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ABSTRACT

Research on innate lymphoid cells (ILC) has recently
been a fast paced topic of immunological research. As
ILCs are able to produce signature Th cytokine, ILCs
have garnered considerable attention and have been
described to represent the innate counterpart of the CD4+

T helper (Th) cells. The development and function of ILCs
are precisely regulated by a network of crucial tran-
scription factors, which are also involved in the devel-
opment or differentiation of conventional natural killer
(cNK) cells and T cells. In this review, we will summarize
the key transcriptional regulators and their functions
through each phases of ILC development. With the phase
of ILC lineage commitment, we will focus in particular on
the roles of the transcription regulators Id2 and GATA-3,
which in collaboration with other transcriptional factors,
are critically involved in the generation of ILC fate
determined progenitors. Once an ILC lineage has been
established, several other transcription factors are
required for the specification and functional regulation of
distinct mature ILC subsets. Thus, a comprehensive
understanding of the interactions and regulatory mech-
anisms mediated by these transcription factors will help
us to further understand how ILCs exert their helper-like
functions and bridge the innate and adaptive immunity.
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INTRODUCTION

Research on a new population of lymphocytes, innate lym-
phoid cells (ILCs), has been on the rise during the past few

years. Compared to other cells in the innate immune system,
ILCs are unique in that they may produce and secrete
cytokines that were classically regarded as CD4+ Th cell
products (Eberl et al., 2015b). Thus, ILCs are considered to
be an important component of the innate immune system
and their development and functionality has drawn consid-
erable attention in the field. Innate immunity is an evolu-
tionarily ancient system. A major feature of innate immunity
is the antigen non-specificity. Pattern recongnition (PR) is a
well-known manner to initiate an innate response. The innate
immune system recognizes pathogen-associated or dam-
age-associated molecular patterns (PAMPs or DAMPs)
through pattern recognition receptors (PRRs) in a semi-
specific manner (Brubaker et al., 2015). Signals transduced
downstream of PRRs may promote the production of pro-
inflammatory cytokines or chemokines, including IL-1β,
TNFα, IFN-β, IL-8, etc.

In contrast, the adaptive immune system has evolved to
generate exquisitely specific responses to particular anti-
gens, which eventually leads to immunological memory.
CD4+ T cells are one of the key players in the adaptive
immune system. Early T cell precursors (ETPs) develop
through multiple selection steps, including CD4−CD8− dou-
ble negative (DN), CD4+CD8+ double positive (DP), and
CD4+ or CD8+ single positive (SP) in the thymus. Once the T
cell precursors have experienced β-selection, positive and
negative selection, they eventually become bona fide naïve
CD4+ or CD8+ T cells (Germain, 2002). Several crucial
transcription factors are involved in regulating and orches-
trating this process, including TCF1, TOX, Bcl11b, GATA-3,
Th-Pok, and Runx3, etc. (Yui and Rothenberg, 2014). Naïve
CD4+ T cells, after migrating out of the thymus to the
periphery, will further differentiate into distinct effector cells
upon encountering antigen-laden antigen presenting cells.
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During this process, the signals triggered by TCR, co-stim-
ulatory receptors and cytokine receptors influence the ulti-
mate effector T helper cell fate of the naïve T cell (O’Shea
and Paul, 2010). For example, IL-12 drives the differentiation
of type 1 T helper (Th1) cells; IL-4 promotes type 2 T helper
(Th2) cells; and IL-6 together with TGF-β facilitates the
generation of IL-17-producing T helper (Th17) cells. Differ-
entiated Th effectors are capable of expressing their signa-
ture effector cytokines—IFN-γ for Th1, IL-4 for Th2, and
IL-17 for Th17 cells. The transcription factors that are
deterministic for the differentiation and functions of Th cell
subsets, are referred to as master transcription factors and
include T-bet for Th1, GATA-3 for Th2, and RORγt for Th17
cells. The precise functions of these master lineage regula-
tors during CD4+ T cell activation and Th effector differenti-
ation have been extensively studied using gain or loss of
function animal models.

The production of signature effector cytokines had his-
torically been considered a unique feature of CD4+ Th cells
in the adaptive immune system, until the discovery of ILC
populations. These innate lymphocytes were overlooked
possibly due to their lack of expression of any known lineage
markers and their enrichment mainly in the non-lymphoid
tissues. The first descriptions of a non-T non-B lymphocyte
population that produced the Th2 cytokines, IL-5 and IL-13,
began the innate lymphoid cell field (Fallon et al., 2006; Moro
et al., 2010; Neill et al., 2010; Price et al., 2010). It is now
well known that there are several distinct ILC subsets that
can express signature cytokines like Th cells (Eberl et al.,
2015a). For example, group 2 ILCs (ILC2s) can produce the
effector cytokine IL-5 and IL-13 like Th2 cells, group 3 ILCs
(ILC3s) can produce IL-22, IL-17a, and IL-17f as Th17/Th22
cells, and group 1 ILCs (ILC1s) can produce IFN-γ and TNF-α
like Th1 cells. Interestingly, in addition to their mirrored
cytokine repertoire, both CD4+ T cells and ILC subsets also
utilize a similar set of transcriptional factors for their devel-
opment, differentiation and functions (Artis and Spits, 2015;
Zhong and Zhu, 2015b; Zook and Kee, 2016).

In addition to their ability to produce signature cytokines,
ILCs are interesting in that they are primarily tissue resident
lymphocytes. ILC progenitors are developed in the bone
marrow, while mature ILCs are mainly enriched in peripheral
tissues such as gastrointestinal (GI) tract, lung, liver, and
skin. Recent studies from parabiosis experiments have
confirmed that the vast majority of ILCs are tissue-resident
(Gasteiger et al., 2015). In addition, a few reports have
addressed the question of how bone marrow ILC progenitors
home to peripheral tissues. For example, ILC2s gain the gut
homing receptor CCR9 and Integrin α4β7 during their
development in bone marrow, and thus ILC2s directly
migrate to and reside in the gut after maturation. On the
other hand, the precursors of ILC1 and ILC3s may initially
express the homing receptor CCR7, which directs them to
lymphoid organs such as the spleen and lymph nodes. Then
upon encountering retinoic acid, ILC1 and ILC3 cells may
down-regulate CCR7 and up-regulate both CCR9 and

Integrin α4β7, which eventually guides these cells to the gut
(Kim et al., 2015). However aside from the gut, it is currently
unclear how ILCs may migrate to other peripheral tissues.
The process of ILC colonization is further complicated by the
fact that ILC precursors are also found in periperal tissues
(Bando et al., 2015). At the fetal stage, some ILC progenitor
cells have been observed to migrate to and reside in the
proximal gut, where they are responsible for the generation
of Peyer’s patches. Interestingly, these precursors have the
capacity to develop into all three ILC subsets and may thus
serve as a resident source of ILCs.

Functionally, ILCs are crucially important in providing
protection against pathogens in the early stages of an
immune response. For example, ILC2s are an important
source of IL-5, IL-13, and IL-9 after an infectious challenge
with helminth pathogens (Fallon et al., 2006; Neill et al.,
2010; Price et al., 2010; Wilhelm et al., 2011). The produc-
tion of these cytokines is required for the efficient recruitment
of eosinophils (Nussbaum et al., 2013). ILC2s also partici-
pate in wound healing via secretion of amphiregulin (Monti-
celli et al., 2011). Additionally, ILC2-derived cytokines may
promote the beigeing of adipose tissue and may thus affect
adipose tissue homeostasis (Lee et al., 2015). ILC3 cells are
RORγt-expression ILCs. A special subset of ILC3s is the LTi
cell which is required for the formation of secondary lym-
phoid structures such as lymph nodes and Peyer’s patches
(Finke, 2005). ILC3s are enriched in the GI tract and are
associated with inflammatory bowl diseases. ILC3s are the
main source of IL-22 in homeostatic conditions and in the
early stages of certain inflammatory responses (Cella et al.,
2009; Luci et al., 2009; Sanos et al., 2009; Takatori et al.,
2009). IL-22 acts on intestinal epithelium to regulate the
homeostatic self-renewal of epithelial stem cells (Hanash
et al., 2012; Lindemans et al., 2015) and the production of
antimicrobial peptides (Dudakov et al., 2015). Additionally,
ILC3-derived IL-22 and lymphotoxin are also required for the
fucosylation of the gut epithelial cells by stimulating the
expression of fucosyltransferase Fut2 (Goto et al., 2014;
Pickard et al., 2014). The fucose residues on the surface of
the gut epithelium may provide nutrients for the gut micro-
biota, thus maintaining gut homeostasis. Recent studies
have also indicated that ILC3s in other peripheral tissues,
including the skin (Pantelyushin et al., 2012), may also play
crucial roles in maintaining the local microenvironment.
ILC1s have similar features to conventional NK cells, aside
from their lack of cytotoxicity. However, ILC1s are more
efficient producers of IFN-γ and TNF-α during a type 1
response and ILC1s provide the innate protection against
Toxoplasma gondii infection (Klose et al., 2014).

ILCs may directly or indirectly regulate the adaptive
immune response. For example, a deficiency in ILC2s may
result in a dramatic reduction in Th2 responses (Oliphant
et al., 2014). ILC2-derived IL-13 may promote DC migration
to the draining lymph node where the DCs can facilitate Tcell
activation and Th2 differentiation (Halim et al., 2014). IL-13
also licenses DC subsets to secrete the chemokine CCL17,
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which is required for the recruitment of memory CD4+ T cells
(Halim et al., 2016). In addition, ILC2s may express the
antigen-presenting molecule MHCII and can crosstalk
directly with Th2 cells to augment immune responses (Oli-
phant et al., 2014). However, a recent report indicates that a
normal Th2 response may occur in the absence of ILC2s
(Van Dyken et al., 2016), arguing that the ILC2-derived IL-13
and the potential antigen-presenting functions of ILC2s may
not be necessary to mount an effective Th2 response.
Interestingly, ILC3s may also express MHCII, however ILC3-
dependent antigen presentation represses commensal anti-
gen specific CD4+ effector T cells, due to a lack of or low
expression of co-stimulatory molecules on ILC3s (Hepworth
et al., 2015; Hepworth et al., 2013).

Thus as the field continues to explore the functions of
ILCs, new and novel functions of various tissue-resident ILC
subsets are being reported. However the development and
function of ILCs are, like all cells, subject to transcriptional
regulation and control. Therefore in the remainder of this
review, we will summarize the transcription factors that have
been shown to critically regulate the functions and devel-
opment of tissue resident ILCs.

TRANSCRIPTIONAL REGULATION OF ILC
DEVELOPMENT

To fully understand the function of ILCs, we need first to
understand how this lineage is generated. At present, the
regulatory mechanisms of innate lymphoid cell develop-
ment have been quite elusive. Our initial knowledge on the
generation of these cells mainly stemmed from the phe-
notypes of global gene knockout mice. Nevertheless, it is
now clear that the transcriptional regulators that are
associated with cNK or T cell development are also
involved in ILC development, suggesting that ILCs and T
cells have a close developmental relationship. Research
on the transcriptional regulation of ILC development
became feasible once common ILC progenitor cells were
identified. Below is a summary of the critical transcription
factors that have been identified to be involved in ILC
development (Fig. 1).

Id2

Studies on ILC development have advanced progressively
since the identification of the ILC fate determined progeni-
tors, the common helper-like innate lymphocyte progenitors
(ChILPs) (Klose et al., 2014). Id2 is expressed by ILCs and
cNK cells and is required for their development (Verykokakis
et al., 2014; Yokota et al., 1999). Id2 belongs to the “inhibitor
of DNA binding protein” family, which is comprised of Id1-4.
Id proteins share a highly conserved helix-loop-helix (HLH)
domain and can negatively regulate other HLH domain-
containing transcription factors by forming heterodimers with
their HLH domain; thus inhibiting their ability to bind to DNA.
E-box proteins, including E2A, E2-2, HEB, are one example

of a subset of basic HLH transcription factors that are
antagonized by Id proteins (Kee, 2009). Id2 is required for all
innate lymphocytes development, partially due to their
repression of the E-box proteins (Verykokakis et al., 2014).
Indeed, an additional deficiency of E2A in Id2−/− mice res-
cues a defect in lymphoid tissue inducer (LTi) cell develop-
ment as well as a defect in the formation of secondary
lymphoid structures (Boos et al., 2007). ChILP cells are
defined as lineage−IL-7R+Flt-3−Integrin α4β7

+CD25−Id2high

progenitor cells that have committed their fates to an ILC
lineage (Klose et al., 2014) (Fig. 1). Some transcription
regulators associated with the up-regulation of Id2 have also
been identified and will be discussed later. However, the
precise mechanisms through which Id2 mediates ILC
development and the environmental signals that induce Id2
expression in ChILP cells are still elusive.

GATA-3

In addition to Id2, GATA-3 is another transcriptional regulator
that is required for the development of all innate lymphocytes
aside from cNK cells (Yagi et al., 2014). GATA-3 is well
known for its involvement in T lymphocyte development at
various stages (Ho et al., 2009). During CD4+ T cell devel-
opment, GATA-3 needs to be up-regulated to a proper high
level in order to induce Th-pok expression and thus to direct
CD4+ T cell generation (Wang et al., 2008). Deficiency in
GATA-3 at the CD4+CD8+ double positive (DP) stage results
in a failure of CD4+ T lineage commitment (Pai et al., 2003),
whereas hyperexpression of GATA-3 by a GATA-3 transgene
is toxic to the cells (Taghon et al., 2007). Furthermore,
overexpression of GATA-3 at the DN stage redirects these
cells developing into mast cells (Taghon et al., 2007). Thus,
the level of GATA-3 expression during T cell development
needs to be carefully controlled. We have previously found
that ILCs require GATA-3 for their development. A condi-
tional Gata3 deficiency starting from the hematopoietic stem
cell stage mediated by VavCre results in a developmental
defect affecting almost all ILCs (Yagi et al., 2014), consistent
with another report showing that a Gata3 germline deletion
causes the failure of ILC3 development (Serafini et al.,
2014). By tracing GATA-3 expression along ILC develop-
ment, we and others have found that GATA-3 expression is
undetectable at the common lymphoid progenitor (CLP)
stage, and that CLP development in Gata3fl/flVavCre mice
seems to be normal. However within the ChILP cells, a
subset expresses high GATA-3 levels, suggesting that high
levels of GATA-3 expression at this progenitor stage may be
required for the development of all ILCs. As GATA-3 is dis-
pensable for cNK cell development but required for the
optimal function of mature cNK cells (Samson et al., 2003), it
is intriguing to explore whether the GATA-3 expression levels
in innate lymphocyte progenitors can determine their lineage
fates towards either helper-like ILCs or cytotoxic cNK cells,
in a similar manner to the function of GATA-3 in CD4+ and
CD8+ T cell lineage commitment.
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PLZF

In addition to ChILP cells, another specialized ILC progenitor
population has been identified based on the expression of
the transcription factor PLZF; namely the lineage−PLZF+

common innate lymphoid progenitor (CILP) (Constantinides
et al., 2014) (Fig. 1). Further characterization of these cells
has indicated that they are IL-7R+/−, Flt-3−, Integrin α4β7

+,
Id2+, and GATA-3+. Interestingly, PLZF is only transiently
expressed at the ILC progenitor stage. Using a fate-mapping
mouse strain to trace current and former PLZF-expressing
ILC progenitor-derived cells or by transferring PLZF-ex-
pressing CILPs, Bendelac and his colleagues have demon-
strated that the progenies of PLZF-expressing progenitors
include all ILCs but not LTi cells, indicating that LTi cells
develop from a distinct progenitor, which is separated from
the PLZF-expressing progenitors that give rise to non-LTi
ILCs. However, PLZF itself is not absolutely required for ILC
development, despite a modest reduction of ILC2 cells in
Zbtb16−/− mice (PLZF gene) (Constantinides et al., 2014).

Notch

The Notch signaling pathway is highly conserved in most mul-
ticellular organisms and it plays critical roles during lymphoid
lineage commitment. For example, Tand B cell fate in the early

stages after CLP is determined by the on and off status of Notch
signals (Radtke et al., 2013). Notch signals are also critically
involved in ILC development and functional regulation (Lee
et al., 2011; Possot et al., 2011; Wong et al., 2012), possibly
through their regulation of Gata3 and/or Tcf7 expression, which
needs to be studied further. Interestingly, while Notch signals
are required for LTi development, sustained Notch signals can
block the generation of LTi cells (Chea et al., 2016). Therefore,
Notch signaling seems to be dynamically regulated and its
functions may be stage specific during ILC development.

Nfil3

Nuclear factor interleukin-3 (Nfil3, also known as E4BP4)
has been recently reported to be a critical transcription factor
for the development of all ILCs (Seillet et al., 2014; Xu et al.,
2015; Yu et al., 2014), and the development of cNK cells
(Gascoyne et al., 2009). Nfil3 can be induced by IL-7 sig-
naling in CLPs (Xu et al., 2015). For both ILC and cNK cell
development, Nfil3 can efficiently activate Id2 expression,
probably explained by its direct binding to the Id2 locus (Xu
et al., 2015). However, Nfil3 is not indispensible for Id2
expression in innate lymphocyte progenitors since both cNK
cells and ILCs can still develop in the Nfil3−/− mice, albeit at
lower numbers.

CLP EILP

α4 β7

Ikaros+

Nfil3+

IL7Rlow

NKp

CILP

LTiP

ChILP

Id2high GATA-3 TOXhigh

TCF1high

Id2high
GATA-3high
PLZF+/-

ROR γt

TOXlow

TCF1low

Id2high
GATA-3low
PLZF-

Notch signal

Cytotoxic ILC lineage

Helper-like ILC lineage

TOX
TCF1

Nfil3

TOX+
TCF1+

IL7R-/low

Nfil3+

Id2low

GATA-3+

Id2
Nfil3
Id2

GATA-3

Id2

Figure 1. Critical transcription factors regulate ILC development. After the stage of common lymphoid progenitor (CLP),

transcription factors such as TCF1, TOX and Nfil3, together with the Notch signals, promote the generation of an early innate

lymphoid progenitor (EILP) expressing Integrin α4β7. EILP has the potential to become both the helper-like innate lymphoid cell (ILC)

lineage and the cytotoxic conventional nature killer (cNK) lineage, but has lost the capacity to generate T cells, B cells or dendritic

cells. GATA-3 is required for the development of common helper-liker innate lymphoid progenitor (ChILP), which expresses high

levels of DNA binding inhibitor Id2. The development of the cytotoxic innate lineage does not require GATA-3, but require Id2 whose

expression level is low at the progenitor stage and gradually increases during NK cell development. Within the ChILP population,

some cells transiently express PLZF and are committed to non-LTi ILC lineages in a GATA-3-dependent manner. Progenitors that

have not previously expressed PLZF generate the LTi cells in a RORγt-dependent manner.
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TOX

Thymocyte selection-associated HMG box protein (TOX)
belongs to another evolutionarily conserved high mobility
group (HMG)-box family. TOX is known to be essential for
the development of both adaptive T cells and innate cNK
cells. TOX is transiently expressed during the β-selection
and positive selection of T cell development and may be
involved in the transition from CD4lowCD8low to CD4+CD8low

(Aliahmad and Kaye, 2008). TOX is also expressed in
developing and mature cNK cells (Aliahmad et al., 2010).
Nfil3 may bind to the Tox locus and may positively regulate
its expression (Yu et al., 2014). Tox deficiency results in a
blockage of cNK development at the lin-
eage−IL15Rα+NK1.1−DX5− progenitor stage, but the block-
age is not associated with Id2 expression (Aliahmad et al.,
2010). Tox−/− mice have a profound defect in LTi generation,
as indicated by the lack of peripheral lymph nodes and a
significantly reduced Peyer’s patch frequency and size (Ali-
ahmad et al., 2010). With regard to ILC development, a Tox
deficiency results in a dramatic reduction of ChILPs (Seehus
et al., 2015). A comparison of gene expression in wild type
and Tox−/− ChILPs suggests that a decrease in Notch sig-
nals, in concert with their downstream target genes, includ-
ing Tcf7, Hes1, Gata3, and Bcl11b might be responsible for
the developmental defect in ChILPs.

TCF1

T-cell factor 1 (TCF1, encoded by Tcf7) is another member of
the HMG box-containing transcription factors. It is also
involved in the development of both T cells and ILCs. TCF1
level during T cell development is up-regulated as early as
the early T cell progenitor (ETP) stage, and together with its
close homolog, lymphoid enhancer binding factor 1 (LEF-1),
TCF1 promotes T cell development possibly by acting as a
downstream effector of Notch signaling (Steinke et al., 2014;
Weber et al., 2011). It has been recently reported that TCF1
is critical for the development of multiple ILC subsets
including ILC2s and ILC3s (Mielke et al., 2013a; Yang et al.,
2013). TCF1 expression is induced before the ChILP stage.
Based on TCF1 expression, an earlier innate lymphocyte
progenitor, termed EILP, has been identified (Yang et al.,
2015) (Fig. 1). The EILP has the potential to develop into
either cNK cells or ILCs, but has lost its capacity to become
Tor B cells. EILPs, which are different from ChILPs, express
very low levels of Id2, but substantial levels of Nfil3 and TOX
transcripts. Thus Nfil3 and/or TOX may be responsible for
inducing TCF1 expression, and thus the generation of
EILPs. Therefore, Nfil3, TOX, and TCF1 may represent a
few upstream transcription factors that are required to set up
the environment for Id2 up-regulation and thus ChILP gen-
eration. Besides inducing Id2, TCF1may up-regulate GATA-3
expression, presumably through similar GATA-3 regulation
mechanisms found during ILC2 development.

Although the above transcription factors are essential for
the generation of ILCs, the regulatory network among them
in ILC progenitors, and the precise mechanism through
which ILCs are developed still need further investigation. Our
current knowledge about ILC development is still quite lim-
ited. As ILC progenitors are rare populations in the bone
marrow, their low frequency makes it very difficult to estab-
lish the precise regulatory mechanisms within these cells.
The regulation of ILC development is likely to be far more
complicated than we have discussed. Additional un-de-
scribed transcriptional regulators or environment cues may
play large roles in governing progenitor cell fates during
development. With the development of more advanced
technologies, including single cell transcriptomic analyses, it
is now possible to profile the whole transcriptomes of rare
progenitor populations and to reveal their heterogeneity
(Bjorklund et al., 2016; Gury-BenAri et al., 2016; Ishizuka
et al., 2016; Yu et al., 2016). Further studies of ILC pro-
genitors are ultimately necessary to further understand the
evolution and lineage specification of the lymphoid system in
mice and clinical patients.

SPECIFIC REGULATION OF ILC SUBSETS

In addition to the aforementioned transcription factors that
affect the development of ILC progenitors, additional tran-
scription factors play a role in the formation of distinct mature
ILC subset. These transcription factors are mostly expressed
in or after the ChILP stage. However, some of the tran-
scription factors mentioned above are also involved in the
maintenance or functional regulation of select ILC subsets.
Hereafter we discuss the transcriptional regulators that
function in each particular ILC subsets.

ILC2-associated transcription factors

ILC2s are characterized by very high expression levels of
the Th2 master regulator GATA-3, which endows ILC2s with
the ability to produce the Th2 effector cytokines, IL-5 and
IL-13, stimulated by upstream cytokines including IL-33,
IL-25, and IL-2 (Hoyler et al., 2012) (Fig. 2). GATA-3 is
required not only for the generation of common ILC pro-
genitors, but also for the maintenance and function of ILC2s.
Deletion of Gata3 in committed ILC2 cells leads to dimin-
ished cytokine production and eventually cell death (Yagi
et al., 2014). GATA-3 directly binds to Th2 cytokine loci in
ILC2s as in Th2 cells (Zhong et al., 2016). However, the
detailed mechanism of how GATA-3 maintains mature ILC2s
is still unclear. It is possible that GATA-3 may regulate cell
cycle or cell apoptosis related genes in ILC2s.

Besides the master regulator GATA-3, other transcription
factors such as Bcl11b, RORα, TCF1, and Gfi-1, etc.
specifically affect ILC2 cell development and/or function
although these factors may also be expressed by other ILCs
(Fig. 2).
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Bcl11b

B-cell CLL/lymphoma 11b (Bcl11b) is another critical tran-
scription factor for T cell development. It promotes the tran-
sition from double negative (DN) 2a stage to DN2b stage,
after which the T cell lineage fate is fully determined (Ikawa
et al., 2010). The role of Bcl11b in ILC development, how-
ever, is restricted to the ILC2 subset. A subgroup of ChILP
cells has been found to express Bcl11b and they appear to
be the progenitors of ILC2s (Walker et al., 2015; Yu et al.,
2015; Zhong and Zhu, 2015a). In Bcl11b−/− mice, ILC2 cells
fail to develop. Mature ILC2s in various tissues also express
high levels of Bcl11b while the immature ILC2s that are
found in the bone marrow express negligible levels of
Bcl11b. Bcl11b deletion in mature ILC2 cells does not affect
cell survival but results in a loss of ILC2 identity (Califano

et al., 2015). Some Bcl11b-deleted ILC2 cells up-regulate
RORγt expression and may therefore acquire some ILC3
features. The conversion of ILC2s to ILC3s may be
attributable to the regulation of Gfi-1, RORα, and AhR by
Bcl11b in ILC2s (Fig. 2). Besides ILC2s, some NKp46+ ILC3
and ILC1 cells also express Bcl11b, however the function of
Bcl11b in non-ILC2s is still elusive.

RORα

RORα is expressed in the progenitors as early as at the
ChILP stage, however it is specifically required for the gen-
eration of ILC2s (Halim et al., 2012; Wong et al., 2012). The
underlying mechanism of RORα-mediated ILC2 develop-
ment is still unclear. RORα is continuously expressed in all
mature ILC subsets. Although it is not clear whether RORα

Gata3

GATA-3

Il4 Il13 Rad50 Il5

Ahr

Gfi1

Bcl11b

RoraIlrl1

Gfi-1

ETS1RORα

TCF1

IL-25 IL-33 IL-2

IL-5 IL-13 IL-9

Figure 2. ILC2-specific transcription factors. GATA-3, which determines ILC2 development, maintenance and effector cytokines

IL-5 and IL-13 production, is the master regulator of ILC2s. RORα, Bcl11b, ETS1, TCF1, and Gfi-1 are involved either in ILC2

development at early stages or in functional regulation of ILC2s after maturation. TCF1 regulates Gata3 expression at a very early

stage to regulate ILC2 development. RORα and Bcl11b are also specifically required for the development of ILC2 cells. Mature ILC2s

express IL-17RB, T1/ST2, and CD25 on their surface, and are responsive to stimulation by IL-25, IL-33, and/or IL-2. After fate

commitment to ILC2 lineage, Bcl11b is also required for the maintenance of ILC2 identity, mainly through positive regulation of Gfi1

and Rora expression, and negative regulation of Ahr expression. Gfi-1 directly binds to the Il1rl1 locus to regulate IL-33 receptor

expression, which mainly affects the homeostasis of ILC2s in the skin tissue. ETS1 is also required for the fitness of ILC2 cells in

certain tissues, and it regulates IL-5 and IL-13 production by ILC2s.
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has any function in mature ILC1 or ILC2 cells, a recent report
indicates that RORα may regulate ILC3 cells (Lo et al.,
2016).

TCF1

Although TCF1 is expressed before Id2 during ILC devel-
opment, its expression is maintained even after the ChILP
stage, which is consistent with its critical function in the
generation of ILC2 cells through both GATA-3-dependent
and -independent mechanisms. The overexpression of
TCF1 partially bypasses Notch signaling, which is required
for the development of ILC2s, indicating that TCF1 mediates
Notch-dependent ILC2 development (Yang et al., 2013).
TCF1 is also required for the proper generation of NKp46+

ILC3s (Mielke et al., 2013a).

Gfi-1

Gfi-1 has an important regulatory function in both Th2 cells
(Zhu et al., 2002; Zhu et al., 2006) and ILC2s. It has been
reported that, in ILC2 cells, Gfi-1 regulates the expression of
Gata3 and Il1rl1 (the gene encoding the IL-33 receptor)
(Spooner et al., 2013) (Fig. 2). Loss of Gfi-1 in ILC2s results
in reduced GATA-3 expression but enhances RORγt
expression. Such dys-regulation leads to the co-expression
of ILC2 effector cytokine IL-13 and the ILC3 effector cytokine
IL-17.

ETS1

ETS1 is a transcription factor that has been recently iden-
tified to be particularly important for ILC2 development and
function (Zook et al., 2016). Ets1 deficient mice show a
substantial reduction of ILC2s in the bone marrow and
lymph nodes. However, the total cell number of ILC2s in the
lung of Ets1 deficient mice is comparable to that of Ets1
sufficient mice. Together with other reports (Saenz et al.,
2013; Spooner et al., 2013), these results suggest that
ILC2s in different tissues might develop from separate
progenitors that have distinct developmental requirements
—an important question which requires further investiga-
tion. Similar to its function in cNK cells, ETS1 regulates the
fitness of ILC2s and the common ILC progenitors mainly by
promoting optimal expression of Id2. In mature ILC2s,
ETS1 regulates ILC2 cell proliferation and the effector
cytokine IL-5 and IL-13 production in response to IL-33 or
IL-25 stimulation (Fig. 2).

ILC3-associated transcription factors

Like Th17 cells, RORγt-expressing ILC3s are similarly not a
homogeneous population. They can be divided into at least
two lineages, an LTi lineage and a natural cytotoxic receptor
(NCR)-expressing ILC3 lineage (Klose et al., 2013). RORγt,
as the master regulator for ILC3s, is required for the devel-
opment and the maintenance of both lineages. However, the

development of NCR+ ILC3s requires additional regulators
such as T-bet and GATA-3. IL-23 and IL-1β receptors
expressed in both ILC3 lineages, and can transduce the
upstream cytokine signals for the production of ILC3
cytokines IL-22, IL17a, and IL-17f (Fig. 3).

GATA-3 and T-bet

Data from our ILC3-specific conditional Gata3 knockout
mouse indicates that GATA-3 acts upstream of T-bet to direct
NCR+ ILC3 development from a CCR6−T-bet− precursor
(Zhong et al., 2016). GATA-3 inhibits RORγt expression by
directly binding to the Rorc locus. Therefore, GATA-3 regu-
lates the balance between RORγt and T-bet, which is critical
for the development of NCR+ ILC3s. A two-fold increase or
decrease in RORγt expression may dramatically change the
outcome in the development of T-bet-expressing ILC3s.
Once T-bet expression reaches a sufficient level, it acts as a
repressor of RORγt and further promotes the generation of
NCR+ ILC3. Besides their critical role during the develop-
ment in NCR+ ILC3, both GATA-3 and T-bet regulate the
production of ILC3 effector cytokine IL-22 (Sciume et al.,
2012; Zhong et al., 2016).

AhR

Aryl hydrocarbon receptor (AhR), the master regulator in
xenobiotic metabolism, has been reported to influence
several other cellular functions including the development
of immune cells (Zhou, 2016). The AhR protein contains a
bHLH DNA binding domain and a Per-Arnt-Sim (PAS)
domain for agonist binding. Before binding its agonist,
AhR forms an inactive complex with heat shock protein 90
(Hsp90), aryl hydrocarbon receptor interacting protein
(AIP) and p23 in the cytosol. After binding to its agonists, a
conformational change in AhR releases itself from the
complex and thus enables its translocation to the nucleus.
After AhR dimerizes with another bHLH-PAS protein aryl
hydrocarbon receptor nuclear translocator (ARNT), AhR
initiates the transcription of its downstream target genes
such as Il22 and Kit in ILC3s (Fig. 3). AhR is a regulator for
both LTi and NCR+ ILC3s. AhR−/− mice have a defect in
the development of LTi cells and thus lack tertiary lym-
phoid structure cryptopatches (CPs) and isolated lym-
phoid follicles (ILFs) in the gut (Kiss et al., 2011). NCR+

ILC3 cells are also reduced in the AhR−/− mice (Qiu et al.,
2012). One of the AhR regulated genes in ILC3s is c-kit,
which is expressed in most of the ILC3 cells (Kiss et al.,
2011). The frequency of AhR−/− ILC3s is still normal at
early time point after birth, but the AhR−/− ILC3s are not
able to survive consistent with reduced c-kit expression in
such cells.

Runx3

Runx3 is a master regulator critical for CD8+ T cell devel-
opment (Woolf et al., 2003). However Runx family members,
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including Runx1 and Runx3, and their common obligatory
partner Cbfβ, are associated with LTi cell generation (Ebi-
hara et al., 2015). A deficiency of these genes results in a
defect in the generation of secondary lymphoid structures
(Tachibana et al., 2011). However, since the development of
CLP is also affected by Runx deletion, it is still not clear
whether Runx proteins are specifically required for the
development of ILCs. Based on a reporter expression study,
Runx3 was found to be specifically expressed in ILC3s and
ILC1s, but not in ILC2s (Ebihara et al., 2015). Early deletion
of Runx3 leads to a blockage of ILC3 development at the
RORγt− stage. Deletion of the Runx common obligatory
partner Cbfb in mature NKp46+ ILC3s (Cbfbfl/flNKp46-Cre)
also leads to a lack of NKp46+ ILC3 and ILC1 cells. Fur-
thermore, Runx3 regulates RORγt and subsequent AhR
expression in all ILC3 cells (Fig. 3).

Retinoic acid signals

Retinoic acid (RA) is the active metabolite of Vitamin A, which
activates the nuclear receptors retinoic acid receptor (RAR) or
retinoid X receptor (RXR). RAR or RXR hetero-dimerizes with
co-repressors in the absence of agonist ligands. Upon binding
with RA, RAR or RXR dissociates with their co-repressors,
recruits co-activator proteins, and promotes downstream
gene transcription (Fig. 3). The RA signal is particularly critical
for the generation of LTi cells in the fetal stage, largely by
controlling RORγt expression (van de Pavert et al., 2014)
(Fig. 3). Maternal retinoid level is thus required for setting up
immune structures in the offspring. In the adult stage, RA is
also reported to be associated with the migration of ILC1 and
ILC3 cells in the gut as well as the IL-22 production by ILC3s
(Kim et al., 2015; Mielke et al., 2013b) (Fig. 3).

RORγt

Ahr

Rorc (γt)

Il22

Ikaros

ARNT
AhR

IL-23 IL-1β

IL-22 IL-17a IL-17f

AhR ligands

Il17fIl17a
Kit

Cbfβ

Runx3

Vitamin A

RA

R
X

R
R

A
R

Figure 3. ILC3-specific transcription factors. RORγt acts as a master regulator for all ILC3 cells, including the CCR6+ LTi/LTi-like

cells and the NKp46+ ILC3s. RORγt is also responsible for the production of ILC3 effector cytokines, such as IL-22, IL-17a, and IL-17f.

AhR and RAR/RXR are expressed in ILC3 cells and sense the nutrient derived metabolites. AhR is downstream of RORγt, while

RAR/RXR can promote RORγt expression and LTi cell generation in fetal stage. Upon binding to AhR ligands or retinoic acid (RA),

these transcription factors can dimerize with co-activators and translocate into nucleus to regulate ILC3-specific genes including Kit

and Il22, etc. Runx3 and its obligatory partner Cbfβ are also capable of regulating RORγt expression and ILC3 early development.

Ikaros is a positive regulator for LTi cell generation in the fetal stage. However, in mature ILC3s in adult mice, Ikaros negatively

regulates ILC3s through inhibiting the AhR signals.
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Ikaros

Ikaros, together with Aiolos, Helios, Eos, etc., belongs to the
Ikaros zinc finger transcription factor family. Ikaros is
essential for regulating hematopoiesis through affecting CLP,
pro-B, and NKp generation (Yoshida et al., 2010). Ikaros is
also found to be crucial for fetal LTi cells as its deficiency
leads to a defect in secondary lymphoid organogenesis
(Schjerven et al., 2013). However, in postnatal ILC3 cells,
Ikaros may repress by inhibiting AhR activity (Li et al., 2016)
(Fig. 3). A Ikzf1 (gene encode Ikaros) deficiency can result in
the expansion of ILC3s and elevated effector cytokine pro-
duction. Thus, the regulatory effects of Ikaros on ILC3
development and function are stage specific.

ILC1-associated transcription factors

ILC1 cells were identified relatively late in comparison to other
ILC familymembers. ILC1s aremuchmore similar to cNKcells
in many of their features, however they lack cNKs cytotoxic
activity. IL-15 is required for the normal development and
function of ILC1s (Klose et al., 2014). IL-12, in addition, can

also promote ILC1 cells to secret effector cytokines IFNγ and
TNFα (Fig. 4). Based on a lineage tracing study using PLZF
fate-mappingmice, ILC1s and cNKcells originate fromdistinct
progenitors (Constantinides et al., 2015). While the vast
majority of ILC1 cells develop fromPLZF-expressing common
ILC progenitors, most cNK progenitors do not express PLZF.
ILC1 and cNK cells can be distinguished in the periphery by
certain surface markers. For example, in the liver, ILC1 cells
are CD49a+DX5−, whereas cNK cells are CD49a−DX5+ (So-
jka et al., 2014). However, these markers are not always reli-
able in other tissues. Anotherwell-acceptedway to distinguish
these two populations is based on their expression of Eomes
(Klose et al., 2014). ILC1 cells are Eomes− but cNK cells are
Eomes+. However, it is unclear whether some ILC1s may
express or have expressed Eomes during their development.

Like Th1 cells, T-bet is the master regulator for ILC1 cells.
T-bet is absolutely required for the generation of ILC1 but not
for cNK cells (Daussy et al., 2014), although Tbx21−/− cNK
cells also display some abnormalities (Gordon et al., 2012).
Besides its critical function during ILC1 development, T-bet
is required for the maintenance of ILC1 cells and production
of ILC1 effector cytokines (Klose et al., 2014) (Fig. 4).

T-bet

IFNγ TNFα

Cbfβ

Runx3

IL-15 IL-12

Bcl2
Tnf

Ifng

Figure 4. ILC1-specific transcription factors. ILC1 is a newly confirmed group 1 ILC population that is distinct from cNK cells. The

special functions of ILC1s and underlying regulatory mechanism still need further investigation. T-bet is the master transcriptional

regulator of ILC1 cells and regulates the production of ILC1 effector cytokines IFNγ and TNFα. Runx3 and Cbfβ are also required for

the maintenance of mature ILC1s, mainly through regulating the expression of anti-apoptotic proteins, such as Bcl-2.
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Runx3

As we described above, Runx3 is essential for the devel-
opment of ILC1 and ILC3, but not ILC2 cells. In committed
ILC1 cells, Runx3 is also required for the survival of ILC1
cells due to its involvement in IL-15 signaling (Ebihara et al.,
2015). IL-15 is particularly important for ILC1 cells as indi-
cated by knockout studies. In mature ILC1s, the absence of
Runx3 or its common obligatory partner Cbfb results in
enhanced apoptosis, which is associated with the dysregu-
lation of anti-apoptotic factors such as Bcl-2 (Fig. 4).

CONCLUSION

Transcriptional regulation underlies the functional actions of
various lymphoid effectors and is the key to further under-
standing how the immune system works. However more
comprehensive studies are still required to understand how
recently identified ILC populations are generated and how
their functions are controlled. Through the studies of select
transcription factors, we have found that ILCs exhibit many
similarities to CD4+ Th cells in terms of their development,
maintenance, proliferation, and effector cytokine production.
Beyond these similarities, the unique features of ILCs com-
pared to those of Th cells, such as tissue residency, have
recently drawn considerable attention. Despite considerable
progress, there are still many challenges to address in order
to understand the how ILCs and ILC-functions are ultimately
regulated and controlled.
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