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Abstract

Background: RNA-Seq has supplanted microarrays as the preferred method of transcriptome-wide identification
of differentially expressed genes. However, RNA-Seq analysis is still rapidly evolving, with a large number of tools
available for each of the three major processing steps: read alignment, expression modeling, and identification of
differentially expressed genes. Although some studies have benchmarked these tools against gold standard gene
expression sets, few have evaluated their performance in concert with one another. Additionally, there is a general
lack of testing of such tools on real-world, physiologically relevant datasets, which often possess qualities not
reflected in tightly controlled reference RNA samples or synthetic datasets.

Results: Here, we evaluate 219 combinatorial implementations of the most commonly used analysis tools for their
impact on differential gene expression analysis by RNA-Seq. A test dataset was generated using highly purified
human classical and nonclassical monocyte subsets from a clinical cohort, allowing us to evaluate the performance
of 495 unique workflows, when accounting for differences in expression units and gene- versus transcript-level
estimation. We find that the choice of methodologies leads to wide variation in the number of genes called
significant, as well as in performance as gauged by precision and recall, calculated by comparing our RNA-Seq
results to those from four previously published microarray and BeadChip analyses of the same cell populations. The
method of differential gene expression identification exhibited the strongest impact on performance, with smaller
impacts from the choice of read aligner and expression modeler. Many workflows were found to exhibit similar
overall performance, but with differences in their calibration, with some biased toward higher precision and others
toward higher recall.

Conclusions: There is significant heterogeneity in the performance of RNA-Seq workflows to identify differentially
expressed genes. Among the higher performing workflows, different workflows exhibit a precision/recall tradeoff,
and the ultimate choice of workflow should take into consideration how the results will be used in subsequent
applications. Our analyses highlight the performance characteristics of these workflows, and the data generated in
this study could also serve as a useful resource for future development of software for RNA-Seq analysis.
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Background
RNA sequencing (RNA-Seq) has become the preferred
technique for transcriptome-wide analysis of gene ex-
pression. However, estimating expression from short
sequence reads poses unique problems such as accurate
read alignment in the presence of sequencing errors,
measurement bias depending on library preparation
methodology, and complexity in estimating the expres-
sion of distinct mRNA transcripts with shared exons. As
a result, RNA-Seq analysis is still rapidly evolving, with a
wide number of tools available for each of the major
processing steps, and many combinations in which these
tools are commonly implemented. As such, the optimal
workflow for a given application remains a subject of
intensive investigation.
The most typical application of RNA-Seq is the identi-

fication of differentially expressed genes. In such an ana-
lysis, two or more conditions are compared to identify
changing gene expression signatures, from which func-
tional changes or markers of a given cellular state are in-
ferred. The three major steps of differential expression
analysis by RNA-Seq are alignment of reads to an anno-
tated genome (or less commonly, ab initio reconstruc-
tion of a transcriptome annotation [1, 2]), expression
modeling to obtain gene-level and/or transcript-level
expression estimates, and statistical analysis to identify
differentially expressed genes or transcripts between
comparison groups [3–8]. Various studies have evaluated
the performance of the available tools at each isolated
step of this workflow [9–18]; however, only a handful of
studies have evaluated the performance of these ap-
proaches in concert with one another [3, 19, 20]. This is
important since upstream processing could have sub-
stantial effects on downstream steps and outcomes [21].
In addition, performance has largely been evaluated
using controlled datasets, such as those from highly
purified reference RNA samples, cell lines, or reads syn-
thetically derived in silico. These datasets often exhibit
extreme differences in gene expression between sample
groups that are unrepresentative of more typical experi-
mental designs in which the control and test samples are
more closely related to one another. In addition, such
datasets do not possess the inter-sample variability in se-
quencing depth and quality that often occurs in many
real-world settings. This is particularly true when clinical
samples are involved, for which there is typically more
variability in the initial sample quality, and for which
analysis must also tolerate genetic variation. Thus, al-
though such comparisons are valuable for initial bench-
marking of a given algorithmic approach and its
implementation, the ultimate evaluation of any given
tool must take into consideration the samples to which
it will be applied and the workflow context in which it
will be employed.

One of the barriers to validating analysis workflows is
a paucity of real-world RNA-Seq samples for which ref-
erence datasets are available for comparison. Here, we
describe an RNA-Seq dataset generated from human
classical and nonclassical monocyte subsets isolated to
high purity. Differential gene expression analysis be-
tween these subsets has been analyzed in multiple
transcriptome-wide microarray and BeadChip studies
[22–25], providing us with gene sets that have been vali-
dated by multiple independent laboratories using mul-
tiple gene expression analysis platforms. Therefore, these
gene sets provide a reference estimate of biological
‘truth’. Using the sequence reads from our monocyte
subset dataset, we evaluated commonly used differential
expression workflows for their performance, as assessed
by their agreement with these references. We find that
different RNA-Seq analysis workflows differ widely in
their performance, as assessed by recall, or the propor-
tion of reference-identified genes that were also identi-
fied by the given workflow, and precision, or the
proportion of genes identified by the workflow that were
also identified by the reference. Many workflows per-
form equally well, but are calibrated differently with re-
spect to favoring higher recall or precision, with an
inverse relationship between these parameters. Based on
our observations, we recommend that the selection of a
given approach be guided by the tolerance of down-
stream applications for type I and type II errors. Used in
conjunction with the previous microarray and BeadChip
studies, these RNA-Seq data provide a real-world test
set for guiding the development of improved software
and workflows.

Methods
Samples
Blood was collected from Ugandan children as part of
the Program for Resistance, Immunology, Surveillance &
Modeling of Malaria in Uganda study using previously
described methods [26]. Peripheral blood mononuclear
cells (PBMCs) from a total of 18 individuals were iso-
lated on Ficoll gradients, counted, and immediately
cryopreserved and stored long-term in liquid nitrogen.
Samples were thawed in the presence of DNase and
immediately stained in FACS buffer with antibodies
specific for the following targets: CD7 (clone 4H9),
HLA-DR (clone L243), CD16 (clone CB16), CD14
(clone 61D3), CD19 (clone HIB19) from eBioscience;
and CD177 (clone MEM-166) from Biolegend. For
flow cytometry, classical monocytes were identified as
CD177−CD7−CD19−HLA−DR+CD14hiCD16−; nonclassical
monocytes were identified as CD177−CD7−CD19−HLA
−DR+CD14loCD16+. Both monocyte subsets were isolated
to high purity using two consecutive rounds of sorting on
a FACSAria, using an event rate no higher than 5,000
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events/s and sorting directly into an RNA preservative
buffer on the second sort. A total of 67 – 3149 cells were
sorted per sample. Each sample represents a single indi-
vidual, and both nonclassical and classical subsets were
sorted from each individual. Sorted cells were immediately
snap frozen on dry ice and stored in a −80 °C freezer until
the time of RNA isolation.

RNA sequencing
Cryopreserved sorted cells were thawed, and RNA was
isolated using an RNAqueous Micro kit (ThermoFisher,
Waltham, MA) following manufacturer recommenda-
tions with the following modifications: lysis buffer/cell
aliquots were initially mixed with 180 μL of 200 proof
RNase-free ethanol; the flowthrough was reloaded onto
the column to capture additional material with a second
binding step; and the purified RNA was eluted twice
with 6 μL 55 °C RNase-free water following a 2 min in-
cubation. Isolated total RNA was vacuum concentrated
to 1 μL and converted to pre-amplified cDNA libraries
using template-switching reverse transcription [27, 28]
as implemented in the SMARTer Ultra-low input kit
(Clontech, Mountain View, CA). Two samples failed to
yield cDNA and were thus excluded from further pro-
cessing. Fragmentation was performed enzymatically
using a Nextera XT DNA kit (Illumina, San Diego, CA),
and barcoded samples were multiplexed, pooled, and
purified using Agencourt AMPure XP beads (Beckman
Coulter, Brea, CA). Libraries were quality-controlled for
size distribution and yield using a Bioanalyzer 2100 with
high sensitivity dsDNA assay (Agilent Technologies,
Santa Clara, CA), and sequenced as 51 bp single-end
reads on 4 lanes of a HiSeq 2500 (Illumina) running in
high-output mode at the UCSF Center for Advanced
Technology (San Francisco, CA). Reads were demulti-
plexed with CASAVA (Illumina), and read quality assessed
using FastQC [29].

Read alignment, expression modeling, and differential
expression identification
Reads were aligned to release GRCh37 of the human
genome. Reads were aligned with Bowtie2, HISAT2,
Kallisto, Salmon, Sailfish, SeqMap, STAR and TopHat2
[30–38]. Gene and transcript expression was estimated
with BitSeq, cufflinks, htseq, IsoEM, Kallisto, RSEM,
rSeq, Sailfish, Salmon, STAR, Stringtie and eXpress
[32–35, 37, 39–45]. The IsoEM code was modified to
increase the maximum available memory. Expression
matrices for differential expression input were generated
using custom scripts as well as the prepDE.py script pro-
vided at the Stringtie website. Differentially expressed
genes or transcripts were identified with Ballgown, baySeq,
BitSeq, cuffdiff, DESeq2, EBseq, edgeR exact test,
limma coupled with vst or voom transformation, NBPseq,

NOISeqBIO, SAMseq and Sleuth [33, 39, 40, 46–54]. Of
these, all but Ballgown, BitSeq, NBPSeq, SAMSeq, and
Sleuth used intrinsic filtering or recommended extrinsic
filtering of genes or transcripts prior to testing. For Sailfish
and Salmon, outputs were converted to a Sleuth-ready
format using wasabi [55]. For Kallisto, Sailfish, Salmon,
and BitSeq, transcript-level values were condensed to
gene-level values using tximport prior to evaluating
gene-level differential expression [56]. For all differen-
tial expression analyses performed at the transcript-
level, significant transcripts were converted to the
corresponding gene for performance evaluation, such
that if a single transcript was called as differentially
expressed, the corresponding gene was also called differ-
entially expressed. We note that because of this unavoid-
able difference between gene-level and transcript-level
comparisons, quantitative comparisons of recall and/or
precision between a gene-level and a transcript-level
workflow should be avoided. Rather, we recommend
evaluating the relative performance of a given workflow as
compared with other workflows with matched gene-level
or transcript-level estimation. When possible, differential
expression was assessed using multiple expression units
(counts, FPKM, TPM) and performance metrics are re-
ported separately for each unit. In general, all software
was run with default parameters; specific runtime parame-
ters are listed in Additional file 1, along with software
versions, and scripts for running all code are available at
https://github.com/cckim47/kimlab/tree/master/rnaseq.
Further information about implementation is available
upon request. All software was run at a detection level of
alpha of 0.05, FDR of 0.05, or PPLR in the most extreme
0.05. Abbreviations used throughout the figures are a six-
letter code represented as AaBbCc, where Aa denotes the
read aligner (RA), Bb denotes the expression modeler
(EM), and Cc denotes the differential expression (DE) ana-
lysis tool. All tools and codes are shown in Table 1.

Preparation of reference datasets
Reference datasets were prepared from four published
studies conducted on microarray or BeadChip platforms
(GSE25913, GSE18565, GSE35457, GSE34515) [22–25].
An additional reference set (GSE16836 [57]) was consid-
ered, but excluded due to inter-sample variation pre-
cluding identification of differentially expressed genes.
Significant differentially expressed genes between clas-
sical and nonclassical monocytes were identified for each
dataset. In brief, series matrix files were downloaded
from the NCBI Gene Expression Omnibus, log2 trans-
formed if necessary, full-quantile normalized [50], and an-
alyzed for statistically significant gene expression between
classical and nonclassical monocytes. To reduce bias in-
troduced by a single statistical method, we employed two
approaches: Significance Analysis of Microarrays (SAM)
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[58] with a false discovery rate of 0.05, and limma [59, 60],
with a BH-adjusted p-value of 0.05. Performance of the
workflows against both SAM and limma were compared
to one another and found to exhibit good reproducibility
regardless of the statistical method used to generate the
data (Additional file 2 and Additional file 3); as such, we
chose to use the genes at the intersection of the two
methods for our final reference gene sets.

Quantification of recall and precision
Because absolute recall and precision values are influ-
enced by the repertoire of analytes that can be measured
by a given platform, we first filtered each reference and
RNA-Seq gene set to include only features measurable
both by RNA-Seq (i.e., present in the GRCh37 genome
release) and by the microarray (i.e., a probe targeting the
feature was present on the microarray platform) within a
given comparison. All gene set counts are reported based
on these filtered numbers, as are all estimates of recall and
precision. Recall was calculated as the number of signifi-
cant genes in the intersection of the test RNA-Seq dataset
with the reference dataset, divided by the number of genes
identified as significant in the reference dataset. Precision
was calculated as the number of significant genes in the
intersection of the test RNA-Seq dataset with the refer-
ence dataset, divided by the number of genes identified as
significant in the test RNA-Seq dataset.

Results and discussion
Generation of a real-world RNA-Seq dataset for
benchmarking
We sought to empirically assess performance characteris-
tics of RNA-Seq analysis workflows applied to patient-

derived clinical samples, which integrate multiple sources
of variability that are not well represented in typical
benchmarking datasets. We began by generating a test set
of RNA-Seq profiles from purified human leukocytes. Spe-
cifically, we isolated cell populations from cryopreserved
PBMCs collected as part of a study of malaria exposure in
Ugandan children [26]. From these samples, we isolated
CD177−CD7−CD19−HLA-DR+CD14hiCD16− classical
monocytes (also known as “inflammatory” monocytes)
and CD177−CD7−CD19−HLA-DR+CD14loCD16+ non-
classical monocytes (also known as “patrolling” mono-
cytes) to high purity using two successive rounds of
flow cytometry, which achieves >99% purity (Fig. 1a).
Total RNA was isolated and processed into RNA-Seq
libraries using SMARTer cDNA synthesis and Nextera
fragmentation and indexing. Individual samples were
multiplexed and sequenced as 51 bp single-end reads
on an Illumina HiSeq 2500. Average base quality was
relatively consistent across all samples, and although
there was a statistically significant difference in average
base quality between the classical and nonclassical
monocyte groups, the effect size was small, with an ab-
solute quality score difference of 0.4 between means
(Fig. 1b). Total reads were variable, ranging from 4 to
37 million reads per sample, but with no significant dif-
ference between the classical and nonclassical groups
(Fig. 1c). The absolute number of reads mapped by the
read aligners likewise exhibited a wide range within
each group, but without a significant difference be-
tween the groups (Fig. 1d).

Overview of empirical testing
Several studies have previously explored gene expression
differences between CD14hiCD16− classical monocytes
and CD14loCD16+ nonclassical monocytes using micro-
array or BeadChip analysis [22–25]. Similar to our RNA-
Seq dataset, these studies all represent monocytes from
healthy donors. However, given that the data originate
from labs in Singapore, the United States, and Germany,
it is likely that there is some bias in genetics across the
studies. It is also likely that these microarray data do not
reflect the same genetic makeup and environmental
pressures present in our data, which are obtained from
Ugandan children with a high degree of malaria expos-
ure. It should also be noted that recent studies have dif-
ferentiated between three, rather than two, monocyte
subsets [61], and several reference datasets were pro-
duced prior to this advancement and thus might not
represent the same degree of purity in their nonclassical
monocyte subset [22, 24, 25]. Despite these differences,
in aggregate, these datasets provide a strong reference of
biological ‘truth’ for comparison, as individual datasets
can be evaluated as independent assessments of a given
RNA-Seq analysis workflow. Because differentially

Table 1 Analysis tools used in this study

Read aligner RA code Expression
modeler

EM code Differential
expression

DE code

Bowtie2 Bw BitSeq Bs Ballgown Bl

HISAT2 Hs cufflinks Cu BitSeq Bs

Kallisto Ka htseq Ht baySeq By

Salmon-FMD Sf IsoEM Ie cuffdiff Cd

Sailfish Sl kallisto Ka DESeq2 De

SeqMap Sm RSEM Rm EBseq Eb

Salmon-Quasi Sq rSeq Rs edgeR Er

STAR Sr Sailfish Sl limma+ voom Lo

TopHat2 Th Salmon Sn limma + vst Lv

STAR Sr NBPseq Nb

Stringtie St NOISeqBIO No

eXpress Xs SAMseq Sa

Sleuth Su

Abbreviations specified in the table are used throughout the figures.
Additional details are available in Additional file 1
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expressed gene lists were not available for all studies and
statistical criteria differed between studies, we have
made our re-analysis of these publicly available datasets
available as supplementary data (Additional file 2). Over-
all, the four datasets identified 4069 unique genes. Of
these, 572 were shared among all 4 datasets, and 2755
were shared between at least two datasets. The Wong
dataset showed the least overlap with the other datasets,
contributing approximately half of the genes unique to a
single dataset (Fig. 2).
With these four datasets as our references for per-

formance comparisons, we focused our evaluation on
RNA-Seq analysis approaches that have gained wide
adoption due to their performance, availability, docu-
mentation, and/or ease of implementation. We evaluated
9 read aligners, 12 expression modelers and 13 methods
for identifying differentially expressed genes and tran-
scripts (Table 1), in all possible combinations. Excep-
tions included cases in which the output of an earlier
stage was incompatible as the input to a later stage due
to file format or expression units, or difficulty with soft-
ware execution. In total, including comparisons made at
the gene level and transcript level, and comparisons
using expression data reported in counts, TPMs, or
FPKMs, we evaluated 495 unique workflows (Additional
File 4). We note that some of the workflows were not
intended to be used in the resulting combinations by the
original authors of the software.

Fig. 1 Monocyte isolation by flow cytometry and sequence read characteristics. a Gating strategy for isolation of monocyte subsets, and a representative
demonstration of increasing purity of monocyte subsets upon successive rounds of flow cytometric sorting. b Average base quality across all bases
within a sample. c Total reads per sample. d Representative example of total reads mapped to the human genome. Class, classical monocytes; NC,
nonclassical monocytes

Fig. 2 Concordance between significant gene expression differences
between classical and nonclassical monocytes identified in four
independent studies. Venn diagram showing degree of overlap
of genes identified as significant by both SAM and limma from
each microarray or BeadChip study
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Despite the aforementioned heterogeneity in the micro-
array and BeadChip analysis results, we found that per-
formance of various RNA-Seq workflows was remarkably
consistent across all four reference datasets. We note,
however, that these reference datasets are also subject to
the inherent biases of the experimental and computational
methods used to produce them. Here, we have depicted
our results using performance metrics averaged across all
four references; however, we have also made available
the performance estimates for each individual reference
(Additional file 5 and Additional file 6), and an interactive
visualization to explore the relative performance of the
tools in more detail (Additional file 7).

Differential influence of workflow stages
For each workflow consisting of all three steps (read
alignment, expression modeling, and identification of
differentially expressed genes), we evaluated the ability
to detect genes differentially expressed between classical
and nonclassical monocytes. When workflows identified
a differentially expressed transcript, the corresponding
gene was annotated as significant for performance evalu-
ations, regardless of the status of other transcripts of the
gene. In general, more significant genes were observed
when evaluations were performed at the transcript level,
because there are more transcripts than genes to poten-
tially be differentially expressed. We have separated the

Fig. 3 Number of significant genes predicted by workflows using a given method. The number of genes predicted by each workflow using a given
read aligner (a, b), expression modeler (c, d), or differential expression tool (e, f), split by analyses run at the gene (a, c, e) or transcript (b, d, f) level.
Each point represents a single workflow; line shows median
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analyses performed at the gene and transcript levels to
highlight this difference throughout, and recommend
that direct comparisons across these units not be made.
Across workflows, we observed substantial variability in
the number of differentially expressed genes identified
(n = 208 to 9,489 significant genes; Fig. 3 and Additional
file 5). Beyond the overall variation, two trends were ap-
parent when the number of genes identified was exam-
ined on a by-tool basis. First, the differential expression
tool had a larger impact on the number of genes identi-
fied than the read aligner and expression modeler
(Fig. 3), as demonstrated by the relative homogeneity of
range, distribution, and medians of the first two steps
compared to the more variable parameters for the final
step. Consequently, the coefficient of variation of the
medians was largest for differential expression tools, as
compared to read aligners and expression modelers,
when assessed at both the gene level (20.5 versus 9.9
and 9.8, respectively) and the transcript level (43.4 ver-
sus 10.8 and 39.3). Second, differential expression tools
varied in their robustness to different inputs, with some
tools exhibiting relatively reproducible predictions re-
gardless of the read aligner and expression modeler
choices and expression units (e.g., Ballgown), and other
differential expression analysis tools exhibiting a wide
range of predictions as the input parameters varied (e.g.,
NOISeqBIO at the gene level) (Fig. 3e, f ).
We also evaluated performance of the workflows by

calculating recall (intersecting significant genes divided
by total number of significant reference genes) and pre-
cision (intersecting significant genes divided by total
number of significant genes identified by RNA-Seq),
using the microarray datasets as references. In order to
further examine the influence of each stage of the work-
flow on the prediction of differentially expressed genes,
we computed the absolute difference in recall and preci-
sion in all possible pairwise comparisons of workflows
differing in only one component. Similar to the impact
on the number of genes identified, for both precision
and recall, the largest effects were observed in workflows
differing in the statistical analysis of differential expres-
sion, as indicated by the increased medians of differ-
ences for this step (Fig. 4).

Heterogeneity in performance characteristics of different
workflows
We next evaluated performance by examining the spe-
cific recall and precision for individual workflows. Re-
call across the workflows was highly correlated with the
number of genes identified (Fig. 5a, b). This was true
regardless of which of the reference datasets was used
for comparison (Additional file 5 and Additional file 6).
Furthermore, the relative rankings of the workflows, or-
dered by absolute recall value, tended to be consistent

across reference datasets (Additional file 6). For gene-level
predictions, a subset of workflows using SAMseq exhib-
ited the highest recall values; for transcript-level predic-
tions, workflows using baySeq and NBPSeq exhibited the
highest recall (Fig. 5a, b). However, there were exceptions
to these rules, depending on the choice of read aligner
and expression modeler (Fig. 5 and Additional file 6).
Precision was highly inversely correlated with the num-

ber of genes predicted across the workflows (Fig. 5c, d).
Like recall, rankings were generally consistent regardless
of which reference dataset was used, as was the overall
relationship between significant genes and precision
(Additional file 5 and Additional file 6). For gene-level
predictions, a subset of workflows using NOISeqBIO
exhibited the highest precision, whereas for transcript-
level predictions those with the highest precision used
several different combinations of tools, with the most
prevalent being Ballgown and NOISeqBIO. Strikingly,
when used on transcript-level data, the commonly used
combination of TopHat2, cufflinks and cuffdiff exhib-
ited one of the highest precision values, coupled with
the second lowest number of differentially expressed
genes identified (Fig. 5 and Additional file 5).

Fig. 4 Impact of individual stages of the workflow on overall
performance characteristics. The difference in recall (a, b) and
precision (c, d) was calculated for exhaustive pairwise
comparisons of workflows in which the software used for the
given stage under evaluation was varied while the two other tools
were held constant. The points reflect each absolute difference; the
line represents the median. RA, read aligner; EM, expression modeler;
DE, differential expression
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Performance tradeoff
It is important to note that the specific workflows
highlighted above are at the extremes of one or another
performance metric. As would be expected, the prediction
of more or fewer significant genes results in a tradeoff be-
tween recall and precision. For example, the workflows
employing NOISeqBIO that exhibit the highest precision
were also among those with the lowest recall (Fig. 5 and
Additional file 6). An investigation of the relationship be-
tween precision and recall revealed that this tradeoff gener-
ally persisted throughout, with many workflows following
an inverse linear relationship between precision and recall
(Fig. 6a, b). This held true for both gene- and transcript-
level analysis, was true regardless of the expression estima-
tion units, and was also consistent across reference datasets
(Fig. 6a, b, Additional file 7, and Additional file 8).
As observed previously with the number of significant

genes and performance differences by step, the differen-
tial expression step had the greatest impact on the

performance of each workflow along the spectrum of re-
call and precision (Fig. 6c, d). Specific tools that tended
to track along this linear tradeoff were Ballgown,
DESeq2, limma + voom, limma + vst and SAMseq; bay-
Seq and EBseq consistently deviated the furthest. SAM-
seq, one tool with a nonparametric approach, has been
highlighted as a high performer previously [3, 16], in par-
ticular when there are a large number of replicates avail-
able to approximate the underlying distribution, as is the
case here; it performs well, though it does exhibit a ten-
dency toward higher recall at the expense of precision.
NOISeqBIO, the other tested differential expression tool
that assumes a nonparametric distribution, has previously
been observed to identify fewer differentially expressed
genes with larger sample sizes [3]; we also observe this, as
well as correspondingly low recall values. Of the differen-
tial expression methods tested, baySeq and EBseq are the
most similar to each other in underlying statistical meth-
odology; both use an underlying negative binomial model,

Fig. 5 Relationship of recall and precision with number of genes predicted. Recall (a, b) and precision (c, d), plotted vs number of significant
genes predicted by each workflow. Pearson r values are shown
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and then estimate a posterior probability of being differen-
tially expressed for each gene [46, 48]. The observation
that EBseq deviated furthest from the precision/recall per-
formance line, due to decreased precision without gains in
recall, is similar to previous observations showing that
EBSeq tended to produce many false positives with large
sample sizes [16]. When applied to gene-level data, baySeq
performed similarly to EBseq though not as extreme,
with relatively low recall without commensurate gains
in precision, which may reflect the similarity in their
underlying methods. The development of Ballgown
drew on the limma statistical methodologies based on
linear models, although only Ballgown (and not
limma) can accept TPM and FPKM data, in addition to
counts. All three linear model workflows perform well and
track along the linear precision/recall tradeoff, irrespective
of upstream processing. However, there is some difference
in default tuning, as Ballgown results tended towards

higher precision, whereas limma + voom and limma + vst
tended towards higher recall.
Aligners and estimators generally did not follow any

specific trends, consistent with our observation that
their influence is overshadowed by that of the differen-
tial expression analysis tool. However, two exceptions
stood out. First, using BitSeq as the expression modeler
tended to result in identification of large numbers of dif-
ferentially expressed genes, but only in combination with
differential expression tools that used an underlying
negative binomial model for expression data (BaySeq,
DESeq2, edgeR, and NBPSeq); EBSeq was the one excep-
tion, with the number of differentially expressed genes
within range of workflows using differential expression
tools that model other distributions (Ballgown, BitSeq,
limma, and NOISeqBIO). We note that BitSeq was un-
usual in that its most prevalent estimated expression
count value was between 1 and 2, rather than less than 1

Fig. 6 Comparison of performance metrics. a, b Precision and recall for each workflow, with top (shaded) and balanced (white) performers
labeled. c, d Plots as above, with points colored by tool for each step
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as most expression modelers estimated; this likely ex-
plains why these expression data were poorly modeled
by a negative binomial distribution. Second, using STAR
as the read aligner, most notably with Ballgown as the
differential expression tool, led to some of the highest
performance workflows having a balance of precision
and recall. Interestingly, these best performing work-
flows are not combinations of aligner and estimator that
are suggested by the Ballgown authors, demonstrating
the utility of broad, empirical exploration for uncovering
improved workflows. Overall, there are multiple work-
flows that exhibit excellent performance, and, the relation-
ship between recall and precision among the differential
expression workflows that track along the inverse linear
relationship likely reflects differential calibration of these
methods with regard to the tradeoff between sensitivity
and specificity, rather than any fundamental difference in
statistical or algorithmic performance.
The above observations also suggest that the selection

of a specific workflow should be largely influenced by
the tolerance of a specific application for type I versus
type II errors. However, it is also important to note that
a significant number of workflows deviated from the
roughly linear relationship between recall and precision,
particularly for tools targeted at gene-level analyses; such
workflows could be considered to exhibit lower perform-
ance, as higher performance workflows would be avail-
able as alternatives at a given recall or precision target
value. Furthermore, our findings reflect a defined set of
parameters, such as read length, sequencing coverage,
sample number, and genetic polymorphism. Thus, it is
possible that the performance, both absolute and rela-
tive, of the above workflows could vary under other con-
ditions, as some studies have observed [8, 16]; as such,
additional studies comparing workflow performance will
be required to understand the generalizability of our ob-
servations. Importantly, when selecting a pipeline it is
essential to consider not only the specific tools selected
at each stage of the workflow, but also how they interact
with one another.

Conclusions
The choice of RNA-Seq analysis workflow, applied to ge-
notypically heterogeneous samples, exerts significant in-
fluence on the repertoire, recall, and precision of the
differentially expressed gene set that is identified. The
impact of software selection at each step was not simply
a function of upstream position in the workflow; rather,
the choice of differential expression analysis approach
exhibited the strongest impact on recall and precision,
with more modest influences from the read aligner and
expression modeler. The ultimate choice of workflow
should take into consideration how the results will be
used, and the performance characteristics described in

this study. These, used in conjunction with consideration
of the tolerance of the downstream applications for type
I and type II errors, can guide the selection of an appro-
priate workflow. The data generated in this study also
provide a useful benchmarking set for further develop-
ment of RNA-Seq analysis tools and workflows.
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