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Abstract
Background: HIV envelope gp 120 glycoprotein is released during active HIV infection of brain
macrophages thereby generating inflammation and oxidative stress which contribute to the development
of the AIDS-Dementia Complex (ADC). Gp120 has also been found capable to generate excitotoxic effect
on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial
damage, though the mechanism is still to be better understood.

Here we investigated on the effect of N-acetylcysteine (NAC), on gp120-induced damage in human
cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS) in
the imbalanced activity of glutamine synthase (GS), the enzyme that metabolizes glutamate into glutamine
within astroglial cells playing a neuroprotective role in brain disorders.

Results: Incubation of Lipari human cultured astroglial cells with gp 120 (0.1–10 nM) produced a significant
reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric
analysis (FACS). This effect was accompanied by lipid peroxidation as detected by means of
malondialdehyde assay (MDA). In addition, gp 120 reduced both glutamine concentration in astroglial cell
supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-
treatment of cells with NAC (0.5–5 mM), dose-dependently antagonised astroglial apoptotic cell death
induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore,
both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and
by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related
dysfunction of GS in astroglial cells.

Conclusion: In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells,
an effect accompanied by lipid peroxidation and by altered glutamine release. All the effects of gp120 on
astroglial cells were counteracted by NAC thus suggesting a novel and potentially useful approach in the
treatment of glutammatergic disorders found in HAD patients.
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Background
HIV infection is still a pandemic disease with more than
30 million people infected today. HIV-positive individu-
als experience cognitive dysfunction, disordered behav-
iour and problems with movement and balance which are
indicated, at the late stage, as HIV-Associated Dementia
(HAD) [1,2]. In fact, neurodegenerative disorders have
commonly been described in patients suffering from AIDS
and this occurs even though neurons are not infected fol-
lowing HIV-brain tissues invasion [reviewed in [1]]. Even
if the employment of highly active antiretroviral therapy
(HAART) has changed the scenario of the HIV dementia
by improving the cognitive performance in some patients
with HIV-associated cognitive impairment, new cases of
HIV dementia continue to develop [3]. In addition, the
prevalence of HIV dementia is rising as patients on
HAART live longer with HIV infection [3] suggesting that,
in the era of HAART, HAD or milder forms still remain
high [4]. Thus, the neuropathogenesis of HIV-infection
and better therapeutic approaches for the management of
neuroAIDS still remain to be elucidated.

Evidence exists that astrocytes may play a role in HIV-
related neurological disorders. Indeed, reactive astroglio-
sis and the presence of activated and hypertrophied astro-
cytes, has commonly been described in the brain of
patients suffering from HAD [5,6]. On the other hand, in
vivo studies have also shown that HIV infection mat also
occur in a small and variable fraction of astrocytes, mainly
in advanced brain disease [7-11], thus suggesting that
astrocyte are actively involved in the pathogenesis of
HAD.

Although the incidence of astroglial cell death in HIV-
infected brain tissues is still to be better clarified, evidence
suggests that astrocytes may also suffer dysfunction in the
HIV-infected brain that may extend beyond the limited
levels of HIV- infection and contribute to neuropathogen-
esis in distinct pathways [reviewed in [12-15]]. It is known
that astrocytes are likely exposed continuously to HIV par-
ticles, viral proteins, cytokines, and other substances
secreted by HIV-infected macrophages and microglia.
Although they lack CD4 they express CXCR4, and under
certain circumstances, CCR3 and CCR5, the co-receptors
for HIV entry into cells [reviewed in [16-18]]. These chem-
okine receptors can transduce responses to chemokines
and to HIV gp120 present in the brain and they might be
involved in HIV association with astrocytes. Studies in
vitro indicate that many of these products significantly
modulate astrocyte physiology which in turn can alter
essential interactions of astrocytes with other cells in the
brain, particularly neurons. For example, exposure of cul-
tured astrocytes to HIV, recombinant gp120, or viral trans-
activator Tat induces some of the same secretable
mediators of neuropathogenesis as those produced by

macrophages, including inflammatory cytokines TNF-α
and IL-1β, chemokines MCP-1 and IP-10, IL-6, or free rad-
icals such as nitric oxide and peroxynitrite [19-29].

The apparent dysregulation of astrocyte immune func-
tions might contribute to the overall inflammatory envi-
ronment in the brain but also may account for excitotoxic
mechanisms which have been shown to occur in HIV-
infected brain tissues. In particular, evidence exists that
glutammatergic transmission is inbalanced in the brain of
HAD patients. In particular, studies in culture revealed
that intact HIV or exogenous gp120-induced extensive
changes in astrocyte gene expression [30-33] and
impaired transport of extracellular glutamate by astrocytes
[34,35], a defect which may lead to neuronal death by
glutamate excitotoxicity [36]. Glutamate uptake can also
be impaired by intracellular expression of recombinant
Tat or exposure of astrocytes to TNF-α [37]. On the other
hand, intracellular Ca2+ is increased by gp120 in neurons
and astrocytes, an effect driven by enhanced glutamate
receptor signalling [38]. Finally, recombinant gp120 was
shown to induce Ca2+-dependent glutamate secretion by
astrocytes and neuronal cell death in glial-neuronal co-
cultures in a pathway involving signaling through CXCR4
and production of TNF-α [39,40]. Thus, HIV-related neu-
rotoxins, such as gp120, might disregulate astrocytic via-
bility via multiple mechanisms including an imbalanced
modulation of glutamate turnover.

The present study has been performed to investigate 1) the
effect of N-acetylcysteine (NAC), on gp120-induced
changes of viability of human cultured astroglial cells and
its correlation with gp120-related changes of lipid peroxi-
dation ; 2) the effect of NAC on gp120-induced changes of
glutamine synthase (GS), the enzyme which metabolises
glutamate into glutamine in astroglial cells thereby play-
ing a neuroprotective role [41].

Results
Incubation of human cultured astroglial cells with gp 120
(0.1–1 and 10 nM; n = 10 for each dose) for 24 h pro-
duced a decrease of cell viability as shown by counts of
pre-treated astrocytes performed in trypan blue (Table 1).
The reduction of astroglial cell viability due to incubation
with gp120 was accompanied by apoptotic cell death.
Indeed, measurement of apoptotic cell death as quanti-
fied by means of FACS analysis showed an enhanced
number of hypoploid cells indicating programmed cell
death due to gp120 incubation (Figure 1A; n = 5 for each
dose). This was confirmed by immunocytochemical assay
by means of Tunel reaction which showed apoptotic
nuclei and DNA fragmentation (Figure 2; n = 5 for each
dose).
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The effect of gp 120 on cell viability was accompanied by
a reduction of glutamine formation and GS expression in
gp 120-treated astroglial cells. Indeed, incubation of cul-
tured astroglial cells with gp 120 (10 nM; n = 5) for 24 h,
produced a significant decrease of the amount of
glutamine in cell supernatants as measured by glutamine
assay (Figure 3). These results were confirmed by western
blotting analysis and immunocytochemistry which
showed that gp 120 (10 nM; n = 5) reduced significantly
GS expression in gp 120-treated astroglial cells (Figures 4
and 5).

The effect of gp 120 was associated with overproduction
of free radical species and subsequent lipid peroxidation.
Indeed, incubation of cultured astrocytes with gp 120 (10
nM; Figure 6; n = 5), produced a prominent elevation of
MDA levels in cell homogenates thus suggesting that the
astroglial cell damaging due to incubation with gp 120 on
astrocytes was accompanied by oxidative stress.

Pre-incubation of astroglial cells cells with NAC (0.5–1
and 5 mM; n = 10 for each dose; Table 1), restored astro-
glial cell viability in gp 120-treated cells. In addition, NAC
dose-dependently antagonized the pro-apoptotic effect of
10 nM of gp 120 when quantified by FACS analysis (Fig-
ure 1B), an effect confirmed by TUNEL immunostaining
when higher concentration of NAC (5 mM; n = 5; Figure
2) was used. In addition, NAC (0.5–1 and 5 nM; n = 5 for
each dose; Figure 3) restored the concentration of
glutamine in cell supernatant in gp120-treated astrocytes
(10 nM), and the GS expression as evaluated by means of
western blotting analysis (n = 5; Figure 5) an effect con-
firmed by GS immunostaining in gp 120-treated cells (gp
10 nM vs NAC 5 mM; n = 5; Figure 4). Finally, NAC (5
mM) inhibited MDA accumulation due to gp 120 (10 nM;
n = 5; Figure 6) thus suggesting that antioxidant properties
of NAC might contribute in restoring the imbalanced GS
activity subsequent to incubation of astrocytes with gp
120.

Discussion
The present data show that gp 120, a coating component
of HIV envelope which has been shown to possess neuro-
toxic properties [42-45], leads to apoptotic cell death of
human cultured astrocytes, an effect antagonised by NAC.
This effect seems, at least in part, to be related to the anti-
oxidant effect of this compound even though other effects
of NAC on pathophysiological events leading to gp120-
related astroglial cell injury cannot be excluded. The effect
of NAC on gp120-induced reduction of astroglial cell via-
bility is in accordance with previous data from our [29,46]
and other groups [reviewed in [47]] showing that oxida-
tive stress may play a crucial role in the pathogenesis of
HAD. Our data also show, for the first time, that gp120
leads to an imbalanced GS activity and expression in cul-

N-acetylcysteine (NAC) prevents gp120-induced apoptotic cell death of cultured astroglial cellsFigure 1
N-acetylcysteine (NAC) prevents gp120-induced 
apoptotic cell death of cultured astroglial cells. A. 
Incubation of astroglial cells with gp 120 (0.1,1 and 10 nM) 
for 24 hours reduced cell viability compared with untreated 
controls, as assessed by FACS analysis. B. NAC (0.5–5 mM), 
in pre-treatment of two hours, prevented this effect. Data 
represent the mean ± S.E.M. of five independent experi-
ments.* P < 0.05 gp 120-treated astrocytes vs control 
(untreated) cells; § P < 0.05 NAC vs gp 120-treated cells. Sta-
tistical analysis was done using ANOVA followed by Student-
Newman-Keuls test.
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Table 1: Gp120 reduced astroglial cell viability as expressed by % 
trypan blue positive cell counts in 10 experiments. NAC (0.5–5 
mM) antagonized this effect.

TREATMENT % dead cells

CTRL 2 ± 1.3
Gp120 100 pM 16 ± 1.4*
Gp120 1 nM 38 ± 2*
Gp120 10 nM 45 ± 3.2*

Gp120 10 nM + NAC 0.5 mM 40 ± 2.4§
Gp120 10 nM + NAC 1 mM 22 ± 2.1§
Gp120 10 nM + NAC 5 mM 6 ± 2§

P < 0.05 gp120-treated astrocytes vs control (CTRL)
§ P < 0.05 NAC vs gp120-treated astrocytes
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tured astrocytes this effect being accompanied by abnor-
mal generation of free radicals and inhibited by NAC. This
suggests that enhanced glutamatergic neurotransmission,
which has been shown to contribute in HIV-related neu-
rological disorders, may involve oxidative-mediated
changes of GS in astrocytes.

Evidence exists that glutamate is highly neurotoxic when
accumulated in massive amount in the extracellular space
[48,49]. In the CNS, the conversion of glutamate to
glutamine, that takes place within the astrocytes, repre-
sents a key mechanism in the regulation of excitatory neu-
rotransmission under normal conditions as well as in
injured brain [50]. In particular, it is known that the syn-
aptically released glutamate is taken up by astroglial cells
and then converted into nontoxic glutamine by the glia-
specific enzyme glutamine synthase (GS); on the other
hand, glutamine re-enters the glutamatergic neuron where
is converted by glutaminase into glutamate, thus replen-
ishing the neurotransmitter pool [51,52]. During patho-
logical conditions such as HAD, stroke or several chronic

neurodegenerative diseases, the duration and intensity of
glutamate release might overwhelm the capacity of the GS
enzyme to remove it. Such an imbalance should result in
glutamate-mediated neurotoxicity and could contribute
to brain injury supporting the hypothesis that an increase
in GS expression exerts a neuroprotective effect [51]. The
possible modulation of GS activity has been studied dur-
ing numerous neuropathological states, including inflam-
mation, ischemia/reperfusion injury etc. [50]. In
particular, overproduction of reactive oxygen species,
which occurs during excitotoxicity in brain tissues, leads
to reduced ability of astroglial cells to regulate glutamate
turnover via inhibition of GS activity [50-52]. In addition,
oxidative inactivation of GS during ischemia/reperfusion
in the gerbil's brain has been described indicating that free
radical-dependent inactivation may be a critical factor in
the neurotoxicity which follows ischemia/reperfusion
injury [50]. On the other hand, it has been suggested that
peroxynitrite, generated by the reaction between nitric
oxide (NO) and superoxide anions [53], leads to nitration
of GS tyrosine residues thus leading to significant dysreg-

NAC prevents apoptotic cell death of cultured astroglial cells induced by gp 120Figure 2
NAC prevents apoptotic cell death of cultured astroglial cells induced by gp 120. Incubation of astroglial cells with 
gp 120 (10 nm) for 24 hours leads to reduced cell population (A: phase contrast microphotographs) and DNA fragmentation as 
shown by appearance in preparation of TUNEL-positive cells (green) (B: immunofluorescence microphotographs) compared 
with untreated control. Pre-incubation of 2 hours with NAC (5 mM) antagonized the generation of apoptosis in astrocytes 
subsequent to incubation with gp 120 (10 nM). These are representative photomicrographs out of five independent experi-
ment.
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ulation of proteins undergoing adenylylation regulation
in signal transduction cascades [54-57]. Thus, the dys-
function of glutamate metabolism, which has been sug-
gested to contribute in HIV-related neuropathogenesis,
might occur also via the contribution of gp 120-mediated

The elevation of malondihaldehyde (MDA) levels in astroglial cell homogenates induced by gp120 is antagonised by NACFigure 6
The elevation of malondihaldehyde (MDA) levels in 
astroglial cell homogenates induced by gp120 is 
antagonised by NAC. MDA increased within astroglial 
cells incubated with gp 120 (10 nM) for 24 hours. Pre-treat-
ment of 2 hours with NAC (5 mM) antagonized MDA over-
production. Data represent the mean ± S.E.M. of five 
independent experiments.* P < 0.05 when compared to con-
trol; § P < 0.05 treated vs gp 120 treated cells. Statistical 
analysis was done using ANOVA followed by Student-New-
man-Keuls test.
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NAC restores gp 120-related decrease of GS expressionFigure 4
NAC restores gp 120-related decrease of GS expres-
sion. Glutamine synthase staining in astroglial cells either 
untreated or treated with gp 120 (10 nM) and gp 120 plus 
NAC (5 mM) for 24 hours. In particular, gp 120 reduced the 
immunocytochemical expression of glutamine synthase, while 
pre-incubation of cells with NAC restores gp 120- related 
decrease of GS in astrocytes. These are representative phot-
omicrographs out of five independent experiments.
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The decrease of glutamine formation in the supernatant of astroglial cells incubated with gp 120 is reversed by NACFigure 3
The decrease of glutamine formation in the superna-
tant of astroglial cells incubated with gp 120 is 
reversed by NAC. Treatment of astroglial cells with gp 120 
(10 nM) for 24 hours produced a reduction of glutamine for-
mation compared with untreated control. NAC (0.5–1 and 5 
mM) in pre-treatment of two hours, reversed this effect. 
Data represent the mean ± S.E.M. of five independent exper-
iments.* P < 0.05 when compared to control; § P < 0.05 
treated vs gp 120 treated cells. Statistical analysis was done 
using ANOVA followed by Student-Newman-Keuls test.
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The effect of gp120 on glutamine synthase expression in human cultured astroglial cellsFigure 5
The effect of gp120 on glutamine synthase expres-
sion in human cultured astroglial cells. Incubation of 
astroglial cells with gp 120 (0.1, 1, 10 nM) for 24 hours dose-
dependently reduced the GS expression as measured by 
western blotting analysis. Pre-treatment of 2 hours with 
NAC (5 mM) antagonized this effect. Blots are representative 
of 5 experiments. The columns represent the mean ± S.E.M 
%
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oxidative stress, an effect mediated by glutamine metabo-
lism dysfuntion which, in turn, might contributes in
apoptotic cell death of brain cells which follows HIV
infection of brain macrophages.

Conclusion
In conclusion, the present experiments demonstrate that
gp 120 is neurotoxic in astroglial cells, an effect accompa-
nied by lipid peroxidation and by altered glutamine
release. All the effect of gp120 on astroglial cells were
counteracted by NAC thus suggesting a novel and poten-
tially useful approach in the treatment of glutamatergic
disorders found in HAD patients.

Methods
Astrocyte cultures
The astrocytic cell line Lipari was derived from a 51 year
old male patient who presented a large right front-tempo-
ral mass (astrocytoma), and grown as previously
described [29]. Cells were expanded and cultured by seed-
ing them in 25 cm2 plastic flasks at a density of 0.7 × 106

cells/flask in DMEM supplemented with 10% foetal calf
serum, 2 mM L-glutamine, 1 mM sodium pyruvate, 100
units/ml penicillin, 100 μg/ml streptomycin (complete
medium), and incubated at 37°C in humidified air con-
taining 5% CO2. To assess astroglial cell viability in cells
either untreated or pre-treated with gp120, counts in
trypan blue were performed.

Gp120
HIV envelope gp120 glycoprotein was used all over the
present experiments. In particular, recombinant HIV-1
(IIIB) full length and glycosylated gp120 with a molecular
weight of approx 115 kda, was produced using the bacu-
lovirus expression system (purity: > 90% by SDS-PAGE).
Gp 120 was purchased from RDI Division of Fitzgerald
Industries Intl, Concord, MA, USA. To assess whether or
not the effect of gp120 might be not due to endotoxin
contamination, some experiments were performed by
adding Polymyxin B (10 μg/ml ; n = 5 not shown), show-
ing that gp120 was endotoxin-free.

Flow cytometric analysis (FACS)
Astroglial cells either exposed or not to gp120 were
trypsinised and then gently detached from plastic 6–8
days after exposure. Aliquots of 5 × 105 cells were centri-
fuged at 300 g for 5 min; pellets were washed with PBS,
placed on ice, and overlaid with 0.5 ml of a hypotonic
fluorochrome solution containing 50 μg/ml propidium
iodide, 0.1% sodium citrate, and 0.1% Triton X-100. After
gentle resuspension in this solution, cells were left at 4°C
for 30 min., in absence of light, before analysis. Propid-
ium iodide-stained hypoploid cells were analysed with a
FACScan Flow Cytometer; fluorescence was measured

between 565 and 605 nm. The data were acquired and
analysed by the Lysis II program.

TUNEL reaction
Astroglial apoptotic nuclei produced after incubation of
astrocytes with gp 120 were assessed by in situ terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP-
biotin nick-end labelling (TUNEL) of DNA strand breaks.
Briefly, astroglial cells were permeabilized by a 20 min.
incubation at room temperature in 0.15 Triton X 100/
0.15 sodium citrate (% w/v). Following permeabilization,
the slides were washed with PBS and the TUNEL reaction
was done using the fluorescein in situ cell death detection
kit (Roche, Germany). Immunofluorescence microscopy
was performed on an epifluorescence microscope
equipped with narrow bandpass excitation filters
mounted in a filter wheel (Ludl Electronic Products, Haw-
thorne, NY). Images were captured by using a chilled,
cooled charge-coupled device camera (Photometrics, Tuc-
son, AZ) and Smart Capture software (Digital Scientific,
Cambridge, UK) on a Macintosh computer.

Glutamine assay
Glutamine changes in supernatants of human astroglial
cells was determined by using a glutamine assay kit
(Sigma) based on the reductive deamination of glutamine
by a proprietary enzyme. The reaction is specific for
glutamine and does not cross-react with other amino
acids or ammonia. Briefly, cell supernatants, glutamine
standards and cell culture medium were incubated with
the reaction buffer, the diluent buffer and the specific
enzyme for 1.30 h at 37°C. The colour reagent was added
to each sample and stand for 5–10 min at room tempera-
ture. Absorbance was measured at 550 nm using a spectro-
photometer. To calculate the quantity of glutamine a
linear regression analysis of the standard curve was per-
formed.

Western blotting analysis
GS expression has been evaluated by means of western
blotting analysis [19]. In particular, astroglial cell monol-
ayers cultured either untreated or pre-treated with gp 120
alone or gp 120 plus NAC were washed three times with
PBS and solubilized by direct addition of a preheated (to
80°C) denaturing buffer, containing 50 mM Tris-Cl pH
6.8, 2% SDS and protease inhibitor cocktail (Sigma). Sol-
ubilized samples were collected and immediately boiled
for 2 min. Bromophenol blue, glycerol and β-mercap-
toethanol were then added to final concentrations of
0.05%, 10% and 2%, respectively. Samples were boiled
again before loading onto SDS-PA gels. After electro-
phoresis, polypeptides were electrophoretically trans-
ferred to nitrocellulose filters (BioRad). Monoclonal anti-
Glutamine Synthase (1:3000, Transduction Laboratories)
and monoclonal anti-β-actin (1:5000, Sigma) antibodies
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were used to reveal the respective antigens. After incuba-
tion with secondary reagent (1:5000, anti-mouse horse-
radish peroxidase conjugate from Transduction
Laboratories), blots were developed with the enhanced
chemiluminescense procedure, using reagents (ECL-Plus)
from Amersham Life Science (Buckinghamshire, UK).

Immunocytochemistry
Cells grown on glass coverslips were briefly rinsed with
phosphate buffered saline (PBS, pH 7.4) and fixed with
4% paraformaldehyde in 0.120 M sodium phosphate, pH
7.4, for 30 min at 37°C. Cells were then rinsed in PBS,
incubated with 0.01% H2O2 in methanol to inactivate
endogenous peroxidases, permeabilized in 0.5% triton X-
100 for 5 min, and rinsed twice with PBS. Coverslips were
inverted onto droplets of 5% horse serum in 1% bovine
serum albumine (BSA) in PBS for 1 h at room tempera-
ture. The cells were then rinsed in PBS and incubated with
primary monoclonal antibody against the glutamine syn-
thase (Transduction Laboratories) diluted 1:500 in 1%
BSA/PBS, overnight at 4°C. The cells were washed in PBS,
incubated with the biotinylated secondary antibody and
peroxidase-conjugated streptavidin each for 30 min at
room temperature, and then rinsed in PBS. Peroxidase
activity was revealed using 3,3'-diaminobenzidine-HCl.
Coverslips were mounted in Vectashield and viewed
under a light microscope.

Malondialdehyde Determinations
Malondialdehyde (MDA), used as a biochemical marker
for lipid peroxidation, was measured by a method previ-
ously described [42]. Levels of MDA were measured 3–12
h after gp 120 incubation with astroglial cells. Briefly, cells
were homogenized in potassium chloride (1.15%) and
frozen in liquid nitrogen. Chloroform (2 ml) was then
added to each homogenate and then spun for 30 min.

The organic layer of the sample was removed and dried
under nitrogen gas and re-constituted with 100 μl of
saline. MDA generation was evaluated by the assay of
thiobarbituric acid (TBA)-reacting compounds. The addi-
tion of a solution of 20 μl of sodium dodecyl sulphate
(SDS; 8.1%), 150 μl of 20% acetic acid solution (pH3.5),
150 μl of 0.8% TBA and 400 μl of distilled water, pro-
duced a chromogenic product which was extracted in n-
butanol and pyridine. Then, the organic layer was
removed and MDA levels read at 532 nm and expressed as
nmol MDA/g prot.

Statistical analysis
Results are given as mean ± sem. Statistical analysis was
performed using ANOVA followed by Student- Newman-
Keuls. P < 0.05 was considered statistically significant.

All the experiments have been carried out according to the
ethical and consent approval guidelines stated by Italian
Ministry of Research.
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