in control theory, convex optimiza-
tion, differential equations and economics. Theory of nonexpansive multivalued map-
pings is harder than the corresponding theory of nonexpansive single valued mappings.
Different iterative processes have been used to approximate fixed points of multivalued
nonexpansive mappings (see [–]). Let � be a bifunction from C ×C into R, where R is
the set of real numbers. The equilibrium problem for � : C ×C →R is to find x ∈ C such
that

�(x, y)≥ , ∀y ∈ C.

The set of solutions is denoted by EP(�). It is well known that this problem is closely re-
lated to minimax inequalities (see [] and []). The equilibrium problem includes fixed
point problems, optimization problems and variational inequality problems as special
cases. Some methods have been proposed to solve the equilibrium problem, see, for ex-
ample, [–].
Recently, many authors have studied the problems of finding a common element of the

set of fixed points of nonexpansive single valued mappings and the set of solutions of an
equilibrium problem in the framework of Hilbert spaces: see, for instance, [–] and the
references therein. In this paper, a new iterative process by the hybrid projection method
is constructed. Strong convergence of the iterative process to a common element of a set of
common fixed points of a finite family of multivalued mappings satisfying the condition
(P) and the solution set of two equilibrium problems in a Hilbert space is proved. Our
results generalize some results of Tada, Takahashi [] and many others.
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2 Preliminaries
Let us recall the following definitions and results which will be used in the sequel.

Lemma . ([]) Let H be a real Hilbert space. Then for i, j = , , . . . ,k we have

‖ax + ax + · · · + akxk‖ ≤ a‖x‖ + a‖x‖ + · · · + ak‖xk‖ – aiaj‖xi – xj‖

for all xi,xj ∈H and ai,aj ∈ [, ] with
∑k

i= ai = .

LetC be a closed convex subset ofH . For every point x ∈H , there exists a unique nearest
point in C, denoted by PCx such that

‖x – PCx‖ ≤ ‖x – y‖, ∀y ∈ C.

PC is called the metric projection of H onto C. It is well known that PC is a nonexpansive
mapping.

Lemma . ([]) Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C.
Then z = PCx if and only if

〈x – z, z – y〉 ≥ , ∀y ∈ C.

Lemma . ([]) Let C be a closed convex subset of H. Then for all x ∈ H and y ∈ C we
have

‖y – PCx‖ + ‖x – PCx‖ ≤ ‖x – y‖.

For solving the equilibrium problem, we assume that the bifunction � satisfies the fol-
lowing conditions:
(A) �(x,x) =  for any x ∈ C,
(A) � is monotone, i.e., �(x, y) +�(y,x)≤  for any x, y ∈ C,
(A) � is upper-hemicontinuous, i.e., for each x, y, z ∈ C,

lim sup
t→+

�
(
tz + ( – t)x, y

) ≤ �(x, y),

(A) �(x, ·) is convex and lower semicontinuous for each x ∈ C.
The following lemma was proved in [].

Lemma . Let C be a nonempty closed convex subset of H and let � be a bifunction of
C ×C into R satisfying (A)-(A). Let r >  and x ∈ H. Then, there exists z ∈ C such that

�(z, y) +

r
〈y – z, z – x〉 ≥  ∀y ∈ C.

The following lemma was given in [].

http://www.journalofinequalitiesandapplications.com/content/2012/1/164
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Lemma . Assume that � : C ×C → R satisfies (A)-(A). For r >  and x ∈ H, define a
mapping Tr :H → C as follows:

Trx =
{
z ∈ C :�(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then, the following hold:
(i) Tr is single valued;
(ii) Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

(iii) F(Tr) = EP(�);
(iv) EP(�) is closed and convex.

The following lemma was proved in [] for nonexpansive multivalued mappings. The
statement is true for quasi-nonexpansive multivalued mappings as well. To avoid repeti-
tion, we omit the details of the proof.

Lemma . Let C be a closed convex subset of a real Hilbert space H. Let T : C → CB(C)
be a quasi-nonexpansive multivalued mapping such that T(p) = {p} for all p ∈ F(T). Then
F(T) is closed and convex.

Now, following Shahzad and Zegeye [], we remove the restriction T(p) = {p} for all
p ∈ F(T). Let T : C → P(C) be a multivalued mapping and

PT (x) =
{
y ∈ Tx : ‖x – y‖ = dist(x,Tx)

}
.

We use a similar argument as in the proof of Lemma . in [] to obtain the following
lemma.

Lemma . Let C be a closed convex subset of a real Hilbert space H. Let T : C → P(C)
be a multivalued mapping such that PT is quasi-nonexpansive. Then F(T) is closed and
convex.

Note that for all p ∈ F(T), PT (p) = {p}. We remark that there exist some examples of
multivalued mappings for which PT is nonexpansive (see [] for details), so that the as-
sumption on T is not artificial.

3 Themain result
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H, �

and � be two bifunctions of C × C into R satisfying (A)-(A). Let Ti : C → CB(C), (i =
, , . . . ,m), be a finite family of quasi-nonexpansive multivalued mappings, each satisfying
the condition (P). Assume further that F =

⋂m
i= F(Ti) ∩ EP(�) ∩ EP(�) �= ∅ and Ti(p) =

{p}, (i = , , . . . ,m), for each p ∈F . For C = C, let {xn} and {un} be sequences generated by
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the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

un ∈ C such that �(un, y) + 
rn 〈y – un,un – xn〉 ≥ ; ∀y ∈ C,

u′
n ∈ C such that �(u′

n, y) +

sn 〈y – u′

n,u′
n – xn〉 ≥ ; ∀y ∈ C,

vn = δnun + ( – δn)u′
n,

wn = an,vn + an,zn, + · · · + an,mzn,m,

yn = bn,vn + bn,z′
n, + · · · + bn,mz′

n,m,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x : ∀n≥ ,

where zn,i ∈ Tivn, z′
n,i ∈ Tiwn for i = , , . . . ,m. Assume that {an,j}, {bn,j}, {δn} and {rn}, {sn}

satisfy the following conditions:
(i) {an,j}, {bn,j}, {δn} ⊂ [a,b]⊂ (, ) (j = , , , . . . ,m),
(ii) {rn}, {sn} ⊂ (,∞), and lim infn→∞ rn >  and lim infn→∞ sn > .

Then, the sequences {xn} and {vn} converge strongly to PFx.

Proof First, we show that F ⊂ Cn for all n ≥ . Fix q ∈F . We set

T�
r (x) =

{
z ∈ C :�(z, y) +


r
〈y – z, z – x〉 ≥  ∀y ∈ C

}
.

Hence we have un = T�
rn xn and u′

n = T�
sn xn. By Lemma ., we have

‖un – q‖ = ∥∥T�
rn xn – T�

rn q
∥∥ ≤ ‖xn – q‖

and

∥∥u′
n – q

∥∥ =
∥∥T�

sn xn – T�
sn q

∥∥ ≤ ‖xn – q‖,

which implies that

‖vn – q‖ ≤ δn‖un – q‖ + ( – δn)
∥∥u′

n – q
∥∥ ≤ ‖xn – q‖.

Since Ti is quasi-nonexpansive, for i = , , . . . ,m, we have

‖wn – q‖ = ‖an,vn + an,zn, + · · · + an,mzn,m – q‖
≤ an,‖vn – q‖ + an,‖zn, – q‖ + · · · + an,m‖zn,m – q‖
≤ an,‖xn – q‖ + an, dist(zn,,Tq) + · · · + an,m dist(zn,m,Tmq)

≤ an,‖xn – q‖ + an,H(Tvn,Tq) + · · · + an,mH(Tmvn,Tmq)

≤ an,‖xn – q‖ + an,‖vn – q‖ + · · · + an,m‖vn – q‖
≤ an,‖xn – q‖ + an,‖xn – q‖ + · · · + an,m‖xn – q‖ ≤ ‖xn – q‖,

http://www.journalofinequalitiesandapplications.com/content/2012/1/164
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and also

‖yn – q‖ =
∥∥bn,vn + bn,z′

n, + · · · + bn,mz′
n,m – q

∥∥
≤ bn,‖vn – q‖ + bn,

∥∥z′
n, – q

∥∥ + · · · + bn,m
∥∥z′

n,m – q
∥∥

≤ bn,‖xn – q‖ + bn, dist
(
z′
n,,Tq

)
+ · · · + bn,m dist

(
z′
n,m,Tmq

)
≤ bn,‖xn – q‖ + bn,H(Twn,Tq) + · · · + bn,mH(Tmwn,Tmq)

≤ bn,‖xn – q‖ + bn,‖wn – q‖ + · · · + bn,m‖wn – q‖
≤ bn,‖xn – q‖ + bn,‖xn – q‖ + · · · + bn,m‖xn – q‖ ≤ ‖xn – q‖.

Therefore q ∈ Cn, which implies that

F =
m⋂
i=

F(Ti)∩ EP(�)∩ EP(�) ⊂ Cn, for all n≥ .

We observe that Cn is closed and convex (see []). Now we show that limn→∞ ‖xn – x‖
exists. By Lemma . we haveF is closed and convex. Put w = PFx. From xn = PCnx and
xn+ ∈ Cn+ ⊂ Cn we have

‖xn – x‖ ≤ ‖xn+ – x‖.

Also from w ∈F ⊂ Cn and xn = PCnx for all n≥ , we get that

‖xn – x‖ ≤ ‖w – x‖.

It follows that the sequence {xn} is bounded and nondecreasing. Hence the limit
limn→∞ ‖xn – x‖ exists. We show that limn→∞ xn = u ∈ C. For k > n we have xk = PCkx ∈
Ck ⊂ Cn. Now by applying Lemma . we have

‖xk – xn‖ ≤ ‖xk – x‖ – ‖xn – x‖.

Since limn→∞ ‖xn – x‖ exists, it follows that {xn} is a Cauchy sequence, and hence there
exists u ∈ C such that limn→∞ xn = u. Putting k = n + , in the above inequality we have

lim
n→∞‖xn+ – xn‖ = .

From xn+ ∈ Cn+, we have

‖yn – xn+‖ ≤ ‖xn – xn+‖,

so that limn→∞ ‖yn–xn+‖ = . This implies that limn→∞ yn = u. Take q ∈F . By Lemma .,
for each  ≤ i ≤ m, we have

‖wn – q‖ = ‖an,vn + an,zn, + · · · + an,mzn,m – q‖

≤ an,‖vn – q‖ + an,‖zn, – q‖

http://www.journalofinequalitiesandapplications.com/content/2012/1/164
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+ · · · + an,m‖zn,m – q‖ – an,ian,o‖vn – zn,i‖

≤ an,‖vn – q‖ + an, dist(zn,,Tq)

+ · · · + an,m dist(zn,m,Tmq) – an,ian,o‖vn – zn,i‖

≤ an,‖vn – q‖ + an,H(Tvn,Tq)

+ · · · + an,mH(Tmvn,Tmq) – an,ian,o‖vn – zn,i‖

≤ an,‖vn – q‖ + an,‖vn – q‖

+ · · · + an,m‖vn – q‖ – an,ian,o‖vn – zn,i‖

≤ ‖vn – q‖ – an,ian,o‖vn – zn,i‖,

and also

‖yn – q‖ =
∥∥bn,vn + bn,z′

n, + · · · + bn,mz′
n,m – q

∥∥

≤ bn,‖vn – q‖ + bn,
∥∥z′

n, – q
∥∥ + · · · + bn,m

∥∥z′
n,m – q

∥∥

≤ bn,‖vn – q‖ + bn, dist
(
z′
n,,Tq

) + · · · + bn,m dist
(
z′
n,m,Tmq

)
≤ bn,‖vn – q‖ + bn,H(Twn,Tq) + · · · + bn,mH(Tmwn,Tmq)

≤ bn,‖vn – q‖ + bn,‖wn – q‖ + · · · + bn,m‖wn – q‖

≤ bn,‖vn – q‖ + bn,‖vn – q‖ + · · · + bn,m‖vn – q‖

– bn,ian,ian,o‖vn – zn,i‖

≤ ‖xn – q‖ – bn,ian,ian,o‖vn – zn,i‖. ()

So we have that

ab‖vn – zn,i‖ ≤ bn,ian,ian,o‖vn – zn,i‖

≤ ‖vn – q‖ – ‖yn – q‖

≤ ‖xn – q‖ – ‖yn – q‖,

which implies that

lim
n→∞‖vn – zn,i‖ = , for i = , , . . . ,m.

Hence

lim
n→∞dist(vn,Tivn) ≤ lim

n→∞‖vn – zn,i‖ =  (i = , , . . . ,m).

As above un = T�
rn xn so that

‖un – q‖ =
∥∥T�

rn xn – T�
rn q

∥∥

≤ 〈
T�
rn xn – T�

rn q,xn – q
〉

http://www.journalofinequalitiesandapplications.com/content/2012/1/164
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= 〈un – q,xn – q〉
=



(‖un – q‖ + ‖xn – q‖ – ‖xn – un‖

)

and hence

‖un – q‖ ≤ ‖xn – q‖ – ‖xn – un‖. ()

And also by u′
n = T�

sn xn we have

∥∥u′
n – q

∥∥ =
∥∥T�

sn xn – T�
sn q

∥∥

≤ 〈
T�
sn xn – T�

sn q,xn – q
〉

=
〈
u′
n – q,xn – q

〉

=


(∥∥u′

n – q
∥∥ + ‖xn – q‖ – ∥∥xn – u′

n
∥∥)

and hence

∥∥u′
n – q

∥∥ ≤ ‖xn – q‖ – ∥∥xn – u′
n
∥∥. ()

Now we use () and () to obtain

‖vn – q‖ ≤ δn‖un – q‖ + ( – δn)
∥∥u′

n – q
∥∥

≤ ‖xn – q‖ – δn‖xn – un‖ – ( – δn)
∥∥xn – u′

n
∥∥.

It follows from () and the last inequality that

‖yn – q‖ ≤ ‖vn – q‖ ≤ ‖xn – q‖ – δn‖xn – un‖ – ( – δn)
∥∥xn – u′

n
∥∥.

So we have

a‖xn – un‖ ≤ δn‖xn – un‖ ≤ ‖xn – q‖ – ‖yn – q‖,

and

( – b)
∥∥xn – u′

n
∥∥ ≤ ( – δn)

∥∥xn – u′
n
∥∥ ≤ ‖xn – q‖ – ‖yn – q‖.

Since limn→∞ xn = limn→∞ yn = u, we obtain that

lim
n→∞‖un – xn‖ = lim

n→∞
∥∥u′

n – xn
∥∥ = ,

which implies that

lim
n→∞‖vn – xn‖ = .

http://www.journalofinequalitiesandapplications.com/content/2012/1/164
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Since limn→∞ ‖vn – xn‖ = , for i = , , . . . ,m, we obtain that

dist(xn,Tixn) ≤ ‖xn – vn‖ + dist(vn,Tivn) +H(Tivn,Tixn)

≤ (η + )‖xn – vn‖ + (μ + )dist(vn,Tivn) →  as n→ ∞. ()

We observe that u ∈ ⋂m
i= F(Ti). Indeed,

dist(u,Tiu) ≤ ‖u – xn‖ + dist(xn,Tixn) +H(Tixn,Tiu)

≤ (η + )‖u – xn‖ + (μ + )dist(xn,Tixn) →  as n→ ∞,

which implies that u ∈ ⋂m
i= F(Ti). Let us show that u ∈ EP(�) ∩ EP(�). From

limn→∞ xn = u and limn→∞ ‖xn –un‖ = , we have un → u as n→ ∞. Since un = T�
rn xn we

obtain

�(un, y) +

rn

〈y – un,un – xn〉 ≥  ∀y ∈ C.

From (A), we have


rn

〈y – un,un – xn〉 ≥ �(y,un),

and hence
〈
y – un,

un – xn
rn

〉
≥ �(y,un).

Since

un – xn
rn

→ ,

and un → u, from (A) we have

 ≥ �(y,u), ∀y ∈ C.

For t ∈ (, ] and y ∈ C, let yt = ty + ( – t)u. Since y,u ∈ C, and C is convex we have yt ∈ C
and hence �(yt ,u) ≤ . So, from (A) and (A), we have

 =�(yt , yt) ≤ t�(yt , y) + ( – t)�(yt ,u) ≤ t�(yt , y),

which gives �(yt , y) ≥ . From (A) we have  ≤ �(u, y), ∀y ∈ C and hence u ∈ EP(�).
Similarly, we have u ∈ EP(�). Now we show that u = PFx. Since xn = PCnx, by
Lemma . we have

〈z – xn,x – xn〉 ≤ , ∀z ∈ Cn.

Since u ∈F ⊂ Cn we get

〈z – u,x – u〉 ≤ , ∀z ∈F .

Now by Lemma . we obtain that u = PFx. �

http://www.journalofinequalitiesandapplications.com/content/2012/1/164


Abkar and Eslamian Journal of Inequalities and Applications 2012, 2012:164 Page 10 of 13
http://www.journalofinequalitiesandapplications.com/content/2012/1/164

By substituting PTi by Ti and using a similar argument as in Theorem ., we obtain the
following result.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H, �

and � be two bifunctions of C × C into R satisfying (A)-(A). Let Ti : C → P(C),
(i = , , . . . ,m), be a finite family of multivalued mappings such that each PTi is quasi-
nonexpansive and satisfies the condition (P). Assume further that F =

⋂m
i= F(Ti) ∩

EP(�)∩ EP(�) �= ∅. For C = C, let {xn} and {vn} be sequences generated by the following
algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

un ∈ C such that �(un, y) + 
rn 〈y – un,un – xn〉 ≥ ; ∀y ∈ C,

u′
n ∈ C such that �(u′

n, y) +

sn 〈y – u′

n,u′
n – xn〉 ≥ ; ∀y ∈ C,

vn = δnun + ( – δn)u′
n,

wn = an,vn + an,zn, + · · · + an,mzn,m,

yn = bn,vn + bn,z′
n, + · · · + bn,mz′

n,m,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x : ∀n≥ ,

where zn,i ∈ PTi (vn), z′
n,i ∈ PTi (wn) for i = , , . . . ,m. Assume that {an,j}, {bn,j}, {δn} and {rn},

{sn} satisfy the following conditions:
(i) {an,j}, {bn,j}, {δn} ⊂ [a,b]⊂ (, ) (j = , , , . . . ,m),
(ii) {rn}, {sn} ⊂ (,∞), and lim infn→∞ rn >  and lim infn→∞ sn > .

Then, the sequences {xn} and {vn} converge strongly to PFx.

As a result, for single valued mappings we obtain the following theorem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
� and � be two bifunctions of C × C into R satisfying (A)-(A). Let Ti : C → C (i =
, , . . . ,m), be a finite family of quasi-nonexpansivemappings, each satisfying the condition
(P). Assume further that F =

⋂m
i= F(Ti) ∩ EP(�) ∩ EP(�) �= ∅. For C = C, let {xn} and

{vn} be sequences generated by the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

un ∈ C such that �(un, y) + 
rn 〈y – un,un – xn〉 ≥ ; ∀y ∈ C,

u′
n ∈ C such that �(u′

n, y) +

sn 〈y – u′

n,u′
n – xn〉 ≥ ; ∀y ∈ C,

vn = δnun + ( – δn)u′
n,

wn = an,vn + an,Tvn + · · · + an,mTmvn,

yn = bn,vn + bn,Twn + · · · + bn,mTmwn,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x : ∀n≥ .

Assume that {an,j}, {bn,j}, {δn} and {rn}, {sn} satisfy the following conditions:
(i) {an,j}, {bn,j}, {δn} ⊂ [a,b]⊂ (, ) (j = , , , . . . ,m),
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(ii) {rn}, {sn} ⊂ (,∞), and lim infn→∞ rn >  and lim infn→∞ sn > .
Then, the sequences {xn} and {vn} converge strongly to PFx.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Ti : C → P(C) (i = , , . . . ,m), be a finite family of multivalued mappings such that PTi is
quasi-nonexpansive and satisfies the condition (P). Assume further thatF =

⋂m
i= F(Ti) �= ∅.

For C = C, let {xn} be the sequence generated by the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

wn = an,xn + an,zn, + · · · + an,mzn,m,

yn = bn,xn + bn,z′
n, + · · · + bn,mz′

n,m,

Cn+ = {v ∈ Cn : ‖yn – v‖ ≤ ‖xn – v‖},
xn+ = PCn+x : ∀n≥ ,

where zn,i ∈ PTi (xn), z′
n,i ∈ PTi (wn) for i = , , . . . ,m. Assume that {an,j}, {bn,j} ⊂ [a,b]⊂ (, )

(j = , , , . . . ,m), Then, the sequence {xn} converges strongly to PFx.

Proof Putting �(x, y) = �(x, y) =  for all x, y ∈ C and rn = sn =  in Theorem ., we
have un = u′

n = xn and hence vn = xn. Now, the desired conclusion follows directly from
Theorem .. �

Now, we supply an example to illustrate the main result of this paper.

Example . We consider the nonempty closed convex subset C = [, ] of the Hilbert
space R. Define two mappings T and T on C as follows:

T(x) =
[
x

,
x


]
, T(x) =

⎧⎨
⎩
[, x ], x �= ,

{}, x = .

We note that T and T are quasi-nonexpansivemappings satisfying the condition (P), (for
details, see []). Also we define two bifunctions � and � as follows:

⎧⎨
⎩

� : C ×C →R,

�(x, y) = y – x,

⎧⎨
⎩

� : C ×C →R,

�(x, y) = y + xy – x.

It is easy to see that � and � satisfy the conditions (A)-(A). If we put rn =  and sn = ,
then un = T�

rn xn =  and u′
n = T�

sn xn = xn
sn+ =

xn
 (for details, see []). Put an,i = bn,i = 


for i = , ,  and δn = 

 . For any arbitrary x ∈ C we have

C =
{
v ∈ C : |y – v| ≤ |x – v|} =

[
,

x + y


]
.

Since x+y
 ≤ x, we obtain that

x = PCx =
x + y


.
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By continuing this process we obtain

Cn+ =
{
v ∈ Cn : |yn – v| ≤ |xn – v|} =

[
,

xn + yn


]
,

and hence

xn+ = PCn+x =
xn + yn


.

Now, we have the following algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

vn = xn
 ,

zn,i ∈ Ti(vn), i = , ,

wn = 
vn +


zn, +


zn,,

z′
n,i ∈ Tiwn, i = , ,

yn = 
vn +


z

′
n, +


z

′
n,,

xn+ = xn+yn
 : ∀n≥ .

Putting zn, = zn, = vn
 and z′

n, = z′
n, =

wn
 we get that

xn+ =

, 

xn =
(


, 

)n+

x, ∀n≥ .

We observe that for an arbitrary x ∈ C, xn is convergent to zero.We note thatF = F(T)∩
F(T)∩ EP(�)∩ EP(�) = {}.

Remark . Since every nonexpansive mapping is quasi-nonexpansive and satisfies the
condition (P), our results hold for nonexpansive mappings.

Remark . Our results generalize the results of Tada and Takahashi [], of a nonex-
pansive single valued mapping to a finite family of generalized nonexpansive multivalued
mappings.
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