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Abstract Polypyrrole is prepared with different molar
ratios of dodecylbenzene sulfonic acid (DBSA) (0.1, 0.2,
0.3 and 0.4) by in situ chemical polymerization method. The
reaction temperature was 0-5 °C for 24 h. The FTIR
spectrum confirmed the attachment of sulfonyl group in the
pyrrole structure. The intensity of polypyrrole increased
with increase in sulfur content. SEM graphs revealed the
granular morphology of the doped polymer surface. DBSA
has had strong effect on morphology with formation of
aggregated particles at higher concentrations. Higher con-
centration of DBSA-doped PPy shows higher thermal sta-
bility. The promotion of electron from ground state to
excited state of polypyrrole is confirmed by UV spectro-
scopic studies. Various sizes in particle distribution of
DBSA-doped PPy were analyzed by a particle size analyzer.
Solubility of polypyrrole was determined at room temper-
ature. The solubility and quantity of polypyrrole increased
with higher dopant concentration. Current—voltage (I-V)
characteristics were carried out over the temperature range
313-343 K, which was found to be linear. The conductivity
of doped-PPy showed high conductivity at low concentra-
tion of dopant while, conductivity decreased with increas-
ing concentration of DBSA. The higher doping level of
DBSA was confirmed by elemental analysis.
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Introduction

Electrically conducting polymers like polyaniline, poly-
pyrrole and polythiophene are of great interest as a new class
of materials in industry during the last two decades, owing to
their unique combination of characteristics: electronic,
optical, magnetic properties and processing advantage of
polymers [1]. Polypyrrole offers tremendous technological
potential such as battery electrodes [2], biological sensors
[3], corrosion protection [4], microwave shielding [5, 6],
e-Textiles and artificial muscles [7] and sensors [8]. PPy can
be prepared by electrochemical or chemical methods.
Although the electrochemical polymerization of PPy leads
to the formation of polymer thin film on working electrode,
it is not suitable for mass production. Chemical oxidative
polymerization is simple, cheap and fast. It can easily be
scaled up. Electrochemically synthesized PPy normally
exhibits very poor solubility in all common organic solvents
and in water. This limits its processability. To overcome
these disadvantages, attempts are made by introducing
counter-ions into the polymers backbone. Protonation with
an organic acid increases solubility, electronic structure, and
crystallinity of PPy [9]. To promote the solubility and pro-
cessability of PPy, various substituted monomers were
proposed to reduce the strong intermolecular interaction
between conducting polymer chains in the doped state [10].
But long-chain substituents attached to the monomer ring
due to steric interference alters the planarity of the polymer
structure. This can be achieved by doping polymer with
organic acids such as, dodecylbenzene sulfonic acid
(DBSA) and camphor sulfonic acid. The presence of organic
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sulfonic acid as counter-ion in the polymer strongly affects
the conductivity, morphology and thermal stability of bulk
PPy [11]. The polymerization parameters, such as solvent
[12], temperature, concentration of monomer, supporting
electrolyte [13] polymerization time, the dopant concen-
tration and dopant type [14], have strong effect on the
polymerization pyrrole.

In the present work, the various molar ratios (0.1, 0.2,
0.3 and 0.4) of DBSA-doped PPy were prepared by in situ
chemical polymerization method. The effect of dopant
concentration on morphological, thermal, structural,
solubility and electrical properties of polypyrrole is
investigated.

Experimental
Materials

Pyrrole and dodecylbenzene sulfonic acid (DBSA) (Sigma-
Alridch, India) were purified using distillation plant.
Ammonium persulphate (APS) was obtained from Loba
Chemicals. Methanol and acetone (Merck) were used for
the syntheses.

Preparation of DBSA-doped polypyrrole

Polypyrrole was prepared with a molar ratio of DBSA
(0.1). First 0.3 mol of pyrrole was dissolved in 500 mL of
de-ionized water. After 10 min, 0.06 mol of ammonium
persulfate (APS) was prepared in 100 mL de-ionized water
and added dropwise into solution mixture. The solution
was stirred for 24 h in an ice bath maintained at a constant
temperature of 0-5 °C. The solution became dark brown
and then 300 mL of methanol was added to the solution to
stop the reaction.

The resultant polypyrrole powder was filtered and
washed sequentially twice with 100 mL of distilled water,
100 mL of methanol and 100 mL of acetone, and the
samples were dried at 30 °C for 12 h in a vacuum oven.
The synthesized polypyrrole powder was then stored in a
desiccators. For DBSA-doped polypyrrole of molar ratios
of 0.2, 03 and 0.4, the same procedure was repeated as
above. The quantity of the sample increased with DBSA of
higher molar ratio. The polymerization yield of polypyrrole
was 6, 12, 17 and 22 g.

Characterization techniques
FTIR analysis was performed in the range of
4,000-400 cm ™! using a Thermo Nicolet V-200 FTIR

Spectrometer by KBr pellet technique. A JEOL scanning
electron microscope (JSM-5610) was used to study the
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surface morphology of the polypyrrole powder. The UV-
visible spectra of DBSA-doped polypyrrole with different
molar ratios were recorded employing a Jasco V-530 dual
beam spectrometer. Thermogravimetric analysis of DBSA-
doped PPy was recorded in the temperature range of
30-600 °C under nitrogen atmosphere with a heating rate of
10.00 °C/min using NETZSCH STA 449F3Analyzer. Ele-
mental analyses of DBSA-doped polypyrrole samples, pre-
pared at different molar ratios, were tested using a Vario EL
IIT CHNS-11035060 model elemental analyzer. The con-
ductivity of different molar ratios of DBSA-doped poly-
pyrrole was performed by a Kiethly 6571B High Resistance
Meter and Electrometer using a four probe-setup (DFP.2
model). The particle size distribution of DBSA-doped PPy
was analyzed using a Malvern model No.-500999 instru-
mental analyzer (USA).

Results and discussion

FTIR spectra of different molar ratios of DBSA-doped
polypyrrole

Figure 1 shows the FTIR spectra of DBSA-doped poly-
pyrrole in different molar ratios. N-H symmetric stretching
appears at 3,437 cm~!. The peaks at 2,900-2,859 cm™!
correspond to S=0O and C-H stretching modes, which
indicate the presence of benzenoid ring in the DBSA
molecule. The peak at 1,180 cm™' represents the S=O
stretching vibration of sulfonate anions, —SO3~, which
compensate the positive charges in the polypyrrole chains
[15]. The peak at 660 cm~! indicates the characteristic
vibrations of DBSA [16]. The peaks at 1,543 and
1,454 cm™! can be associated with C-N and C-C asym-
metric and symmetric ring stretching vibrations, respec-
tively. The peak at 1,028 cm™' is attributed to C-H
deformation and N-H stretching vibration. The broad band
at 1,300 cm™ ! is attributed to C—-H and C-N in-plane
deformation vibrations. The bands at 560 cm™' represent
the C-S stretching vibrations. This implies that the sulfonic
acid groups were introduced into the polymer backbone. As
the molar ratio increases, the intensity also increases. The
FTIR spectrum reveals that more DBSA molecules were
able to interact with the polypyrrole chains when doped at
higher DBSA molar ratios.

SEM images for different molar ratios of DBSA-doped
polypyrrole

The SEM images of DBSA-doped polypyrrole with dif-
ferent molar ratios (0.1, 0.2, 0.3 and 0.4) are shown in
Fig. 2a—d in the order given. The different molar ratios of
DBSA-doped PPy show granular form in each case, though
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Fig. 1 FTIR spectra for different molar ratios of DBSA-doped
polypyrrole (a 0.1, 0.2, ¢ 0.3 and d 0.4)

the particle sizes varied due to the molar ratio of dopant.
Figure 2a—c shows that the particles are agglomerated.
Figure 2d reveals that the 0.4 mol of DBSA has strong
effect on the surface morphology, as the particles are
aggregated. This aggregation of particles may lead to lower
conductivity with increased molar ratio of DBSA. It was
observed that the higher molar ratio of DBSA has a strong
effect on the DBSA-doped polypyrrole surface.

Fig. 2 SEM images for
different molar ratios of DBSA-
doped polypyrrole a 0.1, b 0.2,
c 0.3 and d 0.4)
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UV-vis absorption spectrum of different molar ratios
of DBSA-doped polypyrrole

Figure 3 shows the UV-vis spectra of DBSA-doped poly-
pyrrole with different molar ratios. The absorption peak at
230 nm reveals the electron transition in the benzenoid
rings of DBSA [17]. In Fig. 3a, there are two main
absorption peaks at 230 and 280 nm, which correspond to
the excitation of the m — m* transition in the benzenoid
rings of DBSA. The additional peak at 280 nm shows the
presence of pure DBSA. This indicates that the higher
sulfonate group introduced into the polymer system may
induce more doping of PPy backbone. The sulfonate group
could be anionically charged, so that it could stabilize the
doped state of the PPy effectively.

Thermogravimetric analysis of DBSA-doped
polypyrrole

Figure 4 shows the TGA spectra of polypyrrole with dif-
ferent molar ratios of DBSA. The initial weight of the
sample was 9.824 mg. There were 3 stages of major weight
losses from 110 to 530 °C. The first weight loss, observed
at 110 °C, is due to the loss of water molecules from
DBSA-doped polypyrrole. The second weight loss which
started at around 244 °C represents the evaporation and
degradation of pure DBSA [18-24]. At this stage, the
coulombic attraction between DBSA and the backbone of
pyrrole is destroyed leading to DBSA evaporation and

X1,500 10pm 0000 1245 SEl
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Fig. 3 UV-vis absorption spectra of different molar ratios of DBSA-
doped polypyrrole (a 0.1, » 0.2, ¢ 0.3 and d 0.4)
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Fig. 4 Thermogravimetric analysis of different molar ratios of
DBSA-doped polypyrrole (a 0.1, b 0.2, ¢ 0.3 and d 0.4)

beginning of degradation process. The third stage of weight
loss may be observed within 350-450 °C range.

The sample is shown to degrade above 450 °C and the
mass changes are 4.55, 7.28, 17.62 and 25.582 in the order
given. The average percentage of weight loss is 55 % with
different molar ratios of DBSA-doped PPy. With an
increase in molar ratio of DBSA, the rate of weight loss
decreases. The peaks are found to be shifted with the
addition of dopant molecules. Figure 5 shows DTG curve
endothermic peaks at 129, 329 and 429-529 °C. The
higher molar ratio of DBSA-doped polypyrrole acquires
greater thermal stability.
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Fig. 5 DTG curves of different molar ratios of DBSA-doped
polypyrrole (a 0.1, b 0.2, ¢ 0.3 and d 0.4)

Table 1 Elemental analysis for various molar ratios of DBSA-doped
polypyrrole

Molar ratio N C S H C/N C/S N/S
(DBSA) %) (%) (%) (%)

0.1 10.56 59.30 4.80 9.52 6.58 33.13 5.03
0.2 924 6229 494 1040 7.85 33.67 4.28
0.3 9.0 6241 505 11.64 823 33.05 4.01
0.4 933 61.75 5.09 1440 830 3273 39

Elemental analysis of different molar ratios
of DBSA-doped polypyrrole

Generally, elemental analysis gives the percentage weight
of carbon, hydrogen, nitrogen and sulfur present in the
sample which can be used to calculate the stoichiometry of
the sample. When organic sulfonic acids are used as do-
pants, the elemental analysis can be used to estimate the
extent of doping in the polymer chain. The experimental
values are calculated for different molar ratios of DBSA-
doped PPy and they are presented in Table 1. The DBSA
molar ratio increases as the N\S ratio decreases. C\N ratios
increase with the addition of DBSA. The sulfur content
increases with increasing DBSA concentration. Thus, the
higher doping level of DBSA-doped polypyrrole is
confirmed.

Conductivity measurements for various molar ratios
of DBSA-doped polypyrrole

In this arrangement, the samples were sandwiched between
the copper electrodes by pressure contact [24]. The voltage,
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Fig. 6 Current-voltage characteristics for various concentration of DBSA-doped polypyrrole

V, was kept constant and the temperature varied from room
temperature (313 K) to 343 K. The current values were
recorded with increase in temperature. The resistivity at
different temperatures was calculated using the relation.

p=45324xVxd/I xF

where, F = d/s and [ is current, V is voltage, d is thick-
ness of the pellet (2.434 mm), F is correction factor and
S is distance between two probes and distance of the
probe which was 2 mm. The conductivity was calculated
using the relation ¢ = 1/p, where p is resistivity; the
correction factor depends on the sample geometry,
thickness, borders and location of points in the sample.
-V characteristics for various concentration of DBSA-
doped polypyrrole are shown in Fig. 6 for 0.1, 0.2, 0.3
and 0.4 while, the thickness of the pellet was 2.434 mm.
The current increases with increasing temperature,
showing linear behavior. Thermal effects induce lower
resistance characteristic, which allows more current
passing across the sample.

The conductivity measurement of PPy with various
concentration of DBSA is shown in Fig. 7. The various
molar ratios of DBSA/PPy from 0.1 to 0.3 led to a greater
yield and conductivity of the doped PPy and from 0.4 it
began to decrease. By higher amount of DBSA, as depicted
in Fig. 2d, there appears segregation of particles in the
SEM image. When excess of DBSA was absorbed onto the
surface of hydrophobic pyrrole, a so-called protected
envelope was formed around the products at higher con-
centration which prevented further polymerization. So, the
conductivity of DBSA-pyrrole decreased with higher molar
ratio of DBSA. It is observed that the conductivity of
polypyrrole is due to dopant concentration.

Solubility
The solubility of polypyrrole was determined by dissolving
it in various organic solvents. One gram of the synthesized

polymer was dissolved in 100 mL of m-cresol and kept for
24 h at room temperature [25]. DBSA-doped PPy has long

&3.
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Fig. 7 Conductivity measurements for various concentration of
DBSA-doped polypyrrole
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Fig. 8 Particle size analysis for various concentrations of DBSA-
doped polypyrrole

alkyl group and its functional group leads to solubility in
all organic solvents [26]. As the concentration of DBSA
increases, the solubility of PPy-DBSA also increases. This
result is in agreement with the previous assumption that the
large dopant reduces inter- and intramolecular interactions
by placing itself between the polymer molecules [27]. We
observed that the higher concentration of DBSA improves
solubility and quantitative yield of polypyrrole.

Particle size analysis of DBSA-doped polypyrrole
The particle size distribution of DBSA-doped polypyrrole is
shown in Fig. 8. The different molar ratios of DBSA-doped

polypyrrole dispersed in distilled water at 0.1, 0.2, 0.3, and
0.4 molar ratios. The various sizes of the particles were

€5
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found to be 115, 266, 143 and 209-68 nm for different
molar ratios of dopant. The average size of the particles was
found to be 200 nm for different molar ratios of DBSA-
doped polypyrrole samples. We suggested that the particle
size of polypyrrole varies with dopant concentration.

Conclusion

The different molar ratios of DBSA-doped polypyrrole have
been prepared by in situ chemical polymerization method.
Electrical studies reveal the semiconducting nature of DBSA-
doped PPy with linear relation of current and voltage. The
conductivity of the doped polypyrrole decreased with
increasing molar ratio of the dopant beyond 0.4. The solu-
bility of polypyrrole increased with increasing dopant molar
ratio. FTIR study confirms the higher content of dopant and
well interaction with the PPy structure. The higher doping
enhances thermal stability of PPy. DBSA has a strong effect
on the polypyrrole surface and showed granular morphology.
The electron transition in the benzenoid rings of DBSA was
confirmed by UV spectroscopy. The higher doping level of
DBSA was confirmed by elemental analysis.

Acknowledgments The authors are thankful to sophisticated test
and instrumentation center, Cochin (Kerala), and Birla Institute of
Technology, Mesra, Ranchi for providing instrumental facilities.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References

1. Shaktawat V, Sharma K, Saxena NS (2010) Structural and elec-
trical characterization of protonic acid doped polypyrrole.
J Ovonic Res 6:239-245

2. Kim JH, Sharma AK, Lee YS (2006) Synthesis of polypyrrole
and carbon nano-fiber composite for the electrode of electro-
chemical capacitors. Mater Lett 60:1697-1701

3. Walkiewicz S, Michalska A, Maksymiuk K (2005) Sensitivity
and selectivity of polypyrrole based AC-amperometric sensors
for electroinactive ions—frequency and applied potential influ-
ence. Electroanalysis 17:1269-1278

4. Han G, Yuan J, Shi G, Wei F (2005) Electrodeposition of poly-
pyrrole/multiwalled carbon nanotube composite films. Thin Solid
Films 474:64-69

5. Kim MS, Kim HK, Byun SW, Jeong SH, Hong YK, Joo JS, Song
KT, Kim JK, Lee CJ, Lee JY (2002) PET fabric/polypyrrole
composite with high electrical conductivity for EMI shielding.
Synth Met 126:233-239

6. Yavuz O, Ram MK, Aldissi M, Poddar P, Srikanth H (2005)
Polypyrrole composites for shielding applications. Synth Met
151:211-217

7. Hakansson E, Kaynak A, Lin T, Nahavandi S, Jones T, Hu E
(2004) Characterization of conducting polymer coated synthetic
fabrics for heat generation. Synth Met 144:21-28



Iran Polym J (2013) 22:219-225

225

8.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Prissanaroon W, Ruangchuay L, Sirivat A, Schwank J (2000)
Electrical conductivity response of dodecylbenzene sulfonic acid-
doped polypyrrole films to SO,—N, mixtures. Synth Met 114:
65-72

. Zhang X, Zhang J, Wang R, Zhu T, Lin Z (2004) Surfactant-

directed polypyrrole/CNT nanocables: synthesis, characteriza-
tion, and enhanced electrical properties. Chem Phys Chem 5:998—
1002

Oh EJ, Jang KS, MacDiarmid AG (2001) High molecular weight
soluble polypyrrole. Synth Met 125:267-272

Carrillo I, Sanchez de la Blanca E, Redondo MI, Garcia MV,
Gonzalez-Tejera MJ, Fierro JLG, Enciso E (2012) Influence of
dopant anions on properties of polypyrrole nano coated
poly(styrene-co-methacrylic acid) particles. Synth Met 162:136—
142

Tietje-Girault J, Ponce de Leon C, Walsh FC (2007) Electro-
chemically deposited polypyrrole films and their characterization.
Surf Coat Technol 201:6025-6034

Carquigny S, Segut O, Lakard B, Lallemand F, Fievet P (2008)
Effect of electrolyte solvent on the morphology of polypyrrole
films: application to the use of polypyrrole in pH sensors. Synth
Met 158:453-461

Eftekhari A, Kazemzad M, Keyanpour-Rad M (2006) Significant
effect of dopant size on nanoscale fractal structure of polypyrrole
film. Polym J 38:781-785

Silverstein RM, Bassler GC, Morrill TC (1992) In: Spectroscopic
identification of organic compounds. 5th edn, Wiley, p. 129
The Aldrich Library of FTIR spectra (1997) 2:3239

Scherr EM, MacDiarmid AG, Manohar SK, Masters JG, Sun Y,
Tang X, Druy MA, Glatkowski PJ, Cajipe VB, Fische JE, Cro-
mack KR, Jozefowicz ME, Ginder JM, McCall RP, Epstein AJ
(1991) Polyaniline: oriented films and fibers. Synth Met
41:735-738

Han D, Chu Y, Yang L, Liu Y, Lv Z (2005) Reversed micelle
polymerization: a new route for the synthesis of DBSA-

19.

20.

21.

22.

23.

24.

25.

26.

27.

polyaniline nanoparticles. Colloid Surf A Physicochem Eng Asp
259:179-187

McCall RP, Ginder JM, Leng JM, Coplin KA, Ye HJ, Epstein AJ,
Asturias GE, Manohar SK, Masters JG, Scherr EM, Sun Y,
Macdiarmid AG (1991) Photoinduced absorption and erasable
optical information storage in polyanilines. Synth Met 41:1329—
1332

Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (1999)
Polymerization of aniline in the presence of DBSA in an aqueous
dispersion. Synth Met 106:59-66

Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A (2000)
Polyaniline-DBSA/polymer blends prepared via aqueous dis-
persions. Synth Met 110:189-193

Zilberman M, Titelman GI, Siegmann A, Haba Y, Narkis M,
Alperstein D (1997) Conductive blends of thermally dodecyl-
benzene sulfonic acid-doped polyaniline with thermoplastic
polymers. J Appl Polym Sci 66:243-253

Chen CH (2002) Thermal studies of polyaniline doped with
dodecyl benzene sulfonic acid directly prepared via aqueous
dispersions. J Polym Res 9:195-200

Saraswat VK, Singh K, Saxena NS, Kishore V, Sharma TP,
Saraswat PK (2006) Composition dependence of the electrical
conductivity of Se85-xTel5Sbx (x = 2,4,6,8 and 10) glass at
room temperature. Current Appl Phys 6:14—18

Bengaoechea MR, Aliev FM, Pinto NJ (2002) Effects of con-
finement on the phase separation in emeraldine base polyaniline
cast from 1-methyl-2-pyrrolidinone studied via dielectric spec-
troscopy. J Phys Condens Matter 14:11769

Borkar AD, Umare SS, Gupta MC (2002) Chemical synthesis,
characterization and transport properties of copolymer: poly(-
aniline-co-m-methylaniline). Prog Cryst Growth Charact Mater
44:201-208

Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced pro-
cessibility of conducting polyaniline and of conducting polybl-
ends of polyaniline in bulk polymers. Synth Met 48:91-97

gs N sl

@ Springer



	The effect of dopant on structural, thermal and morphological properties of DBSA-doped polypyrrole
	Abstract
	Introduction
	Experimental
	Materials
	Preparation of DBSA-doped polypyrrole
	Characterization techniques

	Results and discussion
	FTIR spectra of different molar ratios of DBSA-doped polypyrrole
	SEM images for different molar ratios of DBSA-doped polypyrrole
	UV-vis absorption spectrum of different molar ratios of DBSA-doped polypyrrole
	Thermogravimetric analysis of DBSA-doped polypyrrole
	Elemental analysis of different molar ratios of DBSA-doped polypyrrole
	Conductivity measurements for various molar ratios of DBSA-doped polypyrrole
	Solubility
	Particle size analysis of DBSA-doped polypyrrole

	Conclusion
	Acknowledgments
	References


