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bDepartamento de F́ısica Teórica, C-XI, Universidad Autónoma de Madrid,

E-28049–Madrid, Spain
cPH-TH, CERN,

CH-1211 Geneva 23, Switzerland
dGraduate School of Science, Hiroshima University,

Higashi-Hiroshima, Hiroshima 739-8526, Japan
eCore of Research for the Energetic Universe, Hiroshima University,

Higashi-Hiroshima, Hiroshima 739-8526, Japan

E-mail: margarita.garcia@uam.es, antonio.gonzalez-arroyo@uam.es,

liam.keegan@cern.ch, okawa@sci.hiroshima-u.ac.jp

Abstract: In this work we consider the SU(N) gauge theory with two Dirac fermions

in the adjoint representation, in the limit of large N . In this limit the infinite-volume

physics of this model can be studied by means of the corresponding twisted reduced model

defined on a single site lattice. Making use of this strategy we study the reduced model

for various values of N up to 289. By analyzing the eigenvalue distribution of the adjoint

Dirac operator we test the conformality of the theory and extract the corresponding mass

anomalous dimension.

Keywords: Lattice Gauge Field Theories, 1/N Expansion

ArXiv ePrint: 1506.06536

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2015)034

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81766022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:margarita.garcia@uam.es
mailto:antonio.gonzalez-arroyo@uam.es
mailto:liam.keegan@cern.ch
mailto:okawa@sci.hiroshima-u.ac.jp
http://arxiv.org/abs/1506.06536
http://dx.doi.org/10.1007/JHEP08(2015)034


J
H
E
P
0
8
(
2
0
1
5
)
0
3
4

Contents

1 Introduction 1

2 Methodology 3

2.1 Determination of the mass anomalous dimension γ∗ 5

2.1.1 Determining γ∗ from a fit to the spectral density 5

2.1.2 Determining γ∗ from a fit to the mode number 6

3 Results 7

3.1 Analysis of the two flavor case 7

3.2 Comparison between zero and two flavors 13

4 Conclusions 15

1 Introduction

The SU(2) gauge theory with two adjoint Dirac fermions, known as Minimal Walking

Technicolor (MWT) [1, 2], has been the subject of many lattice studies, all of which have

found it to be a conformal theory with a fairly small mass anomalous dimension γ∗ [3–7].

The most recent measurement obtained by fitting the mode number of the Dirac operator

gave a very precise value [8]. The mode number method has also been used to follow the

running of γ over a range of energy scales for the SU(3) theory with many light fundamental

fermions [9].

The large N version of MWT, the SU(N) gauge theory with two adjoint fermions, is

interesting for several reasons. From a phenomenological point of view, it is expected to be

similar to the SU(2) theory. For example, the universal first two perturbative coefficients

of the beta function are independent of N . Hence, as in the case of MWT, they point

towards the existence of an infrared fixed point with a mass anomalous dimension that

is also independent of N . Moreover, numerical results for the mass anomalous dimension

for the SU(2) and SU(3) theories appear to be in agreement [10], suggesting that this N-

independence may be a good approximation all the way down to N = 2. From a more

theoretical point of view, the large N theory is better suited for connecting with results

obtained from different approaches, such as the AdS/CFT correspondence. Fortunately,

the numerical study of the infinite volume theory at large N is made possible by the

concept of large N volume independence. This implies the equivalence with a single site

lattice reduced model, for which simulations can be performed at large values of N , that

would be prohibitively expensive on a conventional L4 lattice. In this context, the study of

large N Yang-Mills theory with adjoint fermions has attracted much attention [11]- [20].

In this work we will be using the twisted reduction technique [21, 22]. For the adjoint
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fermion case the specific form of the action has been given in ref. [23]. This model has

been shown to lead to a softer N dependence than the Adjoint Eguchi-Kawai model with

periodic boundary conditions [12, 23]. The twisted model depends on the choice of the

twist tensor. Here we will follow the same symmetric twist prescription as for the pure

gauge theory, in which N is taken as the square of an integer number N = L̂2, and the

flux through each plane is equal to ±kL̂ (modulo N). With appropriate values of the

integer k, this choice has proven effective in avoiding symmetry breaking for the pure

gauge theory [24]. An important advantage of the twisted reduction method is that the

dominant 1/N corrections amount to finite size effects on an L̂4 lattice. This allows an

estimate of the values of N at which the simulations should be performed. In this work we

will be using values of N up to 289, corresponding to lattices of size 174.

In summary, the purpose of this paper is to analyze the behaviour of the SU(N) gauge

theory with two flavours of adjoint fermions in the large N limit. Our main goal is to

determine whether the theory has indeed a non-trivial infrared fixed point (IRFP) and to

measure the mass anomalous dimension at this fixed point. In previous papers some of

the present authors studied the behaviour of Wilson loops and the corresponding string

tension [25–28]. Although the results were consistent with the conformal behaviour charac-

teristic of an IRFP, the extraction of the mass anomalous dimension had large uncertainties.

Our methodology here will be based on an alternative procedure which has produced very

precise estimates in the study of MWT [8]. Preliminary results have been presented in

refs. [29, 30].

The strategy is to determine the anomalous dimension from the structure of the eigen-

value density ρ(ω) of the massless Dirac operator /D. The eigenvalue density is defined as

ρ(ω) = lim
V→∞

1

V

∑
k

δ(w − wk) , (1.1)

where the sum runs over all eigenvalues iωk of /D. In a mass-deformed conformal field

theory (mCFT), this quantity should vanish for w → 0 as [31]

lim
m→0

lim
V→∞

ρ(ω) ∝ ω
3−γ∗
1+γ∗ , (1.2)

where γ∗ is the mass anomalous dimension at the infrared fixed point, V is the lattice

volume, and m is the mass. This behaviour should be contrasted with the one characteristic

of a chirally broken theory where the eigenvalue density does not vanish at the origin.

In this paper we will use the previous idea to determine γ∗ for the large N gauge

theory with two adjoint quarks. It is clear from the previous formula that it is crucial to

work in the region of very small masses and keeping finite volume effects under control.

As a reference we will compare our result with those obtained for the pure gauge theory

(nf = 0), for which the eigenvalue density has the characteristic behaviour of a chirally

broken gauge theory.

The structure of the paper is as follows. In the next section we will collect all the

technical aspects concerning the simulation and the extraction of the mass anomalous

dimension from the data. In the following we will present the results of our analysis. The

paper ends with the presentation of our conclusions.
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N = 16 N = 25 N = 49 N = 121 N = 289

k 1 2 3 3 5

k̄/
√
N 0.25 0.40 0.29 0.36 0.41

b κ N = 16 N = 25 N = 49 N = 121 N = 289

0.36 0.160 20k 1200 500 20 20

0.165 - - - 20 19

0.170 - - - 20 15

0.35 0.160 - - - 40 20

0.165 - - - 20 20

0.170 - - - 20 13

Table 1: Number of configurations used for calculating the eigenvalue spectrum at each

value of b, κ, N and flux k. The integer parameter k̄ satisfies kk̄ = 1 (mod
√
N). All

configurations are separated by at least 25 molecular dynamics updates, and at N = 289

they are separated by 125 molecular dynamics updates.

2 Methodology

As explained in the introduction, our approach to the large N limit is based on reduction.

Hence, we simulate the twisted reduced SU(N) model on a single site with two adjoint Dirac

fermions [23]. In the large N limit the theory is equivalent to the infinite volume lattice

gauge theory. For finite N = L̂2, the corrections amount to finite volume corrections in an

L̂4 lattice. Thus, it is important to keep track of the N -dependence which translates into

the equivalent finite volume corrections. For that purpose we have performed simulations

at values of N ranging from 16 up to 289, the latter corresponding to an effective lattice

volume of 174. Our study has been done at two values of b, 0.35 and 0.36, and a large

number of κ values. The number of configurations used for the calculation of the eigenvalue

spectrum at each value of b, κ and N are listed in table 1. In addition we calculated the

eigenvalue spectrum of the nf = 0 theory at b = 0.35, 0.36. For N = 121, 289, we used 10

configurations with κ = 0.170, 0.175, 0.180, 0.185, 0.190, and for N = 841, b = 0.36 we used

4 configurations for κ = 0.190.

As explained in the introduction, we have chosen the symmetric twist configuration,

with values of the flux integer parameter k given in table 1. These fulfill the condition

k/
√
N > 1/9 which was found necessary for the pure gauge theory (TEK model) to respect

the center symmetry [24]. This symmetry is a necessary ingredient in the proof of reduction

by Eguchi and Kawai. The addition of light adjoint fermions should help in preserving the

symmetry but, as shown in ref. [23], adhering to the condition allows the study of the full

range of κ values and leads to a smoother N dependence. As an example of the behaviour

of Polyakov loops, which act as order parameters of the center symmetry, in figure 1 we

display the expectation value of the modulus of the unit winding loop as a function of N .

By definition, this quantity is always positive, but as seen in the figure its size decreases

with N for all values of κ.

For each configuration we compute the low-lying spectrum of the modulus square of
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Figure 1: Polyakov loop: 1
N |TrU | vs 1/N for nf = 2. Must go to zero in the large N

limit for reduction to hold, which it does for all values of κ, where κ = 0 corresponds to

quenched nf = 0 data.

the massive lattice Wilson Dirac operator in the adjoint representation. This operator is

positive definite and in the naive continuum limit corresponds to a2(− /D2
+m2). Thus, its

eigenvalues, labelled (aΩ)2, are related to those of /D by the expression

aω =
√

(aΩ)2 −m2a2 , (2.1)

where a is the lattice spacing and m is the adjoint quark mass. The lowest eigenvalue of

our lattice operator defines the spectral gap. In the continuum it is bounded from below

by a2m2. In the case of QCD and for the lattice Wilson Dirac operator, the median of the

gap distribution was found empirically [32] to satisfy the relation

aΩ0 ∝
1

2κ
− 1

2κc
. (2.2)

so that aΩ0 is proportional to am. In our case, however, we expect that the bound is not

saturated at finite N . The reason being the absence of zero-momentum quark states in the

reduced model. Hence, quarks are then produced with at least the minimum momentum

2π/L, whose square decreases linearly with 1/N .

Since our main goal is the determination of the mass anomalous dimension with the

idea presented in the introduction, it is important to study the region close to the critical
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point and for large values of N to minimize small effective volume corrections. For that

reason, our main analysis was based on the study of the lowest 2000 eigenvalues (aΩ)2

at N = 289 and the lowest 1000 eigenvalues at N = 121. The set of values of b and κ

were given in table 1. The computational cost increases considerably as we approach κc,

explaining the smaller number of configurations for that case. Fortunately, the distribution

of the lowest lying spectrum does not seem to fluctuate strongly at those values of N .

In determining the value of γ∗ from the distribution of eigenvalues there are certain

alternative procedures which we will describe below.

2.1 Determination of the mass anomalous dimension γ∗

2.1.1 Determining γ∗ from a fit to the spectral density

In the continuum γ∗ could be determined by fitting the spectral density to the form expected

for a mass-deformed conformal field theory, eq. (1.2). However, in order to compare to the

lattice data, it is more convenient to look at the spectral density of − /D2
, given by:

ρ̃(ω2) = lim
V→∞

1

V

∑
k

δ(w2 − w2
k) ∝ (ω2)

1−γ∗
1+γ∗ . (2.3)

This quantity is obtained on the lattice by counting the number of eigenvalues of the modu-

lus square of the Wilson Dirac operator within a bin of size ∆2 around (aΩ)2. Representing

this number by N (aΩ,∆), the lattice spectral density is given by:

ρ̃L((aΩ)2) =
1

N2∆2
N (aΩ,∆), (2.4)

where N2 represents the lattice volume on the reduced lattice. The continuum formula for

ρ̃(ω2) gives the following parameterisation for the lattice data:

ρ̃L((aΩ)2) = B
[
(aΩ)2 − (am)2

] 1−γ∗
1+γ∗ , (2.5)

allowing the determination of the three free parameters: B, (am)2 and γ∗. The lowest

part of the eigenvalue distribution is the one most affected by finite volume and finite

mass effects, hence the fits have to be performed in an intermediate range of eigenvalues

aΩmin < aΩ < aΩmax, which preserves the separation of scales on the lattice,

1√
N
� am� aΩ� 1. (2.6)

From a practical viewpoint the 3-parameter fit demands very precise data in a wide range

of eigenvalues and induces strong correlations between the parameters. In some cases

the number of parameters can be reduced by assuming that the mass is negligibly small

(am = 0). Alternatively we can continue to work at finite mass but use information coming

from the smallest eigenvalue to fix the parameter (am)2 of the fit.
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Figure 2: Median of the spectral gap of the modulus square of the Wilson Dirac operator,

(aΩ0)2, vs 1/N . The fitting form (aΩ0)2 = (am)2 + c/N fits all the data well.

2.1.2 Determining γ∗ from a fit to the mode number

Alternatively we can follow the procedure introduced in ref. [8] and extract γ∗ from the

mode number ν(Ω) of the Dirac operator. It is simply defined as the number of eigenvalues

of (− /D2
+ m2) below some value Ω2. Hence, it is given by V times the integral of the

eigenvalue density. We can split this integral into two parts as follows

ν(Ω) = 2V

∫ √Ω2
IR−m2

0
ρ(ω) dω + 2V

∫ √Ω2−m2

√
Ω2
IR−m2

ρ(ω) dω, (2.7)

The first part contains the range of eigenvalues which are more sensitive to finite volume

and/or finite mass effects. For the second part we can insert eq. (1.2) and perform the

integration to give

ν(Ω) ' ν(ΩIR)−A
[
Ω2
IR −m2

] 2
1+γ∗ +A

[
Ω2 −m2

] 2
1+γ∗ . (2.8)

To determine ν(Ω) on the lattice we just simply count the number of eigenvalues of the

modulus square of the lattice Wilson massive Dirac operator below some value (aΩ)2. The

continuum formula for the mode number implies that the lattice data can be parametrized

as follows:

νL(aΩ) ' ν0 +A
[
(aΩ)2 − (am)2

] 2
1+γ∗ , (2.9)

where

ν0 = νL(aΩIR)−A
[
(aΩIR)2 − (am)2

] 2
1+γ∗ . (2.10)
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b κ N = 121 N = 289 N =∞
0.36 0.160 0.0803(6) 0.0585(3) 0.0429(7)

0.165 0.0433(4) 0.0224(2) 0.0074(5)

0.170 0.0279(4) 0.0096(2) -0.0036(4)

0.35 0.160 0.0997(9) 0.0815(4) 0.0683(9)

0.165 0.0530(5) 0.0346(2) 0.0214(6)

0.170 0.0281(4) 0.0105(4) -0.0021(7)

Table 2: Lowest eigenvalues squared for each b, κ and N , along with the extrapolation to

N =∞ which corresponds to the mass parameter (am)2.

Eq. (2.9), normalised dividing by the lattice volume, is the expression used in ref. [8] to fit

the lattice data. This allows the determination of its four free parameters (ν0, A, (am)2

and γ∗).

For the same reason as discussed before for the spectral density, one can attempt to

reduce the number of parameters in the fit. If we assume that finite volume (i.e. finite

N) effects are negligible we might take ΩIR close to threshold making ν0 negligibly small

compared to the other term. This leads to a simplified expression

νL(aΩ) ' A
[
(aΩ)2 − (am)2

] 2
1+γ∗ . (2.11)

which can be used to fit its three parameters (A, am, γ∗) to the modenumber data in a

range of eigenvalues Ω ∈ [Ωmin,Ωmax] satisfying:

1√
N
� am� aΩIR < aΩ < aΩUV � 1. (2.12)

If we set am = 0 in eq. (2.11) we can reduce the number of free parameters even

further. This is for example the strategy adopted in ref. [9] where a 2-parameter fit to the

mode number is used,

νL(Ω) ' A[(aΩ)2]
2

1+γ∗ . (2.13)

The sensitivity to the fit function, the volume, the mass parameter, or the fitting range

will be used to estimate the systematic error in the determination of the mass anomalous

dimension.

3 Results

3.1 Analysis of the two flavor case

In this section we will present the results of our study. Our first step is the analysis of the

spectral gap of the hermitian Wilson-Dirac operator. To study how this quantity behaves

as a function of N and κ, we measure the lowest eigenvalue at b = 0.36 on a range of

configurations for N = 25− 289 and κ = 0.130− 0.170. As argued in the previous section,

in the twisted model we expect the median of the gap distribution (aΩ0)2 to differ from

(am)2 by a finite volume correction which, interpreted as non-zero momentum contribution,

– 7 –
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Figure 3: Probability distribution of the spectral gap of the Wilson Dirac operator for

N = 289 and various values of κ. The lines are fits to a gaussian distribution, eq. (3.1).
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Figure 4: We display Nξa for our ensemble of nf = 2 configurations for b = 0.36 and

b = 0.35 (displaced by 3 vertically for clarity), where ξa is the width of the probability

distribution of the spectral gap of the Wilson Dirac operator.
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Figure 5: Spectral density ρ̃L((aΩ)2) for b = 0.36, κ = 0.160, with a bin-size ∆2 = 0.01.

There is agreement at all eigenvalues (except the very lowest couple of bins) between N =

121 and N = 289. For N = 49 there is a qualitative difference for the lower eigenvalues,

but the large ones are also in agreement.

should depend linearly on 1/N . Indeed, a linear fit of this kind seems to describe our non-

perturbative data quite well, as shown in figure 2. This allows us to determine the mass

parameter (am)2 in the large N limit, listed in table 2.

We have analysed the probability distribution of the spectral gap p(aΩ0) of the Wilson

Dirac operator. In the large volume limit of QCD, the analysis in ref. [32] showed that the

distribution is gaussian:

p(aΩ0) ∝ exp
{
− 1

2(ξa)2
(aΩ0 − 〈aΩ0〉)2

}
(3.1)

with median proportional to the bare current quark mass and width scaling with the volume

and the lattice spacing approximately as ξa = a2/
√
V . In the reduced lattice this would

imply ξa = 1/N . Figure 3 shows p(aΩ0) for N = 289 at b = 0.35 and 0.36 and several

values of κ. A gaussian fit describes the data well. The fitted distribution widths multiplied

by N are displayed in figure 4 for our nf = 2 configurations at several values of N and κ.

Our results follow rather well the behaviour also reported in QCD.

Let us now move on to describe our results for the distribution of eigenvalues. One

of the main points is to analyze the N -dependence of this distribution. We already saw

that this dependence affects the gap of the spectrum, but we expect this effect to have a

small impact for higher eigenvalues. This can be seen in figure 5, which shows a histogram
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Figure 6: Eigenvalue density distribution at b = 0.35 (left) and b = 0.36 (right) for

κ = 0.165, 0.17 and N = 121, 289.

of the number of eigenvalues as a function of (aΩ)2, for b = 0.36, κ = 0.160. Comparing

different values of N , we see agreement between N = 289 and N = 121 in all but the

first two bins. For N = 49, for (aΩ)2 . 0.4 the behaviour is qualitatively different, but

for higher eigenvalues we again see agreement with larger values of N . For N = 25 and

N = 16 there are strong oscillations in the distributions, which are presumably the sum of

the distributions of individual eigenvalues with the allowed discrete momenta.

We have seen that, at least for the two biggest values of N , the eigenvalue distribution

roughly coincides beyond a certain threshold value. The question now is to see if this

distribution behaves as expected from the IRFP hypothesis and to extract γ∗ from it. In

the previous section we gave two alternative methods of fitting the data. One is to compare

the eigenvalue distribution with eq. (2.5). The other is to compute the mode number and

fit it to eq. (2.8) or to its simplified expression eq. (2.11).

In performing a fit one has to select the range of values Ωmin < Ω < Ωmax to be fitted. A

lower value of Ωmin increases the sensitivity to the value of the mass (am)2 but also risks to

be more affected by finite effective volume (finite N) corrections. For the mode number fit

the same is expected to happen for the parameter ν0. Furthermore, the narrower the fitting

range the stronger the correlations among parameters leading to high uncertainties in γ∗.

If we use only the data which is least affected by finite volume and finite mass effects,

we can produce our most precise determination of γ∗: Hence, we take our data of N = 289

and κ = 0.17 and fit the distribution of eigenvalues to eq. (2.5) with (am)2 set to zero. The

upper edge of the fitting range (aΩmax)2 covers almost all of the N = 289 data. For the

lower edge (aΩmin)2 the cut is set to twice the lowest eigenvalue for N = 121. The result

for b = 0.36 is γ∗ = 0.268(2) and for b = 0.35 is γ∗ = 0.271(1). It is remarkable that both

values of b give consistent results within the purely statistical 1% errors. To give an idea of

the quality of the fit we display the data in figure 6 together with the best fit. In the figure

we also include the data of N = 121 at both values of b. The fitted function also describes

well the behaviour of the data at N = 121, except for the smallest eigenvalues where finite

volume effects should be mostly felt. The continuous line going through the κ = 0.165 data

– 10 –
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of values from 0.25 up to the largest value for which we have data. The black line shows

our best estimate for γ∗ with statistical error only.

was obtained fitting the corresponding data with γ∗ fixed to the value obtained at κ = 0.17

and the mass square (am)2 to the large N extrapolated value given in table 2.

The analysis of the previous figure and fits indicates that our data look consistent with

the predictions of an infrared fixed point with mass anomalous dimension close to 0.27.

In order to substantiate the claim of conformality, it is important to check the systematic

uncertainties involved in our analysis and to compare our results with those corresponding

to theories which are not conformal in the IR. The latter will be done in the next section

where we will compare our nf = 2 results with those obtained for nf = 0. What we

will now present is an evaluation of the systematic errors. This point will be analysed by

estimating the effect of finite N corrections, finite mass corrections and sensitivity to the

fitting range. We will also test what results come out if we use the mode number instead

of the eigenvalue density.

A good summary of the effect of all systematics on the value of γ∗ is provided by

figure 7. Here we display different determinations of γ∗ for the N = 289 and N = 121

data by varying Ωmax, Ωmin and (am)2. The latter is varied within the range extending

from zero to the minimum N = 289 eigenvalue. The data is displayed as a function of

(aΩmin)2. For a large range of x-axis values all determinations of γ∗ (obtained by using

different values of Ωmax and (am)2) fall within a horizontal strip whose width serves as an

upper bound to our systematic error δγ∗ = 0.05. For larger values of (aΩmin)2 the fitting

range narrows, obviously leading to a wider spread of values of γ∗.
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fitting the spectral density data to eq. (2.5), using N = 289 configurations. There is a clear

correlation between the two parameters.
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Figure 9: Fits to the mode number at b = 0.35 (left) and b = 0.36 (right) for κ =

0.165, 0.17 and N = 121, 289.

To better analyze the dependence of the fitted value of γ∗ with the remaining param-

eters, we display in figure 8 its correlation with the mass parameter used in the fits for

all values (aΩmax)2 and (aΩmin)2 < 0.07. This shows that the main source of systematic

errors is indeed the value of the mass.

A similar analysis can be done for the mode number. Results are essentially compatible.
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κ=0.170, γ = 0.36(4), am=0.19(1)

Figure 10: Eigenvalue density distribution, in log-log scale, at b = 0.36 for nf = 2 and

nf = 0. The lines correspond to the fits to eq. (2.5) described in the text.

In this case, one has an issue about which fitting formula one should use. Although the

4-parameter formula eq. (2.8) should apply in all regions, there are strong correlations

between the fitted parameters, so that for example a large range of values of γ∗ can produce

a good fit by a suitable choice of the other 3 fit parameters. The more restrictive fitting

formulas better constrain the fitted quantities, but have a limited range of applicability.

For example figure 9 shows a fit to eq. (2.11) using the same configurations and fit ranges

as for the eigenvalue density in figure 6, which gives γ∗ = 0.270(2) for b = 0.36 and

γ∗ = 0.272(1) for b = 0.35, which are in good agreement with the numbers determined

from the eigenvalue density.

3.2 Comparison between zero and two flavors

The comparison between our nf = 2 results with those obtained for nf = 0 is essential

to substantiate the claim of conformality. The latter theory is not conformal and should

display a different behaviour. Indeed, for the pure Yang-Mills theory it makes no sense to

speak of γ∗ itself, since there is no infrared fixed point. However, it still makes sense to

study the behaviour of the spectral density and mode number distribution as a function of

its argument.

To carry on the previous study, we generated pure gauge configurations at the same

values of b and N and a range of κ values, and repeated our previous analysis for this data.
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Figure 11: a) Dependence of the extracted value of γ∗ with the mass (am)2 for nf = 0

and nf =2. b) Dependence of the extracted value of γ∗ with (m)2/σ for nf = 0.

The κ values were chosen in such a way as to explore similar small values of the minimum

eigenvalue.

The fits to the spectral density for the largest values of κ were qualitatively as good as

those of nf = 2. Figure 10 shows, in log-log scale, the fits to the lattice spectral densities

for nf = 2 and nf = 0 at b = 0.36. The values of γ∗ in this plot are obtained by fitting the

spectral densities to eq. (2.5). The mass (am)2 is varied in the range 0.5(aΩ0)2 ≤ (am)2 ≤
(aΩ0)2, the number of bins is varied from 40 to 80, and the lower edge of the fit range is

varied in the range 1.5(aΩ0)2 ≤ aΩmin ≤ 2(aΩ0)2. The final point is an average over all of

these choices for many bootstrap replicas of the data. Keeping γ∗ fixed to this average, the

fits are repeated for each set of data in order to determine am. For this final fit the lower

edge of the fit range is set to 2(aΩ0)2. In all cases the χ2 per degree of freedom of the fit is

below 2. Hence, from the quality of the fit to the spectral density one cannot deduce the

presence of an infrared fixed point.

One remarkable difference appears when looking at the dependence of the extracted

value of γ∗ with the mass (am)2. The result is shown in figure 11a. The value of γ∗ seems

quite stable for the nf = 2 case. This is what one expects in the vicinity of an infrared

fixed point as the anomalous dimensions tends to a constant at the fixed point. The result

for nf = 0 is quite different, showing a pronounced drop as we move away from the critical

value of κ. For the smallest masses the fitted value of γ∗ reaches as high values as 0.8.
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Notice that a value equal to 3 would imply a constant value of the spectral density at

the origin. Our data show a growing γ∗ for lighter masses but do not yet reach the value

of 3 predicted by chiral symmetry breaking, through the Banks-Casher formula. This is

probably due to finite volume and/or finite mass effects.

Another marked difference between the two cases appears in the dependence of the

spectral densities on the bare inverse coupling b. In the conformal case one expects the

coupling to be a marginally irrelevant operator close to the IRFP, in contrast to the nf =

0 case where it is marginally relevant and determines the lattice spacing. The values

of γ∗ displayed in figure 11a for nf = 2 do indeed have a very small dependence on b.

However, this dependence is large for the case of nf = 0. In the quenched case, the results

corresponding to the two different couplings only show scaling when expressed in physical

units in terms of the string tension. This is shown in figure 11b, where we have used the

data for the nf = 0 string tension obtained in refs. [33] (σa2 = 0.09 and σa2 = 0.043 for

b = 0.35 and b = 0.36 respectively).

4 Conclusions

We have performed a measurement of the mass anomalous dimension γ∗ of the SU(N)

gauge theory with two adjoint Dirac fermions, in the large N limit using the concept of

large N twisted reduction. Results from a single site lattice model at large values of N ,

have the expected qualitative behaviour of the spectral density and mode number of the

adjoint massless Dirac operator. The distribution for small masses (extracted from the

lowest eigenvalue) can be well-fitted with the expectations of an IRFP. From the data we

extract a value of γ∗ = 0.269±0.002±0.05, where the first error is statistical and the second

one systematic. This value is similar to previous lattice determinations of this quantity for

the SU(2) theory.

Does our result provide conclusive evidence of the presence of an infrared fixed point

for the SU(∞) gauge theory with 2 flavours of adjoint fermions? To try to answer this

question we repeated the analysis for the nf = 0 case, which is known to have a completely

different behaviour at criticality. However, we observe that the spectral densities at fixed

b and small quark mass, can also be fitted with the same formulas with a larger value of

γ∗. This conveys a word of warning about drawing conclusions about the existence of an

IRFP only from the capacity to fit the spectral density or mode number with a powerlike

distribution. Nevertheless, there are marked differences between the behaviour observed

in the nf = 0 and nf = 2 cases. One of them is the dependence of the result on the bare

coupling b. The nf = 2 results for our two values of b, 0.35 and 0.36, are consistent with

each other. This is not the case for the nf = 0 data. Although insensitivity to the bare

coupling b is certainly the expected result for an IRFP, it is difficult to exclude the fact that

this is not simply due to the smaller value of the beta function when adding fermions in the

adjoint. The second difference refers to the change of behaviour as we approach criticality

κ −→ κc. The extracted value of γ∗ for nf = 2 remains fairly stable as one expects if the

behaviour is indeed dictated by the presence of an IRFP. On the contrary for the nf = 0

data we observe a pronounced rise of the value of γ∗ as we approach criticality.

– 15 –



J
H
E
P
0
8
(
2
0
1
5
)
0
3
4

To improve on these results using this method, smaller fermion masses and larger

volumes (i.e. larger values of N) would be required. Since finite volume effects are the

dominant limitation, one possibility for future work would be to extend the single site

lattice to a 24 lattice.
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[11] P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large-Nc QCD-like gauge

theories, JHEP 06 (2007) 019 [hep-th/0702021] [INSPIRE].

– 16 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.71.051901
http://dx.doi.org/10.1103/PhysRevD.71.051901
http://arxiv.org/abs/hep-ph/0405209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0405209
http://dx.doi.org/10.1088/1126-6708/2006/09/070
http://arxiv.org/abs/hep-ph/0409274
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0409274
http://dx.doi.org/10.1103/PhysRevD.81.014505
http://arxiv.org/abs/0910.4535
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4535
http://dx.doi.org/10.1103/PhysRevD.82.014510
http://arxiv.org/abs/1004.3206
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.3206
http://dx.doi.org/10.1103/PhysRevD.83.074507
http://arxiv.org/abs/1102.2843
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2843
http://dx.doi.org/10.1103/PhysRevD.85.094501
http://arxiv.org/abs/1108.3794
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3794
http://dx.doi.org/10.1140/epjc/s10052-013-2426-6
http://dx.doi.org/10.1140/epjc/s10052-013-2426-6
http://arxiv.org/abs/1209.5579
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5579
http://dx.doi.org/10.1103/PhysRevD.86.025006
http://arxiv.org/abs/1204.4432
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.4432
http://dx.doi.org/10.1007/JHEP07(2013)061
http://arxiv.org/abs/1301.1355
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1355
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2013)064
http://arxiv.org/abs/1310.2128
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.2128
http://dx.doi.org/10.1088/1126-6708/2007/06/019
http://arxiv.org/abs/hep-th/0702021
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702021


J
H
E
P
0
8
(
2
0
1
5
)
0
3
4

[12] T. Azeyanagi, M. Hanada, M. Ünsal and R. Yacoby, Large-N reduction in QCD-like theories

with massive adjoint fermions, Phys. Rev. D 82 (2010) 125013 [arXiv:1006.0717] [INSPIRE].

[13] G. Basar, A. Cherman, D. Dorigoni and M. Ünsal, Volume Independence in the Large-N
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[23] A. González-Arroyo and M. Okawa, Twisted space-time reduced model of large-N QCD with

two adjoint Wilson fermions, Phys. Rev. D 88 (2013) 014514 [arXiv:1305.6253] [INSPIRE].
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