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Abstract

Background: Mass spectrometry has become a standard method by which the proteomic profile of cell or tissue
samples is characterized. To fully take advantage of tandem mass spectrometry (MS/MS) techniques in large scale
protein characterization studies robust and consistent data analysis procedures are crucial. In this work we present
a machine learning based protocol for the identification of correct peptide-spectrum matches from Sequest
database search results, improving on previously published protocols.

Results: The developed model improves on published machine learning classification procedures by 6% as
measured by the area under the ROC curve. Further, we show how the developed model can be presented as an
interpretable tree of additive rules, thereby effectively removing the ‘black-box’ notion often associated with
machine learning classifiers, allowing for comparison with expert rule-of-thumb. Finally, a method for extending the
developed peptide identification protocol to give probabilistic estimates of the presence of a given protein is
proposed and tested.

Conclusions: We demonstrate the construction of a high accuracy classification model for Sequest search results
from MS/MS spectra obtained by using the MALDI ionization. The developed model performs well in identifying
correct peptide-spectrum matches and is easily extendable to the protein identification problem. The relative ease

specific instrument set-ups.

with which additional experimental parameters can be incorporated into the classification framework, to give
additional discriminatory power, allows for future tailoring of the model to take advantage of information from

Background

The analysis of composite protein mixtures by use of
mass spectrometry techniques has become a standard
methodology for characterizing the proteomic profile of
a cell or tissue sample [1]. Mass spectral data has pro-
ven valuable in addressing complex problems such as
the reconstruction of metabolic pathways [2,3] and pro-
tein-protein interaction networks [4,5], and is of great
utility in applications spanning from the quantification
of bacterial proteomes [6] to the investigation of infec-
tious states in soybeans [7].

Efficient use of the MS/MS technique [8] in large scale
protein characterization studies requires robust and con-
sistent data analysis procedures. To this end, the combi-
nation of spectral data and the vast amount of genomic
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sequence information available in public databases has
proven extremely rewarding. Algorithms such as Sequest
[9], Mascot [10], and X!Tandem [11] (amongst others
[12,13]) can correlate thousands of mass spectra with
theoretically derived peak lists from database peptide
sequences, thus effectively automating the interpretation
of experimental data. For the above mentioned algo-
rithms, the result of a single spectrum searched against
a database typically consists of a set of highly correlated
peptide sequences along with a correlation score and a
number of additional metrics intended for validation of
the specific peptide-spectrum match.

There is, however, often no direct interpretation of
these scores in terms of statistical significance [14],
therefore simply ranking well-correlated peptides by
metrics provided from the initial database search proce-
dures and selecting a cut-off for filtering true matches
from false ones is not desirable. Depending on the
choice of threshold such a procedure will either be too
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conservative or yield a high rate of false-positives [15].
On the other hand, manual validation of the large
amount of data produced by MudPIT style [16] experi-
ments would be time consuming and out of tune with
the high-throughput experimental work-flow character-
izing the field at present. Thus, to ensure an effective
production pipeline, a fully automated method for confi-
dent validation of the results produced by the above
mentioned search algorithms is essential.

A number of procedures for validating peptide-
spectrum matches have been suggested, either as direct
extensions of the Sequest or Mascot algorithms or as
supplementary post-processing tools [17-20]. Our focus
here will be on the analysis of the search results pro-
duced by the Sequest algorithm [9], and how to effi-
ciently improve the number of true peptide-spectrum
matches identified at a controlled false positive rate.

Currently, the most widely used tool for evaluating
Sequest search results is the PeptideProphet methodol-
ogy developed by Keller et al. [21,22]. By use of an
empirically determined probabilistic mixture model
based on the fitting of assumed distributions of various
metrics (believed to reflect the reliability of the spec-
trum-peptide match) the search results are evaluated.
The procedure returns a probability estimate of a pep-
tide being present given the database search results.
While giving much higher sensitivity measures than
simple threshold based methods, this approach does suf-
fer from two short-comings: First, there is no theoretical
work supporting the assumptions made regarding the
distributions used to fit the features utilized. Second, the
model may not be easily extendable when potentially
discriminatory information from novel types of data
become available.

Machine learning provides an attractive platform for
addressing the above concerns since no prior assump-
tions about the distribution of the individual features
have to be made. In addition, the flexibility in feature
handling of most machine learning algorithms makes
further improvement of predictive power and robustness
straight forward as new information becomes available.
In recent years a number of bioinformatics problems
have been addressed using machine learning [23], for
example, the prediction of protein-DNA interactions
[24-26] and protein-membrane interactions [27]. Like-
wise, previous works have used machine learning meth-
ods for identifying true peptide-spectrum matches
through different formulations of the problem. Ander-
son et al. [28] were the first to apply such procedures to
mass spectral data in their study of Support Vector
Machines (SVM) classification of Sequest search results
from iontrap data. Razumovskaya et al. conducted a
similar study demonstrating how a neural network
could improve the filtering of Sequest search results
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over simple threshold-based procedures. In a study
using ion-trap data Elias et al. demonstrate how the
identification of peptide-spectrum matches can be
improved through probabilistic modeling of fragment
intensities observed in the spectrum at hand [29]. Ulintz
et al. [30] developed an approach using tree-based
ensemble algorithms and demonstrated that these
were superior to the SVM protocol used in previous
studies. A recent study have further demonstrated
how physiochemical properties of the peptide in ques-
tion can provide discriminatory power between true
and false matches without using database search
engine scores [31].

From the above review it is clear that a variety of
supervised classification regimens, using many different
sources of information, have been tested thus far. Here
we present a work that improve on three separate
aspects on the above mentioned machine learning pro-
cedures for identifying correct peptide-spectrum
matches from the Sequest database search procedure.

First, our classifier performs 6% better as measured by
the area under the ROC compared with results by
Ulintz et al. [30] on the same dataset. The improvement
is achieved by introducing a number of global dataset
features that take into consideration factors such as the
total number of peptide-spectrum matches belonging to
a given protein and the percentage of potentially obser-
vable peptide sequence from a given protein actually
appearing in the search result.

Second, by using the Alternating Decision Tree
(ADTree) [32] classification algorithm we are able to
represent the developed model as a tree with a limited
number of nodes, thereby rendering the model interpreta-
ble to humans. While this trade does not add anything in
terms of predictive power, interpretability of the model
makes the procedure clearer to experimentalists and
allows us to compare the prediction rules to expert rule-
of-thumb, giving an empirical validation of such rules.

Third, we build a straight-forward probabilistic proce-
dure for extending the machine learning identification
of the peptide-spectrum matches into the protein pre-
diction problem (i.e. identifying the proteins contained
in the initial sample), by converting the classification
scores into true probability estimates by means of logis-
tic calibration. The latter of the two problems is often
of most interest to experimentalists, as one is interested
in knowing the probability of a protein being in the
sample, not simply which peptide fragments were confi-
dently identified.

Methods

Reference Dataset

Our method was tested using a publicly available
MALDI MS/MS dataset obtained from a sample of 246
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known proteins [33] published on ProteomeCommons.
org [34]. The peaklists were searched using the Sequest
algorithm [9] on the IPI human FASTA database ver.
3.14 (for comparison with results reported by Ulintz
et. al [30]) with the post-translational modification
methylation, oxidation, and phosphorylation. Compari-
son with the PeptideProphet [21,22] validation results of
the Sequest output was done using output from ver. 4.0.
The PeptideProphet ROC curve and evaluation metrics
reported below were obtained from this output.

To correctly evaluate our approach the original dataset
was split into two, one for method validation and one
for training the machine learning protocols. Each of
these datasets consists of a total 43,348 examples of
which 2,035 are correct peptide-spectrum matches. In
contrast to the works we are comparing with [30] all 10
top-ranked tentative peptide matches from each spec-
trum searched are included in the training and testing
set. Including all potential matches is important, as 34%
of the true matches have been found not ranked first.
Furthermore, only including the top one or top five
ranked matches will exclude some potentially difficult
instances that may add valuable information for identify-
ing novel proteins.

Classification Algorithms

Models were constructed using four different binary
classification procedures, namely AdaBoost [35] applied
to C4.5 [36] and Willow tree [37], Random Forest [38]
applied to C4.5, and Alternating Decision tree [32] (in
the following denoted ABC4.5, ABWillow, RFC4.5, and
ADtree, respectively). All algorithms used in this study
are supervised classifier, a model does thus need to be
trained on a labeled training dataset (training mode)
and can thereafter be used to predict new examples
without further parameter tuning (prediction mode).
Casting the problem in a binary classification frame-
work, we refer to each peptide-spectrum match as an
instance (in the dataset), with the i instance consisting
of a feature vector x; € [1 x n] and a label y; € {0, 1},
with 7 denoting the feature count. All algorithms
described construct a function, g(x), that minimizes the
empirical risk of misclassifying an instance, under the
assumption that all instances are drawn with respect to
the same (unknown) probability distribution. In the fol-
lowing we limit ourselves to describing conceptual
details of the utilized algorithms, referring the reader to
cited works for technical details.

C4.5 and Willow tree are both decision trees algo-
rithms iteratively growing a classifier tree by finding
splits of the dataset with respect to the feature value
which results in the greatest gain in Shannon entropy (a
function used to quantify how homogeneous the
instances reaching a certain leaf node in a tree classifier
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are with respect to instance label). The procedure halts
when all instances in a leaf node are of the same class
or a pre-defined stopping criterion has been reached.

We apply two so-called meta-classifier techniques to
the above mentioned tree algorithms, namely AdaBoost
[35] and random forest [38]. Both work by training a
collection of decision trees over iteratively modified ver-
sions of the original training set and combining the pre-
diction power of these models into one superior
ensemble-classifier. The AdaBoost procedure iteratively
updates importance weights for the dataset instances for
each tree model constructed during training. The distri-
bution of weights is changed such that higher weight is
given to instances misclassified in the previous iteration.
The final classification of an instance is made by the
majority vote on classes returned by the tree collection.
In the case of Random Forest each tree is trained on a
bootstrap sample of the available instance and each
node split only considers a number m of the available
features (where m << n). The final class label of an
instance is assigned by taking the mode of the class
labels returned by the constructed tree set.

The ADtree algorithm also utilized the AdaBoost
technique, but unlike ABC4.5 and ABWillow it has the
advantage of producing models that are easily repre-
sented as a tree with a limited number of nodes (less
than 20). This property is achieved by constructing a
tree that is a conjunction of rules which all contribute
real-valued evidence toward a given instance being
classified as either true or false. Unlike traditional tree
models the classification of instances by ADtree is thus
not determined by a single path traversed in the tree,
but rather by the additive score of a collection of
paths. The ADtree is graphically represented with two
types of nodes: Elliptical prediction nodes and rectan-
gular splitter nodes (see Figure 1 for an example). Each
splitter node is associated with a value indicating the
rule condition: If the feature represented by the node
is less than or equal to the condition value for a given
instance, the prediction path will go through the left
child node, otherwise the path will go through the
right child node. The final classification score pro-
duced by the tree is found by summing the values
from all the prediction nodes reached by the instance,
with the root node being the precondition of the clas-
sifier. If the summed score is greater than zero, the
instance is classified as true.

In addition to providing a classification label, the tree
score of an instance (the margin score) is a measure of
confidence in the classification label, a feature that
makes is possible to convert these into true probability
estimates. To this end we use Logistic calibration [39],
providing a one-to-one mapping between the marginal
score and a probability estimate.
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Figure 1 Graphical representation of the alternating decision
tree learned from dataset. Prediction nodes are represented by
ellipses and splitter nodes by rectangles. Each splitter node is
associated with a real valued number indicating the rule condition,
meaning: If the feature represented by the node is less than or
equal to the condition value the prediction path will go through
the left child node, otherwise the path will go through the right
child node. The numbers behind the feature names in the
prediction nodes indicate the order in which the different base
rules were discovered, this ordering can to some extend indicate
the relative importance of the base rules. A detailed explanation on
how to interpret the ADTree is given in the main text along with a
discussion of the colored paths outlined.
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Evaluation Metrics

All instances will be classified into one of the following
categories: True Positive (TP), False Positive (FP), True
Negative (TN), or False Negative (FN). By determining
the count of instances in each category, the following
quality metrics can be estimated:

TP + TN
Accuracy =
TP + TN + FP + FN
o TP
Sensitivity = —————
TP + FN
TN
Specificity = ————
pectficity TN + FP
Net. prediction = Sensitivity '; Specificity

Additionally, the area under the curve (AUC) of the
receiving operator characteristic (ROC) is used to have a
metric that is unbiased towards the class distribution of
the dataset. The ROC is defined as the (1-specificity,
sensitivity)-curve, with each point corresponding to a
specific threshold for class separation. An AUC value of
1 corresponds to an error-free performance over the
entire range of thresholds, whereas a random classifier
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achieves an AUC value of 0.5. In addition to the AUC
measure we use Precession-Recall Curve (PRC)

TP+TN
TP+FP

whether a classifier is truly superior to another, as it has
been shown that domination in ROC-space does not
always result in superiority in PRC-space [40].

and recall =

( precision = sensitivity) to judge

Availability and requirements

The MALDI TOFTOF dataset used for constructing and
validating the procedure is publicly available on Proteo-
meCommons.org https://proteomecommons.org/dataset.
jsp?i=71683 [33,34]. The code for constructing the mod-
els presented is freely available as part of our in-house
machine learning workbench, MALIBU [37], available at
http://proteomics.bioengr.uic.edu/malibu/. MALIBU is
used for both training and validation of the classifiers.
All algorithm parameter tuning was done with standard
settings for the MALIBU package [37].

Results and Discussion

The developed machine learning protocol for identifica-
tion of true peptide-spectrum matches was constructed
in three steps: calculation of features for representation
of each instance in the dataset; construction of classifi-
cation models based on the annotated instances; and
evaluation and interpretation of the resulting models. In
the following, we present the details of each step and
describe a method for extending the developed protocol
into a probabilistic protein identification method.

Feature Calculation

A summary of the features utilized in this work can be
seen in Table 1. We divide the features into three
groups reflecting how they are derived. The Sequest
group contains features that can be obtained from the
output of the Sequest algorithm, such as the correlation
score (XCorr) between the theoretically calculated and
experimentally obtained spectra and the difference
between parent ion mass and database peptide mass,
(deltaMH) amongst others (Sp, SpRank, deltaCn, ion-
frac). As these values are well characterized elsewhere
[9,21] we will not go into further detail here.

The Published group contains features that have been
used in previously published results on classifier con-
struction for the problem at hand. The computations
needed to derive these features are self-explanatory
given the description in Table 1. We will refer the
reader to the study by Ulintz et. al. for further details
on computation and the underlying intuition leading to
the inclusion of these features [30]. The Novel group
consists of features not previously included in other
machine learning formulation of this classification pro-
blem, and includes features for quality assessment of the
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Table 1 Features used in the machine learning formulation
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Group Name Meaning Origin
SEQUEST XCorr Rank score from the SEQUEST search. SEQUEST
deltaMH Difference between mass of parent ion and identified peptide mass. SEQUEST
deltCn Difference between XCorr of the highest ranked peptide and the peptide in question SEQUEST
SP score Preliminary score of peptide in search procedure SEQUEST
SP rank Initial rank of peptide based on SP-score SEQUEST
lon fraction Percentage of ions in the mass spectra that could be correlated with the spectrum SEQUEST
Published Number of tryptic Number of tryptic cleavage sites in the peptide targets (NTT) Calculated
Peptide lenght Residue count of the peptide Calculated
Summed Intesity Sum of peak intensities in the spectra Calculated
Mobil proton factor (MPF) Measure of the proton mobility in peptide Calculated
C-terminal Residue Amino acid residue at c-terminal (Arg = 1, Lys = 2, Other = 3) Calculated
Mass-window peptides # of DB peptides within prespecified mass-window of the parent ion Calculated
Proline count # of Pro residues in the peptide Calculated
Arginine count # of Arg residues in the peptide Calculated
Novel Intensity Mean The mean of the peak intensities Calculated
Intensity Std. Std. of the peak intensities Calculated
Intensity bins The distribution of intensities in 20%-bins Calculated
Protein Hit Count (PHC) Probability score of observing x number of peptides from parent protein Calculated
Potential Coverage The potential sequence coverage Calculated
Ratio
PTM percentage The percentage of possible PTMs found in a peptide Calculated

For each individual feature we give a brief description and indicate whether the feature was obtained from the output of the SEQUEST algorithm or calculated
from the identified peptide, the mass spectrum, or database statistics. The features have been divided up into three subgroups SEQUEST, Published, and Novel,
denoting those features that can be derived directly from the SEQUEST algorithm output, those used in published studies of the identification problem, and

those introduced in this work, respectively.

spectral data as well as probability measures specifying
the likelihood of observing the entire dataset. Six novel
features are calculated and their rationale is described
below.

Intuitively, one would be more confident in identifying
a borderline peptide-spectrum match as being true if
other peptides from the same parent protein are
observed in the search result. In other words, given
prior knowledge, one would favor specific peptide-
spectrum matches over others with similar correlation
values, due to our overall knowledge of the search
result. This intuition leads to the implementation of two
novel features, namely the Protein Hit count (PHC) and
the Potential Coverage Ratio (PCR).

We formulate the PHC as the following probability:
Given a database containing a certain number of obser-
vable peptides D (with respect to the mass limitations of
the instrument used for analysis, the digestion enzyme
utilized, and the post-translational modifications speci-
fied in the database search) and a search result contain-
ing P samples from this database, we want to calculate
the probability that k or fewer observations of a given
protein would be made by randomly sampling from this
database. For each peptide stemming from a protein
that has been matched k times in a search we will spe-
cify the PHC by the binomial distribution, where 7 is

the number of potentially observable peptides from this
protein:

prc =32y -2y
p P |'D D

The above probability is estimated using a Poisson
distribution and is reported in negative log-space in
order to avoid numerical artifacts. Notice that since
both the database size and the number of spectra are
included in the calculation of the above term, any learn-
ing algorithm trained on a specific training set with a
given database and a collection of spectra should work
equally well on datasets obtained from a different data-
base size searched with a different number of spectra.

One concern that may be raised when utilizing infor-
mation from the parent protein, as is the case with
PHC, rather than the peptide-spectrum match itself, is
how such features will handle the fact that some pep-
tides can be mapped to several parent proteins due to
the existence of orthologs and homologs in the database
searched. One should, however, recall that a spectrum
and a peptide fragment match provided by the Sequest
protocol is always linkable to the specific parent protein
that gave rise to the theoretical peptide-fragment
matched to the spectra. Consequently there is never any
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doubt which parent protein the specific peptide-frag-
ment should be counted towards. In fact, in instances
where two proteins (one present in the sample and one
not present) have a certain degree of sequence similarity
the PHC may actually help weed out false-positive hits
from distant homologs as hits from such homologs will
have a lower PHC (and PCR) than hits from the protein
actually present in the sample.

The PCR is simply defined as the percentage of resi-
dues belonging to observable peptide fragments that are
observed in the set of peptide-spectrum matches from
the Sequest search. Further, we include the PTM per-
centage, which denotes the percentage of potential post-
translational modifications (given the current search
settings) included by Sequest to obtain the present cor-
relation scores. The logic behind including the PTM
percentage is as follows: PTMs are often functional
modifiers of proteins. The need for the hypothetical
inclusion of a high-percentage of the potential PTMs in
a short peptide fragment in order to get a good correla-
tion with the spectra at hand could indicate that the
match is not a true-positive as it seems unlikely to have
a large number of functional modifiers close together in
a relatively short peptide-fragment.

Previous works [41,42] have shown that an automated
quality assessment of the spectral data can help validate
peptide-spectrum matches by sorting out low quality
spectra. The simplest features incorporating this notion
are Intensity mean and Peak count, which specify the
average intensity of all peaks in the raw spectrum and
the total number of peaks, respectively. Both of these
values are often used in human assessment of spectral
quality [43] and have discriminatory power in sorting
out spectra of poor quality [42].

Classifier Performance
We compare the performance of a collection of classifi-
cation algorithms using datasets including different sub-
sets of features. One set includes the Sequest and
Published feature-groups from Table 1 and another one
includes all features, referred hereinafter as the S+P
dataset and All dataset, respectively. Each dataset is
divided into a training set for classifier construction and
parameter tuning (by means of cross-validation), and a
distinct test dataset for evaluating the classifier perfor-
mance. We choose to evaluate our method using a test
set rather than by using cross-validation on the training
set to ensure that dependencies between features from
different instances within the dataset do not inflate the
performance metrics (this concern is particularly rele-
vant for the PHC feature).

Table 2 shows the performance of a number of classi-
fiers on the S+P and A/l datasets. The high ratio
between negative and positive instances in the datasets
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means that accuracies correlate strongly with prediction
performance on negative cases. Consequently, the accu-
racy and specificity metrics, which for both datasets are
well above 98%, are not instructive for comparing the
performance. Better comparison can be made with Net
Prediction and AUC, as they are insensitive to skews in
class distribution. Gauging these metrics, it is clear that
the novel features introduced in this work provide
added discriminatory power between true and false
instances. The best performance is achieved by the
ADtree algorithm with the A/l dataset, giving a 6%
higher AUC ROC than the best performing algorithm in
on S+P dataset. When comparing the performance of
the same algorithm on the two dataset, we observe that
3 out of 4 algorithms perform better on the All than on
the S+P dataset, a fact that is also clearly illustrated in
the ROC curves in Figure 2 (left). Here we observe that
the ADtree and ABwillow algorithms applied to All
dataset outperform all other classifiers over the entire
range of False Positive Rates (FPR), whereas the ABC4.5
on the A/l dataset falls somewhere in between these two
and the results from classifiers trained on the S+P data-
set. In addition, all classifiers trained on the A/l dataset
perform better than the PeptideProphet procedure over
the entire FPR range. When comparing the classifiers
trained on the S+P feature collection to the PeptidePro-
phet result, the picture is not as clear. As can be seen
on the enlargement in Figure 2 (left), the machine learn-
ing algorithms do in general (regardless of feature set)
perform better than PeptideProphet at lower FPRs,
while PeptideProphet gives better sensitivity at higher
FPRs (Note, the high FPR range is rarely used in real
applications). We also note that the results obtained on
the S+P dataset containing the same features as utilized
by Ulintz et al. closely match the result reported on a
preliminary version of mass spectral data used in this
study [30]. The PRC depicted in Figure 2 (right) offers
an alternative view of classifier performance. The plot
does not allow for judgment of which algorithm does
better on a specific dataset, as all show strengths and
weaknesses at different recall values. It is, however, clear
that all algorithms trained on the All dataset do better
than the ones trained on the S+P dataset, conforming
the discriminatory power of the new features introduced
in this work.

An Interpretable Model

As observed above, the ADTree algorithm is among the
strongest performers on the dataset incorporating all
features, rivaled only by ABWillow tree. In comparison
with machine learning algorithms such as SVM, the
ADTree algorithm provides the advantage of being
represented as a collection of user interpretable rules.
Figure 1 shows a graphical representation of the
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Table 2 Validation metrics for a collection of machine learning algorithm runs over testsets containing feature from

the groups denoted in table 1

Feature groups Algorithm Accuracy Sensitivity Specificity AUC ROC Net pred.

All ABWillow 0.97505 0.56504 0.99385 0.96379 0.77945
ABC4.5 097361 0.58815 0.99269 0.94821 0.79042
RFC4.5 097276 057212 0.99259 0.87901 0.78235
ADtree 0.97688 0.7248 0.98988 0.96923 0.86118

SEQUEST ABWillow 0.96951 048762 0.99336 0.90723 0.74050
ABC4.5 0.97258 0.57018 0.99250 0.907084 0.78139

Published RFC4.5 097228 0.58961 099122 0.912744 0.79042
ADtree 0.96925 048762 0.99310 0.90604 0.74032

- PeptideProphet 0.9688 0.54 0.99 - 0.765

ADTree model learned from the All dataset (see Meth-
ods for how to interpret the tree).

The base-rules in the tree are numbered in accordance
with their order of discovery (the number indicated in
parenthesis after each feature name), which can be
interpreted as the rule importance or predictive power
of the feature [32]. Given that interpretation, surpris-
ingly, the PHC appears to have the strongest discrimina-
tory power amongst true and false instances in that a
PHC >15.9 adds significant weight towards a positive
prediction (the final faith of an instance satisfying this
rule is of course also based on the other base rules
involving PHC). Thus the learned model suggests that a
higher than expected number of peptides from one pro-
tein in the Sequest search result, is indicative of these
peptide-spectrum matches being true hits. The second

and third base rules discovered are cut-offs for the
XCorr score and deltaCn, two of the main attributes of
the Sequest algorithm used for judging how well the
theoretical peptide spectrum correlates with the experi-
mentally obtained spectrum. (It should, of course, be
noted that except for rules with the root node as parent,
the prediction bias of a rule should always be seen in
context of its parent node(s)).

To better interpret the possible paths traversed by a
dataset instance, subsets of base-rules have been high-
lighted in color in Figure 1. We will now examine these
paths more closely to see how the classifier is able to
discover meaningful knowledge, while at the same time
providing high accuracy classification results.

The blue path is made up of only one feature,
namely NTT. If the peptide has at most one missed

Receiver Operator Curves

True Positive Rate
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03: 1 1 1
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Figure 2 Receiver Operator Curves (ROC) (left) and Precision/Recall Curves (PRC) (right). Classifiers trained with the novel set of features
have the suffix all, otherwise the suffix S+P is used (this does not apply to the curve for PeptideProphet shown in the ROC plot). The ROC
shows how the TPR varies with the FPR, indicating what percentage of true hits one can expect to obtain at a given false-positive-rate. The PRC
given an alternate view of the classification depicting the precision as a function of the recall (note PeptideProphet results only shown in ROC).
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cleavage side, this provides evidence toward the hit
being positive, though an instance satisfying this
requirement could still ultimately be classified as a
false hit. If we examine the red path we see that a
PHC <15.9 is negative evidence towards the hit being
true, as it is unlikely that we would observe only a few
peptides from a protein that is indeed present in the
sample. If the peptide-spectrum match does, however,
have a strong correlation score (XCorr >2.45) this
effect is reversed, giving the path a net positive score.
Interestingly, an XCorr score lower than the 2.45
threshold does not add significant evidence toward the
match being false. Thus high XCorr scores add evi-
dence towards an instance being true, while scores
below constitute a borderline region where other fac-
tors determine the faith of the instance.

The fact that the PHC feature only comes into play
when the XCorr score is below a certain threshold is
an important model feature, as the PHC score might
otherwise “hurt” the classification of proteins with few
“mass specable” peptide-fragments. The PHC is, in
other words, not used unless the quality metrics corre-
lating the spectrum and the proposed peptide do not
provide sufficient evidence to conclusively determine
whether the peptide-spectrum match is correct. In
situations where there are only one or two “mass spec-
able” peptides from a protein one would want the
quality metrics of matches to be highly confident when
using them to identify the parent protein, the strategy
learned by the model is thus reasonable when handling
such instances.

A related mechanism is observed when following the
green path, here deltaCn values of at least 0.05 add evi-
dence toward the instance being a true hit. The follow-
ing XCorr filter shows that correlation values below 1.71
are strong evidence towards the instance being negative,
values above this threshold do not add evidence towards
the instance being positive. The yellow path does not
add any new features to the classifier, but simply acts as
a further filter on the PHC feature, constructing inter-
vals with increasing summed evidence towards the
instance being positive. The purple path, on the other
hand, adds two new features. If the instances following
this path has a deltaCn <0.05, and at the same time an
IonFrac value of less than 20.8%, there is substantial evi-
dence towards the instance being false, whereas higher
IonFrac values are indicative of a true instance when
combined with a low deltaCn. In other words, small dif-
ferences in the mass of parent ion of the mass spectrum
and the theoretical mass of the peptide that it has been
matched with is a strong indicator of a true hit only if a
certain fraction of the spectral peaks are accounted for
by that specific peptide.
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We observe that none of the features intended to
address the issue of spectral data quality were found to
be instrumental in significantly improving the classifica-
tion accuracy for the ADtree model. This is somewhat
surprising, since well above 85% of spectra were consid-
ered to be of bad quality in studies addressing the pro-
blem of identifying such cases [41]. Thus, one would
expect that a feature identifying such spectra would pro-
vide certain discriminatory power. One possible explana-
tion for this observation is that these cases are already
covered by other rules from the ADtree, thus including
the spectral quality feature to the model would not add
additional predictive power. For instance, one might rea-
son that cases with inferior spectral quality will only
give rise to database hits with low XCorr score, which
would render these cases false hits due to this feature.

The rules discovered above using the ADTree agree
well with expert criteria previously used as conservative
estimates for identifying hits that would be true with
high probability. Washburn et al. [16] did, for instance,
settle on the following conjunction of rules as criteria
for correct hits: XCorr >2.2, deltaCn <0.1 and the pep-
tide has to be fully tryptic (meaning NTT = 0). The
classifier developed is comprised of rules with similar
cut-off values for the features used by experts, but does
also utilize novel rules when making predictions, identi-
fying true instances that would otherwise have been
missed. Take for instance the XCorr cut-off: We found
that values above 2.45 provide strong evidence towards
an instance being a correct match. If the value, on the
other hand, is below this cut-off we did not find it to be
significant evidence toward the hit not being correct
unless the value fell below 1.71, providing room for a
number of borderline instances that can be correctly
classified using the additional features in the model.

Extending the Peptide Prediction Protocol to the Protein
Prediction Problem

The ultimate goal of MS/MS experiments is not neces-
sarily the confident identification of peptides, but rather
determining a probability measure for the presence of
their parent proteins in the sample analyzed. One soft-
ware application addressing this issue is the ProteinPro-
phet software [44] by Nesvizhkii et al., which identifies a
minimal set of proteins accounting for the observed
peptides by use of the expectation-maximization algo-
rithm. Following the formulation in this work we show
a straight-forward way of extending our peptide identifi-
cation protocol to a protein identification protocol.

A conservative estimate of the probability, P, that a
given protein is present (meaning that at least one of
the peptide matched by the database search from this
protein is correct) is given by
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P:I—H(l—m]?lXP(HDlj)) (1)

where the product index i is over all distinct peptides
from this protein, the index j is over all matches

obtained for one specific peptide and p(+ | le ) denotes

the probability of the j identification of peptide i being
a true match. We take the maximum over all identifica-
tion from all identical peptides, as these should not be
considered independent. Note further that this formula-
tion theoretically allows for a specific peptide to be con-
sidered as evidence for two distinct proteins.

By use of logistic calibration we convert the classifica-
tion scores obtained from the ADtree algorithm into
probability estimates of a given peptide-spectrum match
being correct (or in other words we estimate p(+ | le )).
Combining these estimates with (1) we can calculate
probability estimates for each protein that has at least
one peptide identified in the database search actually
being present. Using this relatively simple extension of
the classification framework we are able to identify 87%
of the proteins present in the sample at false positive
rate 5%. In comparison, using the probability estimates
from PeptideProphet only achieved an identification rate
of 85%. This is not surprising as we previously saw that
the ADtree procedure identifies more correct peptide-
spectrum matches than PeptideProphet.

Conclusions

Supervised machine learning provides an attractive plat-
form for examining the peptide prediction problem
since no prior assumptions of the distribution of the uti-
lized features have to be made when constructing the
model. This is in contrast to generative/unsupervised
models such as the PeptideProphet procedure, that
assumes specific distributions (in this case Gaussian and
Gama distributions) when classifying matches. While it
has been shown that the assumption regarding a specific
data distribution is reasonable [21,44] in certain
instances of the identification problem there is no gen-
eral evidence or theoretical framework supporting this
claim for all types of instrument or data. As conveyed in
this work another attractive property of the supervised
machine learning framework is the relative ease with
which the developed models can be extended with novel
features in order to improve predictive power. It thusly
becomes possible to construct a tailored peptide identifi-
cation framework for specific experimental procedures
and equipment choices, thereby providing stronger guar-
antees on the control of error rates than would be possi-
ble with a generic setup. One drawback of the
supervised learning approach is of course the need to
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construct a training dataset from a know protein sample
to do the initial parameter tuning of the model and
determine the performance metrics. However, once the
training is done the trained model will perform equally
well on large scale and sparse datasets, since one does
not have to be concerned with having too little data to
properly estimate model parameters.

Since large-scale proteomics studies are often con-
cerned with characterizing the proteomic make-up of
the cell in a number of states, a reliable probabilistic
measure for the presence of a given protein is essential.
Above we demonstrated how predictions from the
ADtree model (or any other supervised learning algo-
rithm providing marginal classification scores) combined
with logistic regression can be used in a simple prob-
abilistic framework to give a high protein identification
rate at a low FPR.

In sum, we have improved on previously published
machine learning procedures for identification of correct
peptide-spectrum matches by introducing novel features
adding to the predictive power of all the tested algo-
rithms. Furthermore, we have introduced the ADtree
procedure into the problem domain, constructing an
interpretable model that correlates well with previously
published rules addressing the classification problem at
hand. Finally, we show how the protein prediction pro-
blem can be addressed within the presented framework.

In this work we demonstrate how a generic classifica-
tion model for MS/MS data obtained by use of the
MALDI ionization can be constructed. In future work,
we intend to extend the classification framework to take
advantage of experiment specific parameters (ionization
method, instrument type, pre-processing steps of the
sample) creating models tailored specifically to the
instrumental set-up used to obtain the spectral data.
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