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Abstract Structural magnetic resonance imaging and
postmortem studies showed volume loss in the hippocam-
pus in schizophrenia. The noted tissue reduction in the
posterior section suggests that some cellular subfractions
within this structure might be reduced in schizophrenia.
To address this, we investigated numbers and densities of
neurons, oligodendrocytes and astrocytes in the posterior
hippocampal subregions in postmortem brains from ten
patients with schizophrenia and ten matched controls using
design-based stereology performed on Nissl-stained sec-
tions. Compared to the controls, the patients with schizo-

phrenia showed a signiWcant decrease in the mean number
of oligodendrocytes in the left and right CA4. This is the
Wrst Wnding of reduced numbers of oligodendrocytes in
CA4 of the posterior part of the hippocampus in schizo-
phrenia. Our results are in line with earlier Wndings in the
literature concerning decreased numbers of oligodendro-
cytes in the prefrontal cortex in schizophrenia. Our results
may indicate disturbed connectivity of the CA4 of the pos-
terior part of the hippocampus in schizophrenia and, thus,
contribute to the growing number of studies showing the
involvement of posterior hippocampal pathology in the
pathophysiology of schizophrenia.

Keywords Hippocampus · Stereology · Cell number · 
Oligodendrocytes · Schizophrenia

Introduction

The human hippocampus is involved in memory and regu-
lation of aVect, both of which are compromised in schizo-
phrenia [34]. Structural magnetic resonance imaging and
postmortem studies in schizophrenia have shown volume
loss in the medial temporal region, especially in the hippo-
campus, as one of the most consistent structural abnormali-
ties [32]. Additionally, postmortem studies showed volume
loss in the hippocampal subregions in schizophrenia, which
may be related to positive symptoms [12–14]. The small
tissue reduction of approximately 5% suggests that some
cellular subfractions within this structure might be reduced
in number. However, a recent postmortem study of hippo-
campal gray matter in schizophrenia using the gray-level-
index (GLI) method revealed no cytoarchitectonic alterations,
suggesting no changes in neuronal perikarya [40]. Earlier
quantitative studies of the hippocampus described reduced
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density of interneurons, mainly of parvalbumin-immunore-
active cells, without alterations of pyramidal neurons [9,
84]. While most of these studies reported no alterations in
cell density [3, 20, 29], the density of pyramidal neurons
has been shown to be decreased in schizophrenia [23].
Additionally, there are Wndings of both smaller [7, 83] or
unchanged [35] pyramidal neuron volumes in schizophrenia.
Although some authors have noted a reduction of glial cells
in the hippocampus of male patients with schizophrenia
[23], astrogliosis has not been detected in the hippocampus
of postmortem brains from patients with schizophrenia [17,
24, 65]. However, two-dimensional cell counting in only a
few sections without considering the volume of the region
carries methodological limitations through the inXuence of
volume diVerences (e.g., mediated by neuropil degenera-
tion) and tissue shrinkage by Wxation procedures. Addition-
ally, problems may be caused by irregular cell shape and
size, non-random orientation and cutting of cells during
sectioning [79]. To date, two design-based stereologic esti-
mates of total cell numbers in the hippocampus reported no
diVerences between patients with schizophrenia and
matched controls. It should be noted, however, that one
study investigated only the total number of neurons [33],
while the second study failed to diVerentiate between diVer-
ent cell types and included both patients with schizophrenia
and schizoaVective patients [75]. Thus, the diVerentiation
of neuronal and glial cell types has not actually been inves-
tigated using stereologic methods.

A large number of structural MRI studies has shown a
reduced volume of the posterior part of the hippocampus [6,
14, 36, 51, 57, 73, 82], while only some others have found a
pronounced reduction in the anterior part [54, 67]. In func-
tional MRI studies, decreased activation of the posterior part
of the hippocampus has been related to smooth pursuit eye
movement deWcits [69] and impaired verbal learning in
schizophrenia [22]. Additionally, in the posterior part of the
hippocampus, cornu ammonis (CA) subregions can be iden-
tiWed based on histological criteria using Nissl-stained sec-
tions [23]. To shed light on alterations in this region, we
examined hippocampal subregions (CA1, CA2/3, CA4 and
subiculum) in serial postmortem sections from the posterior
part of the hippocampus using design-based stereology,
posting the hypothesis that the numbers of neurons and oli-
godendrocytes are decreased in schizophrenia.

Material and methods

Human postmortem brains

Postmortem brains were obtained from the Düsseldorf
brain collection [13]. Patients fulWlled ICD-9 criteria for
schizophrenia. They had been treated with neuroleptic

drugs for most of their illness. Exclusion criteria were alco-
hol or drug abuse and other neuropsychiatric disorders.
Brains from ten patients with schizophrenia [mean age
55.1 § 7.7 years (mean § SEM), Wve males, Wve females,
postmortem interval (PMI) 40.0 § 17.0 h, mean disease
duration 24.8 § 7.5 years] and ten age and gender matched
healthy controls without a history of neuropsychiatric
disorders, alcohol or drug abuse, dementia, neurological
illness, trauma or chronic terminal diseases (mean age
50.2 § 10.1 years, 5 males, 5 females, PMI 41.4 § 23.4 h)
(Table 1) were in toto uniformly Wxed in 10% phosphate-
buVered paraformaldehyde for about 7 months (pH 7.0,
T = 15–20°C). Then, the frontal and occipital lobes were
separated from the middle part of the brain by coronal
sections anterior to the genu of the corpus callosum and
posterior to the splenium. These sections contain both
hemispheres. The frontal and middle block including the
entire hippocampus were embedded in paraYn and cut into
20-�m whole brain coronal sections on a Polycut S Leica
microtome. Every 50th section (intersectional distance,
1 mm) was Nissl (cresyl violet) and myelin (luxol
fast-blue) stained. Afterwards, the actual thickness of each
section after histological processing was controlled by
focussing the upper and lower surface with a light micro-
scope at a magniWcation of 1,000£. The mean section
thickness after histological processing was 18.9 § 1.2 �m.

Within the hippocampal formation we analyzed the pos-
terior part, spanning from the lateral geniculate nucleus to
the level of the splenium of the corpus callosum. Subre-
gions to be investigated separately were CA (cornu ammo-
nis) 1, 2–3 and 4 (deep polymorph layer of the dentate
gyrus) and subiculum [55, 76]. According to the literature
[21], CA2 and CA3 were lumped together because these
small regions are diYcult to separate on the microscopic
level due to histological criteria. (Note that the anatomical
delineation of CA3 and CA4 is a traditional way to segment
the hippocampus, but has no functional consequence, since
the CA4 neurons originate in CA3 with extensions into the
hilus of the dentate gyrus [1]. Thus, according to a new
functional view, CA3 and CA4 neurons should be consid-
ered together as one hippocampal subregion.) We diVeren-
tiated between neurons, oligodendroglia and astroglia based
on histological and morphological criteria in our Nissl-
stained sections (Fig. 1). Neurons were distinguished from
other cell types on the basis of cytological characteristics.
Neurons showed a large cytoplasm, less distinct nuclear
membrane, clearly visible nucleolus within a pale nucleus
and a less heterogeneous distribution of chromatin material
in the nucleus. Oligodendroglial cells were identiWed by the
absence of cytoplasmic staining, intense staining of the
nucleus with dispersed chromatin and lack of a nucleolus
[72]. Astrocytes were less densely stained and showed a
clear rim of cytoplasm [38, 62, 64]. We determined
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densities and numbers of these speciWc cell types along
with the volumes of the entire subregions within the poster-
ior part of the hippocampus.

Stereologic analyses

All stereological analyses were performed with the rater
(C.St.) blind to diagnosis using a stereologic workstation,

consisting of a modiWed light microscope (BX50; Olympus,
Tokyo, Japan), Olympus Uplan Apo objectives (1.5 £ ,
20 £ , 50 £ oil, 100 £ oil), motorized specimen stage for
automatic sampling, electronic microcator, CCD color
video camera, PC with frame grabber board, stereology
software (Stereoinvestigator, MBF Bioscience, Williston,
USA) and a 17-in. monitor. Boundaries of hippocampal
subWelds were traced on video images displayed on the
computer screen (Fig. 2) and total volumes were calculated
according to Cavalieri’s principle [59] using on average
10.1 § 2.3 sections in controls and 10.0 § 1.6 sections in
patients with schizophrenia. Total numbers of cells were
estimated using the optical fractionator [58–60, 77]. We
performed a count of the diVerent cells (neurons, oligoden-
droglial cells, astrocytes) that came into focus within unbi-
ased virtual counting spaces [26, 66] distributed in a
systematic-random fashion throughout the diVerent regions
of interest. Estimated cell numbers were calculated from
the numbers of counted cells and the sampling probability.
The predicted coeYcient of error (CE) of the total numbers
of neurons, astrocytes and oligodendrocytes was evaluated
using the prediction methods described by Schmitz [58]
and Schmitz and Hof [60]. Details of the stereologic count-
ing procedure are outlined in Table 2.

The rater was blind to the diagnosis and performed
repeated measurements of both the left and right CA2/3 in
eight cases. For the intra-rater reliability the intraclass

Table 1 List of normal controls and patients with schizophrenia investigated in the present study

G group, C control, P patient with schizophrenia, G gender, M male, F female, A age (years), D duration of the disease (years)

No. G S A D Most prominent symptoms Cause of death

N3 C M 56 Acute pancreatitis

N10 C M 50 Myocardial infarction

N19 C F 33 Coronary thrombosis

N20 C M 64 Rupture of an aneurysm of the abdominal aorta

N21 C F 52 Ovarial carcinoma

N22 C F 47 Renal failure

N23 C M 38 Acute cardiac insuYciency

N27 C F 50 Rupture of an aneurysm of the aorta

N29 C M 47 Coronary thrombosis

N34 C F 64 Peritonitis

P3 P M 48 18 Auditory hallucinations, thought disorder Cardiac failure

P7 P F 66 30 Auditory hallucinations, persecution delusions Myocardial infarction

P9 P M 65 26 Persecutions complex, auditory hallucinations Pulmonary insuYciency

P10 P M 46 18 Delusions, paranoid ideas, mutism, negativism Pulmonary embolism

P12 P F 53 20 Auditory and visual hallucinations, delusions, lack of drive Myocardial infarction

P13 P F 60 16 Delusions, mutism, netagivism Bronchopneumonia

P14 P M 51 28 Delusions, mutism, mannerism Ileus

P18 P F 63 23 Auditory hallucinations, persecution, thought disorder Suicide

P20 P M 47 23 Auditory hallucinations, delusions of being poisoned Cardiac arrest by ventricular Wbrillation

P23 P F 52 28 Auditory hallucinations, paranoid ideas Suicide by drowning

Fig. 1 Representative high-power photomicrograph of a 20 �m-thick
coronal section from a control. The arrows point to neurons, the arrow-
heads to astrocytes and the asterisks to oligodendrocytes. Scale
bar = 25 �m
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correlation coeYcients (ICC) were 0.982 for astrocytes,
0.992 for oligodendrocytes, 0.984 for neurons and 1.00 for
volumes of the subregions.

Statistical analysis

For both, patients with schizophrenia and controls, mean
and standard error of the mean were calculated for all
investigated variables, separately for the left and the right
hemispheres. Comparisons between patients with schizo-
phrenia and controls were performed using generalized
linear model multivariate analysis (MANOVA), with
diagnosis and hemisphere as Wxed factors and the following
variables as covariates: (i) the patients gender, (ii) the post-
mortem interval and (iii) the adjusted illness duration of the
patients with schizophrenia (calculated as individual age at
death minus age at onset plus the mean age at onset of all

schizophrenic patients) or the age of the controls, respec-
tively [Note that use of the actual individual illness duration
of the patients with schizophrenia instead of the adjusted
ones as covariate would have caused invalid results of the
MANOVA model because there was no illness duration of
the controls, and the mean illness duration of the schizo-
phrenic patients was signiWcantly diVerent from the mean
age of the controls (Student’s two-tailed t test; P < 0.001),
whereas the mean adjusted illness duration was not
(P = 0.974)] (see also [46]). For each investigated variable,
all investigated brain regions were tested simultaneously.
Post hoc tests in the analyses of covariance were performed
with linear regression analysis (in case of the adjusted ill-
ness duration of the patients with schizophrenia or the age
of the controls, respectively), or with two-way repeated
measures (RM) ANOVA (in case of the patients gender). In
all analyses, an eVect was considered statistically signiW-
cant if its associated P value was smaller than 0.05. Calcu-
lations were performed using SPSS (Version 12.0.1 for
Windows, SPSS, Chicago, IL).

Results

No signiWcant diVerences between the patients with schizo-
phrenia and the controls were found with respect to the
mean volumes, the mean densities of neurons and the mean
numbers of neurons in the investigated subregions of the
posterior part of the hippocampus (Figs. 3, 4, 5; Fig. S1
in Electronic Supplement Material; Table 3; Table S1 in
Electronic Supplement Material show all P values of the
MANOVAs performed).

Neither the mean density nor the mean number of astro-
cytes was signiWcantly diVerent between the patients with
schizophrenia and the controls in any of the investigated

Fig. 2 Representative photomicrograph of a 20 �m-thick frontal sec-
tion from a control, showing the subregions of the posterior part of the
hippocampus investigated in the present study. Scale bar = 1 mm

Table 2 Details of the stereologic counting procedures

Obj objective used, B and H base and height of the unbiased virtual counting spaces, D distances between the unbiased virtual counting spaces in
mutually orthogonal directions x and y, �CS average sum of unbiased virtual counting spaces used in one hemisphere, �Q¡ average number of
counted neurons, astrocytes and oligodendrocytes in one hemisphere; CEpred average predicted coeYcient of error of the estimated cell numbers

CA1 CA2/3 CA4 Subiculum

Obj 50£ 50£ 50£ 50£
B (�m2) 900 900 900 900

H (�m) 17 17 17 17

D (�m) 170 £ 340 455 £ 170 430 £ 290 1,050 £ 400

�CS 150 150 200 400

�Q¡neurons 834 844 1607 1518

�Q¡astrocytes 182 253 390 368

�Q¡oligodendrocytes 367 377 843 803

CEpred(neurons) 0.038 0.047 0.038 0.040

CEpred(astrocytes) 0.051 0.053 0.048 0.046

CEpred(oligodendrocytes) 0.036 0.041 0.037 0.042
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subregions of the posterior part of the hippocampus (Fig. 6;
Fig. S2 in Electronic Supplement Material, respectively).
However, multivariate analysis revealed an eVect of gender
(F = 5.088; degree of freedom = 4.0 [this was the case in all
MANOVAs applied]; P = 0.03) and age (controls) or dura-
tion of the disease (patients) on the number of astrocytes
(F = 13.621; P < 0.001) as well an eVect of age (controls)
or duration of the disease (patients) on the density of astro-
cytes (F = 9.014; P < 0.001). Additionally, we found a
signiWcant, positive relation between (i) the density of
astrocytes and the controls age in CA4 and the subiculum,
(ii) the density of astrocytes and the age of the patients with
schizophrenia in CA1 and the subiculum, (iii) the number
of astrocytes and the controls age in CA2/3, CA4 and the
subiculum, and (iv) the number of astrocytes and the age of
the patients with schizophrenia in CA1 and the subiculum,
respectively (Fig. 6; Fig. S2 in Electronic Supplement
Material, respectively).

MANOVA also showed signiWcant eVects of diagnosis
(F = 3.587; P = 0.017) and gender (F = 3.841; P = 0.012)
on the mean numbers of oligodendrocytes. Subsequent
univariate tests demonstrated then that, compared to the
controls, the patients with schizophrenia showed a signiW-
cantly reduced mean number of oligodendrocytes only in
CA4 [¡27.6% on the left side (l) and ¡37.8% on the right
side (r); F(1) = 6.767 (one degree of freedom); P = 0.014
for the Wxed factor Diagnosis in the MANOVA] (Fig. 7;
Fig. S3 in Electronic Supplement Material). For CA1,
CA2/3 and the subiculum, no signiWcant diVerences in the
mean number of oligodendrocytes were found between
the patients with schizophrenia and the controls. Note that
the reduced number of oligodendrocytes in CA4 in
schizophrenia was not necessarily obvious at simple
observation of the tissue (as shown in Fig. 3), but necessi-
tate the type of rigorous quantitative analysis undertaken
in this study to be revealed.

Fig. 3 Representative high-
power photomicrographs of 
20 �m-thick coronal sections of 
the dorsal part of the 
hippocampus of a patients with 
schizophrenia (a, c, e) and a 
control (b, d, f), showing details 
of the subregions CA4 (a, b), 
CA2/3 (c, d) and CA1 (e, f). 
Note that the reduced number of 
oligodendrocytes in CA4 in 
schizophrenia was not 
necessarily obvious at simple 
observation of the tissue but 
necessitate the type of rigorous 
quantitative analysis undertaken 
in this study to be revealed. 
Scale bar = 50 �m
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The postmortem interval and the hemispheres had not
any inXuence on the investigated variables. In contrast,
MANOVA showed a signiWcant eVect of gender on
the mean volumes of the subregions of the posterior part of
the hippocampus (F = 2.930; P = 0.037), as well as on the
mean numbers of neurons within these subregions
(F = 3.295; P = 0.024). Subsequent univariate analysis
showed that the gender of the controls and the patients with
schizophrenia had a signiWcant inXuence on the volume of
CA4 as well as the number of neurons in CA2/3, CA4 and
the subiculum. By pooling the data from the controls and
the patients with schizophrenia, we found that on average
the females had a signiWcantly smaller volume of CA4 than
the males [¡28.9% (l) and ¡23.8% (r); Phemisphere = 0.097;
Pgender = 0.019; Pinteraction = 0.148] as well as signiWcantly
smaller numbers of neurons in CA2/3 [¡30.9% (l) and
¡16.8% (r); Phemisphere = 0.389; Pgender = 0.044;
Pinteraction = 0.019] and CA4 [¡29.5% (l) and ¡23.7% (r);
Phemisphere = 0.132; Pgender = 0.035; Pinteraction = 0.154] but

not in the subiculum (Hemisphere = 0.892; Pgender = 0.068;
Pinteraction = 0.654) (Fig. S4 in Electronic Supplement
Material).

Discussion

The present postmortem study revealed no diVerences in
mean neuron numbers or neuron densities in the subWelds
of the posterior part of the hippocampus between patients
with schizophrenia and controls. In line with our results,
Heckers et al. [33] and Walker et al. [75] also did not detect
diVerences in neuronal numbers in all cornu ammonis sub-
divisions of the total hippocampus in schizophrenia using a
stereologic approach. Thus, we could not conWrm earlier
Wndings of a decreased density of pyramidal cells in the
hippocampus in schizophrenia [23]. In contrast, Benes et al.
[10] found reduced numbers of pyramidal neurons in CA1
of the posterior part of the hippocampus in patients with

Fig. 4 Volumes of CA1 (a–c), 
CA2/3 (d–f), CA4 (g–i) and the 
subiculum (k–m) in both 
hemispheres of the brains from 
ten patients with schizophrenia 
(S open bars in a, d, g, k, and 
dots and squares in c, f, i, m) and 
ten age-matched controls 
(C; closed bars in a, d, g, k, and 
dots and squares in b, e, h, l). In 
a, d, g, k, data are shown as 
mean and standard error of the 
mean for the left (l) and right (r) 
hemispheres from patients with 
schizophrenia (S-l and S-r) and 
controls (C-l and C-r). In b, c, e, 
f, h, i, l, m, individual data for 
the left hemispheres (closed dots 
males, open dots females) and 
right hemispheres (closed 
squares males, open squares 
females) from controls (b, e, h, l) 
and patients with schizophrenia 
(c, f, i, m) are shown as function 
of the controls age (or the illness 
duration of the patients with 
schizophrenia, respectively)
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schizophrenia which also suVered from mood disturbances.
Since we did not investigate a group of patients with aVec-
tive disorders, it cannot be excluded that neuron number is
altered in patients with mood disturbances. Additionally,
we did not distinguish between pyramidal neurons and
interneurons, because these cell types cannot be separated
in Nissl-stained sections due to overlapping morphological
criteria.

We detected eVects of age on density and number of
astrocytes in several subregions, but no eVects of diagnosis
on astrocyte number. Our Wndings conWrm animal studies
showing increased mean astrocyte numbers in brains of
aged mice [50], and the well-known lack of astrocytosis in
schizophrenia [17, 24]. Thus, the increasing number of
astrocytes in the ageing brain shown in our study might
serve as internal validity control for the results from the ste-
reologic investigations. Furthermore, we did not Wnd eVects
of age on neuronal number in our study. Another study
showed that age had only little inXuence on this parameter

in the human brain [53]. However, we did not conWrm a
decline in the number of neurons in the hilus and subiculum
of the hippocampus, which has been shown by West and
colleagues [32]. Altogether, age-related eVects on neurons
may reXect neuronal dysfunction rather than cell loss [49].

According to our results of fewer neurons in CA4 and
CA2/3 in the brains from females compared to males, male
gender is known to be related to larger neuron numbers in
the subiculum of the rat hippocampus [2], although inter-
species diVerences may render comparisons between rats
and humans diYcult. While a stereologic study in human
cortical regions did show a higher neuronal number in men
[63], these results may not be related to changes in the hip-
pocampus. Since the size of our samples of males and
females was small, our results should be taken with caution
in this regard and conWrmed in a larger cohort.

We found a decrease in the mean number of oligoden-
drocytes in the left and right CA4 of the posterior part of
the hippocampus in schizophrenia compared to controls.

Fig. 5 Number of neurons in 
CA1 (a–c), CA2/3 (d–f), CA4 
(g–i) and the subiculum (k–m) 
in both hemispheres of the brains 
from ten patients with schizo-
phrenia (S; open bars in a, d, g, 
k, and dots and squares in c, f, i, 
m) and ten age-matched controls 
(C; closed bars in a, d, g, k, and 
dots and squares in b, e, h, l). In 
a, d, g, k, data are shown as 
mean and standard error of the 
mean for the left (l) and right (r) 
hemispheres from patients with 
schizophrenia (S-l and S-r) and 
controls (C-l and C-r). In b, c, e, 
f, h, i, l, m, individual data for 
the left hemispheres (closed dots 
males, open dots females) and 
right hemispheres (closed 
squares males, open squares fe-
males) from controls (b, e, h, l) 
and patients with schizophrenia 
(c, f, i, m) are shown as function 
of the controls age (or the illness 
duration of the patients with 
schizophrenia, respectively
123
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Among hippocampal subWelds, CA4 is the deep polymorph
layer of the dentate gyrus and receives collateral mossy
Wbers from the granule cells [1]. CA4 is among the regions
especially suggested to be involved in disturbances of con-
nectivity in schizophrenia [30]. To the best of our knowl-
edge, these are the Wrst Wndings of reduced oligodendrocyte
numbers in any subWeld of the posterior part of the hippo-
campus in schizophrenia. These results point in the same
direction as the noted decrease in the mean number of
oligodendrocytes in the prefrontal cortex and thalamus of
patients with schizophrenia, and, interestingly, in patients
with major depression and bipolar disorder [16, 37, 38, 64,
68, 70, 74]. Thus, speciWty for diagnosis remains unclear in
our sample lacking other psychiatric disorders.

A low number of oligodendrocytes might be associated
with a defect in proliferation, disturbed maturation of oligo-
dendrocytes and lack of normal myelination [5]. In the hip-
pocampus, ultrastructural investigations in schizophrenia
revealed atrophy of axons and swelling of periaxonal pro-
cesses [71]. Oligodendrocytes are involved in the myelina-
tion process of axonal projections during development.
Myelination of projections in the frontal and temporal
lobes, including the posterior part of the hippocampus, in
turn peaks in late adolescence and early adulthood, occur-
ring in close temporal proximity with the onset of schizo-
phrenia [8, 11, 81]. Interestingly, polymorphisms in the
neuregulin-1 gene, which is involved in myelination and
proliferation of oligodendrocytes, have been reported to be
associated with schizophrenia [18, 31, 61].

One of the most pronounced decreases in expression of
oligodendrocyte-related proteins have been reported in the
hippocampus of patients with schizophrenia [19, 42]. These
microarray data and our light microscopic Wndings in the
posterior part of the hippocampus are supported by in vivo
diVusion tensor imaging (DTI) studies of white matter
tracts of the fornix body and posterior part of the hippocam-
pus in schizophrenia, showing decreased fractional aniso-
tropy and supporting the hypothesis of functional
dysconnectivity in schizophrenia [41, 47, 78, 85]. More-
over, cognitive function such as verbal declarative memory
is correlated with the fractional anisotropy of the hippo-
campus in schizophrenia [48]. This disruption of connectiv-
ity in this region could result in cognitive as well as clinical
negative symptoms [28, 47, 56]. This is due to the fact that
neuronal Wbers traversing the limbic pathways from the
posterior part of the hippocampus are connected to prefron-
tal regions and pathways involved in higher cognition [25].
The prefrontal cortex and posterior part of the hippocampus
belong to a neuronal network showing disturbances in
schizophrenia, most likely of neurodevelopmental origin
[15].

One major limitation of our study is the partial sampling
strategy investigating only the posterior part of the hippo-
campus, while the very posterior tail of the hippocampus
was not always completely included. Additionally, the pos-
terior part of the hippocampus has been deWned using exter-
nal landmarks. The deWnition, therefore, may vary slightly
depending on slight diVerences in the angle of the cut

Table 3 Results of statistical 
analysis (P values) with general-
ized linear model multivariate 
analysis of variance (MANO-
VA)

Variable Subregion A/ID PMI S D H D £ H

Volume All subregions 0.321 0.974 0.037 0.154 0.141 0.696

CA1 0.822

CA2/3 0.141

CA4 0.003

Subiculum 0.059

Number of neurons All subregions 0.237 0.813 0.024 0.246 0.292 0.712

CA1 0.407

CA2/3 0.006

CA4 0.001

Subiculum 0.010

Number of astrocytes All subregions <0.001 0.814 0.003 0.104 0.962 0.542

CA1 0.014 0.543

CA2/3 0.017 0.246

CA4 <0.001 0.001

Subiculum <0.001 0.407

Number of 
oligodendrocytes

All subregions 0.821 0.782 0.012 0.017 0.688 0.982

CA1 0.184 0.812

CA2/3 0.396 0.171

CA4 0.283 0.014

Subiculum 0.704 0.089

P values smaller than 0.05 are 
shown in boldface. Note that 
region-speciWc analyses were 
performed only when MANOVA 
showed a signiWcant eVect

A/ID age (controls) or adjusted 
illness duration (patients with 
schizophrenia), respectively (ad-
justed illness duration calculated 
as age at death minus age at on-
set plus mean age at onset, de-
tails are provided in Statistical 
analysis); PMI postmortem 
interval (time between death and 
autopsy), G gender, D diagnosis, 
H hemisphere
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surfaces as well as diVerences in the volumes of the land-
marks. However, meta-analyses of regional brain volumes
did not Wnd reductions in the volume of the lateral genicu-
late nucleus in schizophrenia. The corpus callosum was
reduced in volume mainly in Wrst-episode patients, while
medicated patients with chronic schizophrenia showed
larger volumes [4, 21, 39, 80]. Another limitation is the
treatment of patients with neuroleptics, which may inXu-
ence cell numbers and volumes of hippocampal subregions.
In animal studies, antipsychotics reduced astrocytes and, to
a non-signiWcant degree, also oligodendrocytes, while
increasing neuronal density [44, 45]. In the hippocampus,
cell proliferation has been reported to be increased after
treatment with atypical antipsychotics [27, 43, 52]. In our
study, however, the decreased number of oligodendrocytes
in CA4 in the posterior part of the hippocampus of patients
with schizophrenia was not related to either the duration of
the disease and, thus, the probable duration of medication.

Further studies on animal models are needed to investigate
the inXuence of long-term antipsychotic medication on cell
number in the posterior part of the hippocampus.

While it should be noted that the postmortem intervals in
our study sample were rather long, we did not Wnd any
inXuence of the postmortem interval on any of the variables
investigated. Accordingly, we opted not to exclude cases
with longer postmortem intervals.

In summary, we found decreased mean numbers of
oligodendrocytes in the left and right posterior hippo-
campal subWeld CA4 in schizophrenia using a design-based
stereologic approach. Our results point to disturbances in
connectivity of subregions of the posterior part of the hip-
pocampus and conWrm earlier Wndings in the literature of
hippocampal pathology in schizophrenia. Further studies
investigating the total hippocampus in larger samples and
immunohistochemical approaches are called for to replicate
these results. Furthermore, animal studies should be

Fig. 6 Number of astrocytes in 
CA1 (a–c), CA2/3 (d–f), CA4 
(g–i) and the subiculum (k–m) 
in both hemispheres of the brains 
from ten patients with schizo-
phrenia (S; open bars in a, d, g, 
k, and dots and squares in c, f, i, 
m) and ten age-matched controls 
(C; closed bars in a, d, g, k, and 
dots and squares in b, e, h, l). 
In a, d, g, k, data are shown as 
mean and standard error of the 
mean for the left (l) and right (r) 
hemispheres from patients with 
schizophrenia (S-l and S-r) and 
controls (C-l and C-r). In b, c, e, 
f, h, i, l, m, individual data for 
the left hemispheres (closed dots 
males, open dots females) and 
right hemispheres (closed 
squares males, open squares 
females) from controls (b, e, h, l) 
and patients with schizophrenia 
(c, f, i, m) are shown as function 
of the controls age (or the illness 
duration of the patients with 
schizophrenia, respectively). 
In c, e, h, l, m, results of linear 
regression analysis (regression 
lines, 95% conWdence intervals 
of the regression lines, regres-
sion coeYcients and correspond-
ing P values, respectively) are 
shown, indicating statistically 
signiWcant relations between the 
number of the astrocytes and 
the controls age (or the illness 
duration of the patients with 
schizophrenia, respectively)
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conducted to investigate eVects of antipsychotic treatment
in more detail.
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