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1 Introduction

In conformal field theory one constructs the lowest weight representation using the Virasoro

lowest weight state |∆〉 [1]. Recently, however, so called irregular vector was introduced

in [2] in connection with the asymptotically free N = 2 gauge theories. The irregular vector

|I(m)〉 is annihilated by positive Virasoro generators Lℓ|I(m)〉 = 0 when ℓ > 2m > 0, but is

a simultaneous eigenstate of a set of Virasoro generators

Lk|I(m)〉 = Λk|I(m)〉 , m ≤ k ≤ 2m (1.1)

where Λk is a non-vanishing eigenvalue. The existence of the irregular vector is consistent

with the Virasoro algebra [Lk, Ln] = (k − n)Lk+n with k, n > 0.

The irregular vector can be constructed as the superposition of lowest state together

with its descendents. Explicit construction for small m can be found in [2–4]. A more

detailed investigation is done in [5, 6] in connection with Argyres-Douglas type gauge theo-

ries [7, 8]. It is also noted in [6] that the irregular vector can be constructed in the process of

colliding limit of primary fields. This is because the colliding limit of primary fields induces

higher than 2 degree of singularities in the operator product expansion with the energy-

momentum tensor. The higher singularity is the manifestation of the irregular vector.

Let us construct a multi-point state |Rm〉 = limz0→0
∏m

r=0Ψ∆r(zr)|0〉 where Ψ∆r(zr) is

the primary field with conformal dimension ∆r. We put Ψ∆0(z0) at the origin so that the
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lowest weight state |∆0〉 = limz→0Ψ∆0(z)|0〉 is obtained. The operator product expansion

with the energy-momentum tensor T (z) has the form

T (z)|Rm〉 =
m
∑

r=0

(

∆r

(z − zr)2
+

1

(z − zr)

∂

∂zr
+ regular terms

)

|Rm〉 . (1.2)

The colliding limit is obtained if zr → 0 but ∆r → ∞ so that there appear non-vanishing

parameters;

c0 =
m
∑

r=0

αr , ck =
m
∑

r=0

αr

∑

0≤s1<···<sk≤m
si 6=r

k
∏

i=1

(−zsi) when 0 ≤ k ≤ m (1.3)

where ∆r = αr(Q − αr) is used. Then, higher singularities in the OPE with T (z) are

induced at the colliding limit

T (z)|I(m)〉 =
( 2m
∑

k=0

Lk

zk+2
+

L−1

z
+ reg.

)

|I(m)〉 , (1.4)

|I(m)〉 = lim
zr→0,αr→∞

∏

0≤r<s≤m

(zr − zs)
2αrαs |Rm〉 (1.5)

where we compensate the position singularity of |Rm〉 by applying the products of (zr−zs)’s

so that the irregular vector |I(m)〉 is well-defined. The induced operator Lk is the realization

of the Virasoro algebra on the irregular vector space.

Lk = Λk +
∑

ℓ∈N

(ℓ− k)cℓ
∂

∂cℓ−k
, Λk = (k + 1)Qck −

k
∑

ℓ=0

cℓck−ℓ , (1.6)

where the notation is used: cℓ ≡ 0 unless 0 ≤ k ≤ m. It is obvious that Lk = Λk for

m ≤ k ≤ 2m and is consistent with (1.1).

Our task is to investigate the parametric dependence of the irregular vector. In-

stead of constructing directly as in [2–4, 6], we will use the Penner-type matrix model.

The Penner model was first introduced to find the Euler characteristic of moduli space

of Riemann surfaces with genus and punctures [9]. Soon after, the Penner model turns

out to be very useful to understand c = 1 string theory [10, 11] and is further gener-

alized [12] to obtain the conformal block of the Liouville theory inspired by AGT rela-

tion [13]. Note that (m+ 2) correlation of vertex operators
〈

∏m+1
r=0 e2αrφ(zr)

〉

with the Li-

ouville momentum αa is evaluated perturbatively by expanding the Liouville potential e2bφ,
〈(

∏N
i=1

∫

dλidλ̄ie
2bφ(λi)

)

∏m+1
r=0 e2αrφ(zr)

〉

0
using the free correlation 〈e2α1φ(z)e2α2φ(w)〉0 =

|z − w|−4α1α2 with the neutrality condition
∑m+1

a=0 αa + bN = Q. Here, Q(= b + 1/b) is

the Liouville background charge. Then, the conformal block Fm+2(
{

eαkφ(zk)
}

) (figure 1) is

identified with ZN×∏0≤a<b≤m+1(za−zb)
−2αaαb which defines the β-deformed Penner-type

matrix model:

ZN =

∫ N
∏

i=1

dλi∆(λ)2βe
−

√
β
g

∑

i V (λi) (1.7)
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Figure 1. Diagram of a (m+ 2)-point conformal block

Figure 2. Schematic diagram of 〈∆|I(m)〉. The irregular singularity with rank m is developed

when m-intermediate points are taken to one point at origin in a correlated way.

where ∆(λ) =
∏

i<j(λi − λj) is the Vandermonde determinant. The potential is given as

the sum of logarithmic terms: V (z) = −∑m
a=0 αa log(z − za). To make large N expansion

possible, we rescale αa → αa/~ and rename β ≡ −b2 and ~ ≡ −2ig assuming ~ = O(1/N)

and αa = O(1). This β-deformed Penner type matrix is proved very useful to reproduce

the Nekrasov partition function [14, 15].

If we put zm+1 = ∞, we may view the conformal block Fm+2(
{

eαkφ(zk)
}

) as the inner

product 〈∆∞|Rm〉. The out-state 〈∆∞| has the Liouville momentum α∞ and is the hermi-

tian conjugation of the in-state |∆0〉 with α0. At the colliding limit (figure 2), |Rm〉 becomes

the irregular vector. With the compensating product of (za − zb)’s in Fm+2(
{

eαkφ(zk)
}

),

ZN becomes 〈∆|I(m)〉 and the potential is given as the sum of logarithmic and inverse

power terms

V (z) = −c0 log z +
m
∑

k=1

ck
kzk

. (1.8)

We will use the notation Z
(m)
N for the partition function with this potential (1.8) to distin-

guish from the one (1.7) which has logarithmic potentials only.

Suppose one changes the integral variables λi → 1/λi in the partition function Z
(m)
N .

Under the change of variable, the measure changes as
∏N

i=1 dλi →
∏N

i=1 dλi/λ
2
i and the

Vandermonde determinant as ∆(λ) → ∆(λ)
∏N

k=1 λ
(1−N)
k . Exponentiating these extra fac-

tors into the potential term and using the neutrality condition one has the partition function

with a slightly different potential

V (z) = −α∞ log z +
m
∑

k=1

ckz
k

k
. (1.9)

– 3 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
6

We may interpret the resulting partition function as the hermitian conjugation satisfying

the relation 〈∆(α∞)|I(m)({ck})〉 = 〈I(m)({ck})|∆(α∞)〉 [16].
This paper is organized as follows. In section 2 we evaluate the Penner-type partition

function at the colliding limit. The evaluation is done using the loop equation and the flow

equations which was successively used in [16]. Here the filling fraction is used to replace all

the unknown quantities. In this way one finds the inner product between irregular vectors

as well as the product between regular and irregular vectors.

In section 3, we present a simpler way to find the singular structure of the partition

function, the singularity in the sense of the parameter space. This is achieved using the

fact that the inner product can be put in a hierarchical form. The unknowns in the flow

equations are written in terms of power series of the properly defined parameters. The

self-consistency condition for the flow equations provide a certain set of recursion relations.

Its initial data is trivially given from the loop equation. The merit of this approach is that

one does not have to evaluate the very complicated contour integration at all to connect

the filling fraction with the unknowns.

Section 4 is the summary and discussion. In appendix A, the details of the proof are

found how the self-consistency of the flow equation determines the singular structure of

the inner product.

2 Irregular conformal block

In this section, we provide explicit results of Z
(m)
N for the case m = 1, 2, 3. Similar calcu-

lation for m = 1, 2 can be found in [16]. Explicit expressions of the partition function in

terms of the parameters of the potential are useful to find out the role of parameters in

the irregular conformal block. The results will be used to check the calculation done in the

next section using a quite different method.

2.1 Loop equation and flow equation

We briefly review the method of finding the partition function used in [16]. For simplicity

we use the large N limit of the loop equation [17–19]

4W (z)2 − 4V ′(z)W (z) = f(z) (2.1)

where W (z) = (~b/2) 〈∑i 1/(z − λi)〉 is the resolvent and 〈· · · 〉 refers to the expectation

value with respect to Z
(m)
N . f(z) = 2~b 〈∑i(−V ′(z) + V ′(λi))/(z − λi)〉i is the quantum

correction and is related with the partition function

f(z) =
m−1
∑

k=0

vk(−~
2 logZ

(m)
N )

z2+k
, vk ≡

m
∑

s=1

scs+k
∂

∂cs
(2.2)

where the potential (1.8) is used. As the result, we have m-coupled differential equations

in the parameter space {cℓ} when the loop equation (2.1) is expanded in the inverse power

of z. This equation is called the flow equation.

vk(−~
2 logZ

(m)
N ) = dk for k = 1, · · · ,m . (2.3)
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Here dk is the coefficient obtained from the l.h.s. of (2.1) and is given in terms of the

expectation values of the powers of λi’s. Once we find the coefficients dk as an explicit

function of {cℓ}, we can find the partition function.

We will find dk in an explicit function of cℓ’s under the following framework.

The parameters cℓ are defined so that the potential (1.8) has m-distinct saddle points

(zm+1V ′(z) = 0). Especially, we assume c0 < 0 and cℓ’s (ℓ ≥ 1 ) are alternating in sign

in the ascending order in ℓ so that c1 > 0. Also we assume a special hierarchical ordering

of the parameters |ck+1/ck| ≪ |ck/ck−1|. In terms of parameter ηk = ck+1ck−1/c
2
k, the

hierarchical ordering shows that |ηk| ≪ 1 and one may confirm that each saddle point is

proportional to ck+1/ck in the leading order of ηk.

In addition, one can demonstrate that the hierarchical ordering of the parameters

corresponds to the special ordering of the position of vertex operators of the conformal

block. To see this let us consider m = 2 case. From the relation (1.3) one has c0 =

α0 + α1 + α2, c1 = α1z1 + α2z2 and c2 = α0z1z2. Its solution has the form za = (c1/αa)xa
where x1 = (1 +

√

1− 4η1α1α2/(α0c0))/2 and x2 = (1 −
√

1− 4η1α1α2/(α0c0))/2. This

shows that if one assumes (α1α2/α0) is finite and small at the colliding limit, then one can

expand xa’s in η1 power series assuming |η1| ≪ 1,

x1 = 1 +O(η1) , x2 = η1
α1α2

α0c0
(1 +O(η1)) . (2.4)

It is worth to note that x1 = O(1) and x2 = O(η1). In general, with the scaling of

za = c1xa/αa, one has xa as xa = O(
∏a−1

k=1 ηk). Therefore, the condition |ηk| ≪ 1 is

equivalent to put the positions of the primary fields with the hierarchy |zm| ≪ |zm−1| ≪
· · · ≪ |z2| ≪ |z1| → 0.

2.2 Inner product 〈∆|I(m)〉

Let us consider the simplest case m = 1. The potential is given as V (z) = −c0 log(z)+c1/z

and has a stable equilibrium point on the positive axis of z if c0 < 0 and c1 > 0. The

partition function Z
(1)
N is the function of c0 and c1 and the flow equation (2.3) has the form

c1
∂

∂c1
(−~

2 logZ
(1)
N ) = d0 . (2.5)

d0 is simply obtained from the l.h.s. of (2.1). The result is d0 = h1 where we use the

notation h1 = ~bN(~bN +2c0) for later convenience. From this information, one solves the

equation (2.5) and gets the partition function Z
(1)
N (c0, c1) = (c1)

−h1/~2Z(c0) where Z(c0)

is independent of c1 but depends on c0.

The flow equation, however, does not give any information on c0 dependence. To see the

c0 dependence explicitly, one may rescale the integration variables z = ξc1 in the partition

function Z
(1)
N (c0, c1) to put the factorized into the form Z

(1)
N (c0, c1) = (c1)

−h1/~2 Z(c0) where

Z(c0) =

∫ N
∏

i

dξi∆
2βe

√
β
g

∑

i(c0 log ξi−1/ξi) . (2.6)
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If the integration variable is inverted ξi = 1/xi this can be put in a more familiar form

Z(c0) =

∫ N
∏

i

dxi ∆
2βe

√
β
g

∑

i(α∞ log xi−xi) . (2.7)

where α∞ = −c0 − g(2 + 2β(N − 1))/
√
β. The integration variable is xi ≥ 0 and α∞ is in

the proper range so that the partition function is well-defined. Rescale xi by α∞ and we

have

Z(c0) = (α∞)h1/~2
∫ N
∏

i

dxi ∆(xi)
2βe

1
gs

∑

i

(

log(xi)−xi

)

(2.8)

with 1/gs = α∞
√
β/g. When β = 1, this partition function is the one considered by

Penner [9] to describe the pseudo Euler characteristic.

The partition function Z
(1)
N (c0, c1) is also obtained from the colliding limit of the 3-

point conformal block directly. The 3-point function is given by

F3({eαkφ(zk)}) = |z0 − z1|2γ3 |z1 − z∞|2γ1 |z∞ − z0|2γ2C(α0, α1, α∞) (2.9)

where γ1 = ∆0−∆1−∆∞, γ2 = ∆1−∆∞−∆0, γ3 = ∆∞−∆0−∆1 and C(α0, α1, α∞) is

a zk-independent constant [20, 21]. Putting z0 = 0, z∞ → ∞ and z1 = −c1/α0 and using

α0 + α1 + α∞ + bN = Q, one has

(z1)
2α0α1F3 = (c1)

−h1/~2(−α0)
h1/~2C(α0, α1, α∞) (2.10)

up to an appropriate normalization. The power behavior of c1 is the same as the one

obtained from (2.5) and Z(c0) is identified as Z(c0) = (−α0)
h1/~2C(α0, α1, α∞) at the

colliding limit α0, α1 → ∞ maintaining c0 = α0 + α1 finite and α∞ = Q − bN − c0.

From now on, we do not bother to find the c0 dependence which may be regarded as the

normalization of the partition function. (Further comment is found in section 4).

When m = 2, we have two flow equations.
(

c1
∂

∂c1
+ 2c2

∂

∂c2

)

(−~
2 logZ

(2)
N ) = d0 (2.11)

c2
∂

∂c1
(−~

2 logZ
(2)
N ) = d1 (2.12)

where d0 = h1 as in the case m = 1. d1 = 2~bNc1 + h2〈
∑N

i=1 λi〉 is given in terms of

expectation values 〈λi〉 and h2 = 2~b(~bN + c0). The equation (2.11) forces the partition

function of the form

− ~
2 logZ

(2)
N = h1 log c1 +H(2)(η1) (2.13)

where H(2)(η1) is the homogeneous solution. According to (2.12), H(2)(η1) obeys

2η21
∂

∂η1
H(2)(η1) = h1η1 −D1 (2.14)

where D1 ≡ d1c0/c1 and its parametric dependence on η1 is found using the filling

fraction Nk
~bNk

2
=

∮

Ak

dz

2πi
W (z) , k = 1, 2 (2.15)
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where Ak is the contour loop (A-cycle) which includes the eigenvalues around the saddle

point. (We freely use the notation Nk for the filling fraction instead of the ratio Nk/N).

Putting the resolvent 2W (z) = V ′(z) +
√

V ′(z)2 + f(z) from (2.1), one has parametric

relation of the filling fraction

~bNk =

∮

Ak

dz

2πi

√

P4(z)

z3
(2.16)

where P4(z) = (d0+ c20)z
4+(d1+2c0c1)z

3+(c21+2c0c2)z
2+2c1c2z+ c22. One may assume

that P4(z) has four real and positive roots which need to be justified a posteriori. In

this case, there are two branch cuts and branch points are the roots of P4(z) = 0. For

notational purpose, we denote the saddle point around |ck/ck−1| as the k-th saddle point

where the k-th cut and the filling fraction Nk are associated.

The filling fraction (2.15) has a relation N1 +N2 = N and therefore, N1 is enough to

find D1. Integration is given in the elliptic function. But we will follow a practical way

which works for m ≥ 2. Using the integration variable z = ξc1/c0, one has the rescaled

P4(ξ) and the first cut is O(η01). Therefore it is convenient to put P4(ξ) = ξ2P̃2(ξ)+O(η1)

where P̃2(ξ) = (d0 + c20)ξ
2 + (D1 + 2c20)ξ + c20. Therefore, the branch point is given by

P̃2(ξ) = 0 to the leading order of η1, Expanding in powers of η1,

~bN1 =

∮

A1

dξ

2πi

(

√

ξ2P̃2(ξ)

ξ3
+ η1

c20ξ(ξ + 1)

ξ3
√

ξ2P̃2(ξ)
+O(η21)

)

(2.17)

one has the residue integration at ξ = 0 and ξ = ∞.

~bN1 = ~bN − D1

2c0
+ η1

(

~bN +
(~bN)2 − 2D1

2c0
− 3D2

1

8c30

)

+O(η21). (2.18)

Finding D1 in small η1 expansion, one has

D1 = 2~bN2c0 + η1
(

~
2b2(−2N2 + 6NN1 − 3N2

1 )− 2~bc0(N − 2N1)
)

+O(η21). (2.19)

Equipped with the explicit D1, we solve the equation (2.14) to find

Z
(2)
N = (c1)

−h1/~2(η1)
−

bN2
2

(3bN2+4c0/~)e
−

bN2c0/~
η1

+O(η1) (2.20)

The partition function Z
(2)
N has an interesting feature of the singularity in η1. The

term with the factor N2
2 comes from the Vandermonde determinant. On the other hand,

the term with factor linear in N2 has the essential singularity of the form exp(1/η1) which

is proportional to the energy difference of the two saddle points which is the instanton

effect [22, 23]. Suppose we put N2 = 0 which has no instanton at all. Then, the partition

function becomes regular in η1, Z
(2)
N = (c1)

−h1/~2 (1 +O(η1)) and if one puts η1 → 0, the

partition function reduces to Z
(1)
N , the one with m = 1. In other words, when N2 = 0,

the partition function Z
(2)
N has the smooth limit to Z

(1)
N if η1 → 0 because the singular

dependence of η1 disappears. This limiting procedure is very general as can be found

below for the case with m = 3.

– 7 –
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Figure 3. Shape of m = 2 potential

When m = 3, we have three flow equations,
(

c1
∂

∂c1
+ 2c2

∂

∂c2
+ 3c3

∂

∂c3

)

(−~
2 logZ

(3)
N ) = d0 (2.21)

(

c2
∂

∂c1
+ 2c3

∂

∂c2

)

(−~
2 logZ

(3)
N ) = d1 (2.22)

c3
∂

∂c1
(−~

2 logZ
(3)
N ) = d2 (2.23)

where d0 = h1 and d1 = 2~bNc1 + h2〈
∑N

i=1 λi〉 as found in (2.11) and (2.12). d2 is new

and d2 = 2~bNc2 + 2~bc1〈
∑N

i=1 λi〉+ ~
2b2〈∑N

i=1 λi〉2 + h2〈
∑N

i=1 λ
2
i 〉.

According to (2.21), one puts the partition function of the form

− ~
2 logZ

(3)
N = h1 log c1 +H(3)(η1, η2) (2.24)

whereH(3)(η1, η2) is the homogeneous solution and is written as the function of η1 = c0c2/c
2
1

and η2 = c1c3/c
2
2. The differential equation of H(3)(η1, η2) is obtained from the rest of the

equations (2.22) and (2.23)

∂H(3)

∂η1
=

D2 − (D1 + 4D2)η2 + 4d0η1η
2
2

6η21η
2
2

(2.25)

∂H(3)

∂η2
=

D2 − (D1 +D2)η2 + d0η1η
2
2

3η1η32
(2.26)

where D1 ≡ d1c0/c1 and D2 ≡ d2c0/c2 are fixed by the filling fraction

~bNk =

∮

Ak

dz

2πi

√

P6(z)

z8
, k = 1, 2, 3 (2.27)

where N = N1 +N2 +N3 and P6(z) = (d0 + c20)z
6 + (d1 + 2c0c1)z

5 + (c21 + 2c0c2 + d2)z
4 +

2(c1c2 + c0c3)z
3 + (c22 + 2c1c3)z

2 + 2c2c3z + c23.

The contour integration A1 (figure 5(a)) is around z = |c1/c0|. We may rescale z =

ξc1/c0 so that (c0/c1)
6P6(ξc1/c0) = ξ4P̃2(ξ) + η1ξ

3((D2 + 2c20)ξ + 2c20) + O(η21) where

P̃2(ξ) = (d0 + c20)ξ
2 + (D1 + 2c20)ξ + c20. Here ξ, D1 and D2 are assumed O(1). Expanding

the filling fraction N1 in powers of η1 and η2, one has

~bN1 =

∮

A1

dξ

2πi

(

√

ξ4P̃2(ξ)

ξ4
+ η1

(D2 + 2c20)ξ + 2c20

2ξ3
√

P̃2(ξ)
+O(η21)

)

. (2.28)
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Figure 4. Shape of m = 3 potential

Figure 5. Contours for the first(a) and second(b) cut

The residues at ξ = 0 and ξ = ∞ give the contour contribution

~bN1 = ~bN − D1

2c0
+ η1

4c20(h1 − 2D1 +D2) +D1(2D2 − 3D1)

8c30
+O(η21) . (2.29)

The second cut lies around z = |c2/c1|. We rescale z = ζc2/c1 for the con-

tour integrations A2 (see figure 5(b)) and find the polynomial η21(c1/c2)
6P6(ζc2/c1) =

c20ζ
2(ζ+1)2+2η2c

2
0ζ(ζ+1)+η22c

2
0+η1{ζ4

(

(2c20+D1)ζ+2c20+D2

)

+η2(2c
2
0ζ

3)}+η21ζ
6(d0+c20)

where the dominant part is the squared form (ζ2 + ζ)2. Therefore, the small η1 and η2
expansion has no branch cut integral. After integration, one has

~bN2 =
1

2c0

(

D1 −D2 + (D1 − 2D2)η2 + 3(D1 − 2D2)η
2
2 +O(η32)

)

+ η1

[

D1(3D1 − 2D2)− 4c20(h1 − 2D1 +D2)

8c30

+
3D2

2 − 2c20(h1 − 3D2)

4c30
η22 +O(η32)

]

+O(η21).

(2.30)

D1 and D2 are obtained from equations (2.29) and (2.30)

D1 =2~bc0(N −N1) + η1
[

A1 +A2η2 +O(η22)
]

+O(η21, η
3
2) (2.31)

D2 =2~bc0N3 + η2 (2~bc0(N2 −N3)) + η22 (2~bc0(N2 −N3)) (2.32)

+ η1
[

A1η2 +B1η
2
2 +O(η32)

]

+O(η31, η
3
2) (2.33)

where A1 = −2~bc0(N2 −N1)− 2~2b2N(N2 −N1)− ~
2b2N1(−2N2 +N1), A2 = (−2~bc0 −

2~2b2(N −N1))(N3−N2), and B1 = 2~bc0(N3−N2)+~
2b2(3N2+6N2

2 +10N1N2+3N2
1 −
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2N(3N1 + 5N2)). Plugging D1 and D2 into a system of equations (2.25) and (2.26), we

have the partition function

−~
2 logZ

(3)
N =h1 log c1 −

~bc0N3

3η1η22
+

2~bc0N3

η1η2
+

~bc0(N2 −N3)

η1

+
~b

2
(4c0(N −N1) + ~b(3N2

2 + 4N2N3 + 3N2
3 )) log η1

+ 2~bN3(~bN3 + c0) log η2 +O(η1, η2)

(2.34)

or

Z
(3)
N = (c1)

−h1/~2(η1)
− b

2
(N2(3bN2+4c0/~)+N3(3bN3+4c0/~)+4bN2N3)(η2)

−2bN3(bN3+c0/~)

e
−

bc0
η1~

(

(N2−N3)+
2N3
η2

−
N3
3η22

)

+O(η1,η2)
.

(2.35)

Note that the term linear in N3 shows the non-trivial instanton effect whose exact contri-

bution is not easy to calculate in other ways. When N3 = 0, the partition function has the

smooth limit Z
(m=2)
N as η2 → 0.

2.3 Inner product 〈I(n)|I(m)〉
Let us now consider the colliding limit of the conformal block as shown in figure 6. In this

limit, the partition function Z
(n;m)
N has the potential V (z) = −c0 log z + V−(z) + V+(z)

V−(z) =
m
∑

s=1

cs
szs

, V+(z) = −
n
∑

t=1

c−tz
t

t
. (2.36)

The potential is modified to have a new Liouville momentum c0 =
∑m

s=0 αs at zero and

c∞ = α∞ +
∑m+n

t=m+1 αt at infinity so that the neutrality condition is c0 + c∞ + ~bN =

~Q. The additional positive power term in V+(z) characterizes the irregular singularity at

infinity. Thus, this matrix model is identified with the inner product 〈I(n)|I(m)〉 between

the irregular vector of the rank n at infinity and irregular vector of the rank m at zero.

The quantum correction f(z) =
∑

k dk/z
2+k has dk = 0 when k ≥ m or k ≤ −(n+ 1)

and d−n = 2~bNc−n. The remaining terms are given as the (m+ n− 1) flow equations

dk = vk(−~
2 logZ

(n;m)
N ) , vk =

m
∑

s=1

scs+k
∂

∂cs
when 0 ≤ k ≤ m− 1 (2.37)

d−k = 2~bNc−k + uk(−~
2 logZ

(n;m)
N ) , uk =

n
∑

t=1

tc−t−k
∂

∂c−t
when 1 ≤ k ≤ n− 1 .

(2.38)

If one defines ϕ(z) ≡ V ′(z)2 + f(z), one has ϕ(z) =
∑2m

k=−2n Λk/z
k+2 where Λk =

dk +
∑

k=ℓ+ℓ′ cℓcℓ′ . Regarding ϕ(z) as the expectation value of the energy momentum

tensor ϕ(z) = 〈I(n)|T (z)|I(m)〉/〈I(n)|I(m)〉, one has the eigenstate at origin

Lk|I(m)〉 = Λk|I(m)〉 when m ≤ k ≤ 2m (2.39)
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Figure 6. Schematic diagram of 〈I(n)|I(m)〉

and another at infinity

〈I(n)|Lk = Λk〈I(n)| when − 2n ≤ k ≤ −n . (2.40)

This definition is consistent with the conjugate of Virasoro generators L−k = L†
k.

We assume ηk ≪ 1 for −(n − 1) ≤ k ≤ m − 1 which ensures that each saddle point

is proportional to |ck+1/ck|. Suppose we rescale the integral variables λi as λic0/c−1, the

partition function has the form

Z
(n;m)
N =

(c−1

c0

)(h1/~2−bNQ)
∫

[

N
∏

i=1

dλi

]

∆(λi)
2β exp

(

−
√
β

g

∑

i

V̂ (λi)

)

(2.41)

where V̂ (z) = −c0 log z + V+(zc0/c−1) + V−(zc0/c−1). Note that −bNQ power of c−1 is

the sub-leading contribution. In the large N expansion, we have

− ~
2 logZ

(n;m)
N = −h1 log(c−1/c0) +H(n;m)({ηk}) (2.42)

where H(n;m) is the function of ηk’s because the scaled potential has the coefficient

cs(c0/c−1)
−s = c0

∏s−1
k=0 η

s−k
k and c−t(c0/c−1)

t = c0
∏t−1

j=1 η
t−j
−j .

The partition function can be evaluated as done in 〈∆|I(m)〉. To find dk as the functions

of ηk’s we use the filling fraction relations (N =
∑m

k=−(n−1)Nk)

~bNk =

∮

Ak

dz

2πi

√

ϕ(z) =

∮

Ak

dz

2πi

√

P2(m+n)(z)

zm+1
. (2.43)

P2(m+n)(z) is a polynomial of order 2(m+n) and the integrand has (m+n) cuts. Integrating

over Ak is done after rescaling z to ξck/ck−1 so that the k-th cut is O({η0k}) in ξ-plane.

On the other hand, (k + a)-th cut with a ≥ 1 goes to zero, O(
∏a−1

ℓ=0 ηk+ℓ) and (k − a)-th

cut to infinity, O(
∏a

ℓ=1 1/ηk−ℓ) as {ηj} → 0.

The simplest example is n = m = 1. It is convenient to put Z
(1;1)
N in the form (2.42)

whose flow equation is

η0
∂

∂η0
H(1;1)(η0) = d0 . (2.44)

Filling fraction integral has P4(z) = c2−1z
4+2c−1(~bN+c0)z

3+(2c1c−1+d0+c20)z
2+2c1c0z+

c21. Rescaling z to ξc0/c−1 we have (c−1/c0)
2P4(ξc0/c−1) = ξ2P2(ξ)+η0

[

2c20ξ(ξ + 1)
]

+η20c
2
0
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where P2(ξ) = c20ξ
2 + 2c0(~bN + c0)z + (d0 + c20). After this we have ~bN0 = ~bN + c0 −

√

d0 + c20+O(η0) or d0 = ~bN1(~bN1+2c0)+O(η0). Thus the partition function is given as

− ~
2 logZ

(1;1)
N = −h1 log(c−1/c0) + ~bN1(~bN1 + 2c0) log η0 +O(η0). (2.45)

When n = 1 and m = 2, we have two flow equations

η0
∂

∂η0
H(1;2)(η0, η1) = d0 (2.46)

(

η0η1
∂

∂η0
− 2η21

∂

∂η1

)

H(1;2)(η0, η1) = D1 (2.47)

where D1 ≡ d1c0/c1. Using the polynomial P6(z) = c2−1z
6 + (d−1 + 2c−1c0)z

5 + (2c1c−1 +

d0 + c20)z
4 + (2c2c−1 + d1 + 2c1c0)z

3 + (c21 + 2c2c0)z
2 + 2c1c2z + c22, we have

~bN0 = ~bN + c0 −
√

d0 + c20 +O(η0)

~bN1 = −D1

2c0
− c0 +

√

d0 + c20 + η1(4c
2
0(d0 − 2D1)− 3D2

1)/(8c
3
0) +O(η 2

1 )

Inverting the relations, we have d0 = ~b(N − N0)(~b(N − N0) + 2c0) + O(η0) and D1 =

2~bc0N2 + η1[~
2b2(N2 − 3N2

2 − 2NN0 +N2
0 ) + 2(N1 −N2)c0] +O(η 2

1 ). Therefore,

H(1;2)(η0, η1) =
~bc0N2

η1
+ ~b(N1 +N2) (~b(N1 +N2) + 2c0) log η0

+
~bN2

2
(3~bN2 + 4c0) log η1 +O(η0, η1) (2.48)

or

Z
(1;2)
N =

(

c−1/c0

)h1/~2(

η0

)−b(N1+N2)(b(N1+N2)+2
c0
~
)(

η1

)−
bN2
2 (3bN2+4

c0
~
)
e
−

bN2c0/~
η1

+O(η0,η1) .

(2.49)

As m and n increase, the flow equations becomes more complicated. We give the

explicit result for n = m = 2 for later comparison. We have three flow equations

∂H(2;2)

∂η0
=

d0
η0

(2.50)

∂H(2;2)

∂η1
=

d0η1 −D1

2η21
(2.51)

∂H(2;2)

∂η−1
=

d0η−1 −D−1 − h1η−1 + 2~bNc0

2η 2
−1

. (2.52)

where D−1 ≡ d−1c0/c−1. Using the polynomial

P8(z) = c2−2z
8 + 2c−1c−2z

7 + (c 2
−1 + 2c−2(~bN + c0))z

6 + (2c1c−2 + d−1 + 2c−1c0)z
5

+ (2c1c−1 + 2c2c−2 + d0 + c20)z
4 + (2c2c−1 + d1 + 2c1c0)z

3

+ (c21 + 2c2c0)z
2 + 2c1c2z + c22
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the filling fractions are evaluated

~bN0 =
D−1

2c0
+ c0 −

√

d0 + c20

+
−4c20(d0 − 2D−1) + 3D 2

−1 − 4~bND−1c0 − 8~bNc30
8c30

η−1 +O(η0, η
2
−1) , (2.53)

~bN1 = −D1

2c0
− c0 +

√

d0 + c20 +
4c20(d0 − 2D1)− 3D2

1

8c30
η1 +O(η0, η

2
1) (2.54)

~bN2 =
D1

2c0
+

−4c20(d0 − 2D1) + 3D2
1

8c30
+O(η0, η

2
1) . (2.55)

Inverting the result, one has d0 = A1 D1 = B1 +B2η1 and D−1 = C1 + C2η−1 where

A1 =~b(N1 +N2)(~b(N1 +N2) + 2c0), B1 = 2~bc0N2, C1 = 2~bc0(N0 +N1 +N2)

B2 =~b
[

~b(N2
1 + 2N1N2 − 2N2

2 ) + 2(N1 −N2)c0
]

C2 =~b
[

2~bN(N −N−1)− 3~b(N −N−1)
2

+ (N1 +N2)(~b(N1 +N2)− 2c0)− 4c0(N −N−1) + 2Nc0
]

and one has the partition function

H(2;2)(η−1,η0, η1) = −~bc0N−1

η−1
+

~bc0N2

η1
+ ~b(N1 +N2)(~b(N1 +N2) + 2c0) log η0

+
~bN2(3~bN2 + 4c0)

2
log η1 −

~bN−1(−3~bN−1 + 4(c0 + ~bN))

2
log η−1

+O(η−1, η0, η1)

(2.56)

or

Z
(2;2)
N =

(

c−1/c0

)h1/~2(

η0

)−b(N1+N2)(b(N1+N2)+2c0/~)(

η−1

)

bN−1
2

(−3bN−1+4(c0/~+bN))

(

η1

)−
bN2
2

(3bN2+4c0/~)
e
−

bN2c0/~
η1

+
bN−1c0/~

η−1
+O(η−1,η0,η1)

.

(2.57)

3 Hierarchical structure of the partition function

It should be noted that given N2, the inner products 〈I(1)|I(2)〉 in (2.49), 〈I(2)|I(2)〉 in (2.57)

and 〈∆|I(2)〉 in (2.20) have the same η1 dependence. Likewise given N1 and N2, one

can see the same η0 dependence in 〈I(2)|I(2)〉 and 〈I(1)|I(2)〉. From this observation, one

may wonder if how much singular structure in 〈I(n)|I(m)〉 is shared with others. We will

investigate the possibility of this singular structure in detail and present a way to find the

partition function without using the filling fraction contour integration.

3.1 Singular structure in 〈I(n)|I(m)〉 and 〈∆|I(m)〉
Let us investigate the small η0-behavior in the inner product 〈I(n)|I(m)〉. First we rearrange
the integration variables in two groups. One group is the integration variables which lies
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around the k-th saddle point with k ≥ 1 whose integration variables are denoted as λL
i > 0.

The number of eigenvalues is NL. The other group is denoted as λR
i > 0 which lives around

the k-th saddle point with k ≤ 0. The number of λR
i is NR. The partition function Z

(n;m)
N

is rewritten in terms of two regrouped variables

Z
(n;m)
N =

∫

[

NL
∏

i=1

dλL
i

]





NR
∏

j=1

dλR
j



∆(λL)2β ∆(λR)2β
NL
∏

i=1

NR
∏

j=1

(λR
j − λL

i )
2β

× exp



−
√
β

g

(

NL
∑

i=1

V (λL
i ) +

NR
∑

j=1

V (λR
j )
)



 (3.1)

whose potential is given in (2.36). If we use η0 ≪ 1, we may put Z
(n;m)
N into the factorized

form ZLZR (1 +O(η0)). The reason is as follows. The integration variable λi around the

k-th saddle point has the scaling as ck/ck−1. Suppose we rescale the integration variables

λL
i using the largest scale c1/c0 and λR

i using the smallest scale c0/c−1. Then the ratio

λL/λR will be the order of η0 = (c1c−1)/c
2
0 ≪ 1. Therefore, the dominant contribution of

the determinant is

NL
∏

i=1

NR
∏

j=1

(

λR
j − λL

i

)2β
=

NR
∏

j=1

(λR
j )

2βNL

(

1 +O(η0)
)

. (3.2)

In addition, with the rescaling of λL = c1
c0
ξL the potential V+(λ

L) is put into the form

V+(ξ
L c1/c0) = −∑n

t=1(η0 ξ
L)t(

∏t−1
j=1 η

t−j
−j )/t which vanishes as η0 → 0 and is neglected.

On the other hand, V−(ξ
Lc1/c0) =

∑m
s=1(

∏s−1
a=0 η

a
s−a)/(s

(

ξL
)s
) is finite as η0 → 0. As the

result, the partition function of λL has the form

ZL =

∫ [NL
∏

i=1

dλL
i

]

∆
(

λL
)2β

exp

[

−
√
β

g

NL
∑

i=1

VL(λ
L
i )

]

(3.3)

where VL(z) = −c0 log z+V−(z). Therefore, ZL is identified as the inner product 〈∆(c∞+

~bNR)|I(m)〉 where the Liouville momentum at infinity is c∞ + ~bNR.

Likewise, λR contribution is given by

ZR =

∫ [NR
∏

j=1

dλR
j

]

∆
(

λR
)2β

exp

[

−
√
β

g

NR
∑

j=1

VR(λ
R
j )

]

(3.4)

where VR(z) = −(c0+~bNL) log z+V+(z). Here, the potential VR(z) is not −c0 log z+V+(z)

but an extra term −~bNL log z is added due to the extra contribution of the Vandermode

determinant (3.2). It is a simple exercise to show that V−(ξ
Rc0/c−1) → 0 as η0 → 0. After

this consideration, one notices that ZR is identified with 〈I(n)|∆(c0 + ~bNL)〉.
Finally, the sub-dominant part of the determinant in (3.2) has the leading term

− 2βZLZR

[

NL
∑

i=1

NR
∑

j=1

〈

λL
i

〉

L

〈

1

λR
j

〉

R

]

(3.5)

– 14 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
6

Figure 7. The case m = n = 2. To the zeroth order of η0, the partition function is factorized.

where 〈· · · 〉L and 〈· · · 〉R refer to the expectation value

〈O〉A =
1

ZA

∫ [NA
∏

i=1

dλA
i

]

∆
(

λA
)2βO e

−
√
β
g

∑NA
i=1 VA(λA

i )
, A = L,R . (3.6)

Since the expectation value
〈

λL
i

〉

L
is O(c1/c0) and

〈

1/λR
j

〉

R
∼ O(c−1/c0), its product is

the order of η0 and vanishes as η0 → 0. The next leading contributions should vanish as

the high power of η0’s.

Thus, one can conclude that Z
(n;m)
N = ZLZR (1 +O(η0)) and

〈I(n)|I(m)〉 = 〈I(n)|∆(c0 + ~bNL)〉〈∆(c∞ + ~bNR)|I(m)〉 (1 +O(η0)) . (3.7)

This conclusion is checked by the explicit result given in the previous section. Since

〈∆|I(2)〉 = 〈I(2)|∆〉 in (2.20), we have the inner product ZL = 〈∆(c∞ + ~bNR)|I(m)〉

−~
2 logZL = ~bNL(~bNL+2c0) log c1+

~bN2c0
η1

+
~bN2

2
(3~bN2+4c0) log η1+O(η1) (3.8)

where NL = N1+N2 and NR = N0+N−1. And the inner product ZR = 〈I(2)|∆(c0+~bNL)〉
is given as

−~
2 logZR =− ~bNR(~bNR + 2(c0 + ~bNL)) log c−1 −

~bN−1c0
η−1

(3.9)

− ~bN−1

2
(−3~bN−1 + 4(c0 + ~bN)) log η−1 +O(η−1) (3.10)

where the neutrality condition c∞ = −c0 − ~bN is used. Therefore, the product of ZL and

ZR is given as

−~
2 log(ZLZR) =− ~bN(~bN + 2c0) log c−1 −

~bc0N−1

η−1
+

~bc0N2

η1

+ ~bNL(~bNL + 2c0) log η0 +
~bN2(3~bN2 + 4c0)

2
log η1

− ~bN−1(−3~bN−1 + 4(c0 + ~bN))

2
log η−1 +O(η−1, η0, η1)

(3.11)
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where N = NL + NR. This result ZLZR is in perfect agreement with the inner product

〈I(2)|I(2)〉 shown in (2.57).

3.2 Hierarchical relation between 〈∆|I(m)〉 and 〈∆|I(m−1)〉

The singular contribution of 〈I(n)|I(m)〉 at small η0 limit is given as the product of 〈I(n)|∆〉
and 〈∆|I(m)〉. What will happen to the other parameters?

Let us consider 〈∆|I(m)〉. The potential has m saddle points, V (z) = −c0 log z+V−(z)

in (2.36). Let us concentrate on the integration variable λ
(m)
i around the m-th saddle point

whose index i running from 1 to Nm. The other variables λJ has the index J running from

1 to N̄m so that N̄m +Nm = N .

The m-th saddle point is much smaller than other saddle points λ
(m)
i ≪ λJ and

therefore, ηm−1 ≪ 1. The determinant part
∏N̄m

J=1

∏Nm
i=1

(

λJ − λ
(m)
i

)2β
has the dominant

contribution
∏N̄m

J=1(λJ)
2βNm . The partition function with λJ ’s only is Z(m−1):

Z(m−1) ≡
∫ [

∏

J

dλJ

]

∆
(

λJ

)2β
exp

[

−
√
β

g

∑

J

Vm−1(λJ)

]

. (3.12)

The effective potential Vm−1(z) contains −~bNm log z from the determinant part. In addi-

tion, as ηm−1 → 0, the original term cm/zm in the potential V (z) drops out. This is easily

seen if one scales λJ by ck/ck−1 for any k ≤ m− 1. While ξJ = O(η 0
m−1), the term cm/zm

is O(ηm−1). Other terms are finite. Therefore we have the effective potential

Vm−1(z) = −(c0 + ~bNm) log z +
m−1
∑

s=1

cs
szs

. (3.13)

The partition function Z(m−1) is the inner product 〈∆|I(m−1)(c0+~bNm)〉 and the irregular

vector |I(m−1)(c0+~bNm)〉 has the rankm−1 with the Liouville momentum α = c0+~bNm.

The partition function written in terms of λ
(m)
i has the form

T (m) ≡
∫ [

∏

i

dλ
(m)
i

]

∆
(

λ(m)
)2β

exp

[

−
√
β

g

∑

i

V (λ
(m)
i )

]

. (3.14)

Here, the original potential V (z) is used and becomes infinite as ηm−1 → 0. This shows

that T (m) contains the singular contribution.

It is noted that the sub-leading contribution in the determinant vanishes as ηm−1 → 0.

To check this, let us consider the O(λ
(m)
i /λJ) contribution

Z(m−1)T (m)

[

Nm
∑

i=1

N̄m
∑

J=1

〈

λ
(m)
i

〉

T (m)

〈

1

λJ

〉

Z(m−1)

]

. (3.15)

The expectation value 〈λ(m)
i 〉T (m) is O(cm−2/cm−1) and 〈1/λJ〉Z(m−1) is O(cm/cm−1).

Therefore, its product is the order of ηm−1. The higher order contribution is given as

the higher power of ηm−1’s.
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Figure 8. Hierarchical structure of 〈∆|I(k)(β(k))〉 as ηk−1 → 0.

Considering all the contributions, one concludes that 〈∆|I(m)〉 = Z(m−1)T (m) ×
(1 +O(ηm−1)) which shows that

〈∆|I(m)(c0)〉 = T (m)(c0;Nm)〈∆|I(m−1)(c0 + ~bNm)〉(1 +O(ηm−1)) . (3.16)

In the small ηm−1 limit, the irregular vector of rank m is reduced to the one of the rank

m − 1 with the momentum shift c0 → c0 + ~bNm and its non-trivial ratio T (m)(c0;Nm)

contains all the singular contribution. When m = 1, one has the singular structure of

〈∆|I(1)(c0)〉 and T (1)(c0;N1) is the same.

One may apply this result (3.16) successively to get the singular part of 〈∆|I(m)(c0)〉
when the set of parameters {η1, · · · , ηm−1} are small. As the result we have the following

hierarchical structure of the singularity.

〈∆|I(m)(c0)〉S =
m
∏

k=1

T (k)(β(k);Nk) (3.17)

where the subscript S stands for the singular part only neglecting regular contributions.

Here T (k)(β(k);Nk) is defined in (3.14) which has filling fraction Nk and Liouiville momen-

tum β(k) satisfies the relation β(k−1) = β(k) + ~bNk and β(m) = c0.

The explicit expression of T (k)(β;Nk) can be found from the expressions in section 2.

For example, using the inner product 〈∆|I(2)(c0)〉 given in (2.20), one has T (2)(c0;N2) by

putting N1 → 0

T (2)(c0;N2) = (c1)
−bN2(bN2+2

c0
~
)(η1)

−
bN2
2

(3bN2+4
c0
~
)e

−
bN2c0/~

η1
+O(η1) . (3.18)

When m = 3, 〈∆|I(3)(c0)〉 in (2.35) reduces to T (3)(c0;N3) if N1 = N2 → 0

T (3)(c0;N3) =(c1)
−bN3(bN3+2

c0
~
)(η1)

−
bN3
2

(3bN3+4
c0
~
)

(η2)
−2bN3(bN3+

c0
~
)e

−
bc0
η1~

(

−N3+
2N3
η2

−
N3
3η22

)

+O(η1,η2)
.

(3.19)
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We note that the singular structure in (3.17) is consistent with the ansatz proposed

in [6]. When k = 2, the ansatz is given as

|I(2)(β(2))〉 = cν22 cν11 e
(β(2)−β(1))

c21
c2

∞
∑

j=0

cj2 |I(1)2j (β(1))〉 (3.20)

where the vector |I(1)2j (β(1))〉 is so-called generalized descendants of the rank 1 irregular

vector and is the linear combination of vectors obtained by acting Virasoro generators

or c1-derivatives on |I(1)0 (β(1))〉 ≡ |I(1)(β(1))〉. From the Ward identities the factors were

determined as ν1 = 2(β(2) − β(1))(Q − β(1)), ν2 = (β(1) − β(2))(32Q − 3
2β

(1) − 1
2β

(2)). The

prefactor in front of |I(1)0 (β(1))〉 is T (2)(β(2);N2). (Q = 0 if the large N limit is taken.)

3.3 Flow equations for T (k)(β(k);Nk)

It is shown that the singular structure of the inner product between the irregular vectors

are encoded in the partition function T (k) as in (3.17). Therefore, if we find T (k), then

all the singular structures in the parameter space are known. In this subsection, we are

presenting a set of differential equations for T (k) so that one can find the partition function

directly using the flow equations.

We start with the partition function

T (k)(β(k);Nk) =

∫ [Nk
∏

i=1

dλi

]

∆(λ)2βexp

[

−
√
β

g

Nk
∑

i=1

V (λi)

]

(3.21)

where we use the potential V (z) = −β(k) log z+
∑k

t=1 ct/(tz
t). If one scale λ

(k)
i by ck/ck−1,

one has T (k)(β(k);Nk) = (ck/ck−1)
Nk−b2Nk(Nk−1)−2β(k)bNk/~ T̃ (k) where T̃ (k) is given in

terms of the rescaled integration variables ξi. Its potential is given as

Ṽ (ξ) =
β(k)

κ0

(

−κ0 log ξ +
k
∑

t=1

κt
tξt

)

. (3.22)

The parameters {η1, · · · , ηk−1} are replaced with κt ≡
∏k−1−t

ℓ=1 η ℓ
t+ℓ for (0 ≤ t ≤ k− 2) and

κk−1 = κk ≡ 1. The overall parameter κ0 is specially treated and is equivalently called

τk. These new parameters have a definite ordering: τk ≪ κ1 ≪ · · · ≪ κk−2 ≪ 1. In this

rescaling, ξi around the k-th saddle point and has 〈ξsi 〉 = (−1)s +O({κℓ}).
Defining H̃(k)({κℓ}) ≡ −~

2 log T̃ (k), one has (k − 1)-set of differential equations

∂H̃(k)

∂τk
=

2~bβ(k)

τ2k

k
∑

t=1

κt
t

〈

Nk
∑

i=1

1

ξ t
i

〉

(3.23)

∂H̃(k)

∂κt
= −2~bβ(k)

tτk

〈

Nk
∑

i=1

1

ξ t
i

〉

, (1 ≤ t ≤ k − 2) (3.24)

Since 〈1/ξti〉 = O({τ0k}), we may put the flow equation in power series of τk as

∂H̃(k)

∂τk
= −H

(k)
−1

τ2k
+

H
(k)
0

τk
+
∑

n≥1

nH(k)
n τn−1

k ,
∂H̃(k)

∂κt
=
∑

n≥−1

G
(k)
t,nτ

n
k (3.25)
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where H
(k)
n and G

(k)
t,n are independent of τk and regular in {κ1, · · · , κk−2}. Therefore, if one

integrates (3.25) over τk one ends up with the form

H̃(k)({κℓ}) =
H

(k)
−1

τk
+H

(k)
0 log τk +

∑

n≥1

H(k)
n τnk . (3.26)

This shows that the singular contribution to T (k) as ηℓ → 0 is due to the terms H
(k)
−1 , H

(k)
0 .

3.4 Evaluation of T (k) from the flow equation

The direct calculation of the partition function uses the loop equation and requires the

complicated integration to find the filling fraction (2.15). This is not always the case.

However, it can be demonstrated that T (k)(β(k);Nk) does not need any explicit integration

of the filling fraction. This is done by fully exploiting the flow equation.

The starting point is to observe that the flow equation (3.25) must satisfy the self-

consistency condition

∂2H̃(k)

∂κa∂κb
=

∂2H̃(k)

∂κb∂κa
(0 ≤ a, b ≤ k − 2) . (3.27)

This trivially looking conditions provide a very powerful tool to find H
(k)
n . For example,

the self-consistency shows that H
(k)
0 is a constant and is independent of any κℓ. Not only

that, the consistency condition turns out to constrain all the expectation values 〈∑i 1/ξ
t
i〉

needed for H
(k)
−1 .

Let us redefine the expectation value using a new parameter

D̃s ≡ −2~bβ(k)
k
∑

t=s+1

κt

〈

Nk
∑

i=1

1

ξt−s
i

〉

(3.28)

and put the flow equation in terms of D̃s

∂H̃(k)

∂τk
= − 1

τ2k

k−1
∑

s=0

D̃s





k
∑

j=k−s

κj
j
Aj−(k−s)



 (3.29)

∂H̃(k)

∂κt
=

1

tτk

k−1
∑

s=k−t

D̃sAs−(k−t) (3.30)

where Aℓ = −(Aℓ−1 + κk−2Aℓ−2 + · · ·+ κk−ℓA0) and A0 = 1.

To make the consistency condition more tractable, we expand D̃s in power series of

{κℓ} since 〈1/ξti〉 = O({κ0k}).

D̃s =
∑

{αℓ≥0}

[D̃s]α0,α1,··· ,αk−2
τα0
k κα1

1 · · ·καk−2

k−2 . (3.31)

The power expansion allows one to identify H
(k)
ℓ explicitly. Comparing (3.25) with (3.29)

and (3.30) one has H
(k)
−1 using the zeroth order of τk in D̃s.

H
(k)
−1 =

k−1
∑

s=0

k
∑

j=k−s

∑

{αℓ≥0}

κj
j
Aj−(k−s)[D̃s]0,α1,··· ,αk−2

κα1
1 · · ·καk−2

k−2 . (3.32)
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Let us find out how useful the flow equation is. When k = 2, we have only one flow

equation with τ2 = η1.
∂H̃(2)

∂τ2
= −D̃0 + D̃1

2τ22
. (3.33)

Once τ2 dependence of (D̃0 + D̃1) is known, one find H̃(2) completely. For this, the loop

equation provides a useful information. The loop equation for T (k) is given as.

f̃(z) = 4W̃ (z)2 − 4Ṽ ′(z)W̃ (z) + 2~QW̃ ′(z)− ~
2W̃ (z, z) (3.34)

where 2W̃ (z) = ~b〈∑Nk
i=1 1/(z − ξi)〉 and W̃ (z, w) = −b2〈∑Nk

i,j=1
1

(z−ξi)(w−ξj)
〉c is the con-

nected 2-point resolvent. Then the quantum correction f̃(z) contains D̃s’s

f̃(z) = 2~b

〈

Nk
∑

i=1

−Ṽ ′(z) + Ṽ ′(ξi)

z − ξi

〉

=
1

τk

k−1
∑

s=0

D̃s

z2+s
. (3.35)

One can collect the data of D̃s after the large z expansion of (3.34)

[D̃0]0 = 0 [D̃0]1 = ~bN2(~bN2 + 2β(2) − ~Q)

[D̃1]0 = 2~bN2β
(2) , [D̃1]1 = −2~bN2(~bN2 + β(2) − ~Q) .

This simple data is enough to obtain the singular part

H̃(2) =
~bN2β

(2)

τ2
+

~bN2

2
(~bN2 − ~Q) log τ2 +O(τ2) (3.36)

and thus, we have

T (2)(β(2);N2) =

(

c2
c1

)−bN2(bN2+2β(2)/~−Q)

(τ2)
−

bN2(bN2−Q)
2 e

−
bN2β

(2)

τ2~
+O(τ2) . (3.37)

If one puts β(2) = c0 and Q = 0, we reproduce the result in (3.18). This example shows

that one may obtain the singular contribution of T (k) directly. We do not need any explicit

integration of the filling fraction as in section 2 to connect the partition function with the

filling fraction. Here, the flow equations together with the simple analytic structure of the

loop equation is enough to find all the singular structures of the inner product.

When k = 3, there are two flow equations. Using the parameters τ3 = η1η
2
2 and

κ1 = η2, we have the equations

∂H̃(3)

∂τ3
= −(4κ1 − 1)D̃2 + D̃1 + 2D̃0

6τ23
(3.38)

∂H̃(3)

∂κ1
=

D̃
(3)
2

τ3
. (3.39)

The self-consistency ∂2H̃(3)/∂τ3∂κ1 = ∂2H̃(3)/∂κ1∂τ3 gives the recursion relation:

(m+ 1)([D̃2]n,m+1 − [D̃1]n,m+1) = 2(3n+ 2m− 1)[D̃2]n,m . (3.40)
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To solve the recursion relations we need the initial conditions such as [D̃1]n,α1 for

α1 ≥ 1 and [D̃2]n,0 . The initial conditions are provided by the loop equation (3.34). Note

that D̃s is given for arbitrary k

D̃s =~
2b2τk

s
∑

t=0

〈 Nk
∑

i=1

ξ t
i

〉〈 Nk
∑

i=1

ξ s−t
i

〉

+ 2~bβ(k)
s
∑

t=0

κt

〈 Nk
∑

i=1

ξ s−t
i

〉

− (s+ 1)~2bQ τk

〈 Nk
∑

i=1

ξ s
i

〉

+ ~
2b2τk

∑

t+m=s

〈 Nk
∑

i=1

ξti

Nk
∑

j=1

ξmj

〉

. (3.41)

Using the fact 〈∑Nk
i=1 ξi〉 = −Nk +O(κℓ), we have at the zero-th order of τk

[D̃s]0,··· ,0,αt=1,0,··· ,0 = (−1)s−t2~bNkβ
(k) (1 ≤ t ≤ s ≤ k − 2) (3.42)

[D̃k−1]0,··· ,0 = 2~bNkβ
(k) (3.43)

[D̃k−1]0,··· ,0,αt=1,0,··· ,0 = (−1)k−1−t2~bNkβ
(k) (1 ≤ t ≤ k − 2) . (3.44)

In addition, unless αs = 1 and αs+1 = · · · = αk−2 = 0 we have

[D̃s]0,··· ,0,αs,αs+1,··· ,αk−2
≡ 0 for s ≤ k − 2 . (3.45)

At the first order of τk, we have

[D̃s]1,0,··· ,0 = (−1)s~bNk

(

(s+ 1)~bNk + 2β(k) − (s+ 1)~Q
)

. (3.46)

Since H
(k)
0 is a constant, independent of κℓ’s, one can find H

(k)
0 using the flow equa-

tion (3.29). From the first order of τk in D̃s, one has

H
(k)
0 = −

k−1
∑

s=0

k
∑

j=k−s

∑

{αℓ≥0}

κj
j
Aj−(k−s)[D̃s]1,α1,··· ,αk−2

κα1
1 · · ·καk−2

k−2 . (3.47)

All the terms which depend on κℓ should be cancelled. Noting that κk−1 = κk = 1 and

Aℓ = (−1)ℓ +O({κℓ}) and changing the order of the sum over s and j, one obtains

H
(k)
0 = −

1
∑

j=0

k−1−j
∑

ℓ=0

(−1)ℓ

k − j
[D̃j+ℓ]1,0,··· ,0 =

~bNk

2
(~bNk − ~Q) . (3.48)

Now back to the case k = 3, we have data from the loop equation such as [D̃1]0,m =

−2~bN3β
(3)δm,1 and [D̃2]0,0 = 2~bN3β

(3). Solving the recursion relation (3.40), one has

[D̃2]0,1 = −2~bN3β
(3) which is consistent with the data (3.44) already obtained from the

loop equation. Furthermore, [D̃2]0,2 = −2~bN3β
(3). Finally the flow equation shows that

H̃(3) = −~bβ(3)N3

3τ3
+ 2~bβ(3)N3

κ1
τ3

− ~bβ(3)N3
κ 2
1

τ3
+

~bN3

2
(~bN3 − ~Q) log τ3 +O(τ3)

and therefore,

T (3)(β(3);N3) =

(

c3
c2

)−bN3(bN3+2β(3)

~
−Q)

(τ3)
−

bN3(bN3−Q)
2 e

−
bβ(3)N3

τ3~
(−κ2

1+2κ1−
1
3)+O(τ3) .

(3.49)
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The singular structure is the same as the one in (3.19) where β(3) = c0 and Q = 0 are used.

In general, one can prove that T (k) can be obtained from the consistency condition

together with the loop equation for k ≥ 3. The proof is presented in the appendix. To

present this idea more concretely, we explicitly calculate the case k = 4. The flow equations

are given by

∂H̃(4)

∂τ4
= − 1

12τ24

[

3D̃0 + D̃1 + (3κ2 − 1)D̃2 + (−4κ2 + 9κ1 + 1)D̃3

]

(3.50)

∂H̃(4)

∂κ1
=

D̃3

τ4
,

∂H̃(4)

∂κ2
=

D̃2 − D̃3

2τ4
. (3.51)

where κ1 = η2η
2
3, κ2 = η3 and τ4 = η1η

2
2η

3
3. Using the consistency of the flow equations

∂2H̃(4)

∂τ4∂κ2
=

∂2H̃(4)

∂κ2∂τ4
,

∂2H̃(4)

∂κ1∂κ2
=

∂2H̃(4)

∂κ2∂κ1
,

∂2H̃(4)

∂τ4∂κ1
=

∂2H̃(4)

∂κ1∂τ4
, (3.52)

we have the recursion relations:

2(m+ 1)[D̃3]n,ℓ,m+1 = (ℓ+ 1)[D̃2]n,ℓ+1,m − (ℓ+ 1)[D̃3]n,ℓ+1,m (3.53)

(−12n−9ℓ+ 3)[D̃3]n,ℓ,m + 4(ℓ+ 1)[D̃3]n,ℓ+1,m−1 − (ℓ+ 1)[D̃3]n,ℓ+1,m

= (ℓ+ 1)[D̃1]n,ℓ+1,m + 3(ℓ+ 1)[D̃2]n,ℓ+1,m−1 − (ℓ+ 1)[D̃2]n,ℓ+1,m

(3.54)

(6n+4m− 2)[D̃3]n,ℓ,m − (m+ 1)[D̃3]n,ℓ,m+1 − 9(m+ 1)[D̃3]n,ℓ−1,m+1

= (m+ 1)[D̃1]n,ℓ,m+1 − (m+ 1)[D̃2]n,ℓ,m+1 + (6n+ 3m− 3)[D̃2]n,ℓ,m
(3.55)

The coefficients needed for the singular part H
(4)
−1 are [D̃s]0,0,m with m = 0, 1, 2, 3 and

[D̃s]0,1,m with m = 0, 1. The initial data are given in (3.42)–(3.45); [D̃1]0,α1,α2 , [D̃2]0,0,α2

for arbitrary α1, α2 ∈ Z
+ and [D̃2]0,1,0, [D̃3]0,0,0, [D̃3]0,1,0, [D̃3]0,0,1. The recursion relation

are solved to have [D̃2]0,1,1 = −2~bN4β
(4), [D̃3]0,1,1 = 6~bN4β

(4), [D̃3]0,0,2 = −2~bN4β
(4),

[D̃3]0,0,3 = −4~bN4β
(4). Therefore,

H̃(4) =
~bN4β

(4)

τ4

(

2κ1 − 2κ1κ2 − κ2 + κ22 +
κ32
3

+
1

6

)

+
~bN4

2
(~bN4 − ~Q) log τ4 +O(τ4)

T (4)(β(4);N4) =

(

c4
c3

)−bN4(bN4+2β(4)/~−Q)

(τ4)
−

bN4(bN4−Q)
2

e
−

bN4β
(4)

~τ4

(

2κ1−2κ1κ2−κ2+κ2
2+

κ32
3
+ 1

6

)

+O(τ4)
.

(3.56)

Using the hierarchical structure (3.17), we obtain the singular part of the partition

function

〈∆|I(4)(c0)〉S =
4
∏

k=1

T (k)(β(k);Nk)

= (c1)
−h1/~2+bNQ(η1)

−b(N2+N3+N4)(b(N2+N3+N4)+2c0/~−Q)− b2

2
(N2

2+N2
3+N2

4 )+
bQ
2
(N2+N3+N4)

× (η2)
−b(N3+N4)(b(N3+N4)+c0/~−Q)−b2(N2

3+N2
4 )+bQ(N3+N4)(η3)

−bN4(bN4+c0/~−Q)− 3
2
bN4(bN4−Q)

× e
−

bc0
~η1

(

(N2−N3)+
2(N3−N4)

η2
−

N3−N4
3η22

+
2N4
η2η3

+
N4

η22η3
−

N4
η22η

2
3
+

N4
6η22η

3
3

)

.

(3.57)
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4 Summary and discussion

In this paper, the inner product of the irregular vector is studied which corresponds to the

asymptotically free quivers of SU(2) gauge groups (general theories of A1 class) [24–26].

The irregular vector is the simultaneous eigenstate of a set of positive Virasoro generators.

The inner product of irregular vectors is obtained using the colliding limit of (m + 2)-

regular conformal block and is represented by the β-deformed Penner-type matrix model.

The partition function becomes the two point correlation of irregular conformal block of

rank m and contains (m + 1)-parameters. We have found explicitly the m-parametric

dependence of the partition function.

As shown in section 2, we use the loop equation of the matrix model and find the

parameter dependence of the inner product explicitly. In this process we need to evaluate

the contour integral which is needed to eliminate the expectation values in terms of filling

fraction and parameters. However, the contour integral in general gives elliptic function

and the inverting process is very cumbersome to express the expectation values in terms

of parameters including the filling fraction.

On the other hand, it is noted in section 3 that as far as the singular structure is

concerned one may use a simple and powerful method. The method uses the flow equation

of the partition function. The idea is based on the observation that the singular structure

of the inner product is hierarchical. One finds that the singular part of the inner product

between irregular vectors of rank n and m is factorized into those of inner product between

regular and irregular vectors (3.7). Furthermore, the singular structure of the irregular

vector rank m can be factorized into those of lower ranks as shown in (3.16) and (3.17).

Based on this hierarchical structure of the singularity, all the singular features are described

by the effective partition function called T (k) (3.21)

The advantage of using T (k) is that the self-consistency of the flow equations is enough

to find all the singular structures of the partition function. We do not need the contour

integration corresponding to the filling fraction. Why this method works lies in finding

the initial condition for the flow equations. It is noted that two singular contributions,

H
(k)
−1 and H

(k)
0 are responsible to T (k). The initial conditions needed for the singular part

are trivially found from the analytical properties of the loop equation of the matrix model

and are summarized in (3.42)−(3.46) which hold for all orders of large N expansion. As

the result, the singular part are determined exactly. This shows that there are (m − 1)-

types of instantons for the irregular state of rank m and the corresponding filling fraction

becomes the instanton number. The filling fraction is fixed during the colliding process

but the instanton energy changes. Note that the instanton energy which is linear in the

filling fraction in H
(k)
−1 and H

(k)
0 is found exactly to the all orders of the large N . The term

quadratic in the filling fraction comes simply from the Vandermonde determinant. The

chemical potential obtained this way is related with the B-cycle of the resolvent [27–29].

On the other hand, the behavior of the regular contribution H
(k)
n for n ≥ 1 is quite

different. The initial condition is not found from the simple analytic structure of the loop

equation. The initial condition needs to be found from other methods such as filling fraction

integration. This is the reason why we can use the filling fraction integration in section 2

to find the regular contributions.
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Depending on the way of colliding limit, there may arise many-point irregular conformal

block and more parameters appear. The irregular n-point conformal block has the Penner

potential with singularity at n points. One may see the same hierarchy of the singularity

structure similar to 2-point irregular conformal block.

Note that (m + 1)-parameters describe the irregular vector of rank m. Among them,

m-parameter dependence is easily described in terms of the m-flow equations. However,

the remaining one parameter dependence is not simple to find. As seen in the irregular

vector with rank 1, the remaining parameter dependence can be obtained from the colliding

limit of the 3-point function of the regular conformal block. When β = 1, the resulting

partition function reduces to the original Penner model [9] and describes the pseudo Euler

characteristics and is useful to understand c = 1 string theory [10, 11]. Therefore, the

remaining parameter dependence should describe the generalized descendants of the irreg-

ular vector. The recent attempt to understand the certain limit of the regular conformal

block in terms of Painlevé equation [30, 31] will be useful to understand the remaining

parameter dependence.
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A Self-consistency of the flow equation for T̃
(k)

The flow equations of H̃(k) = −~
2 log T̃ (k) is given in (3.29) and (3.30)

∂H̃(k)

∂τk
= − 1

τ2k

k−1
∑

s=0

k
∑

j=k−s

κj
j
Aj−(k−s)D̃s , (A.1)

∂H̃(k)

∂κt
=

1

tτk

k−1
∑

s=k−t

As−(k−t)D̃s , for 1 ≤ t ≤ k − 2 (A.2)

where A0 = 1 and Aℓ = −(Aℓ−1 + κk−2Aℓ−2 + · · ·+ κk−ℓA0). We use the special notations

for some parameters τk = κ0 and κk−1 = κk = 1 and κℓ = 0 for ℓ < 0. Therefore,

Aℓ = (−1)ℓ +O({κℓ}). D̃s is expanded in power series of τk, κ1, · · · , κk−2;

D̃s =
∑

[D̃s]α0,α1··· ,αk−2
τα0
k κα1

1 · · ·καk−2

k−2 . (A.3)

As demonstrated in section 3 up to k = 4, the self-consistency of the flow equa-

tions (A.2) can fix all the singular parts of T̃ (k). In this appendix, we prove that the

self-consistency of the flow equations can determine all the singular parts of T̃ (k) even for

k > 4. To prove this we use the self-consistency condition (3.27)

∂2H̃(k)

∂κa∂κb
=

∂2H̃(k)

∂κb∂κa
(0 ≤ a, b ≤ k − 2) . (A.4)
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The flow equation shows that H̃(k) has the form (3.26)

H̃(k)({κℓ}) =
H

(k)
−1

τk
+H

(k)
0 log τk +

∑

n≥1

H(k)
n τnk . (A.5)

This shows that the singular contribution to T (k) is due to the terms H
(k)
−1 and H

(k)
0 .

According to the consistency condition (A.4), H
(k)
0 is a constant independent of κℓ’s whose

value is found in (3.48). Therefore, we are going to concentrate on finding H
(k)
−1 which is

completely fixed if one knows the D̃s at the limit τk → 0, i.e., [D̃s]α0,α1··· ,αk−2
with α0 = 0.

To find D̃s from the consistency condition (A.4) one needs some elementary information

on D̃s. This is obtained from the loop equation. The loop equation has the form (3.34)

4W̃ (z)2 − 4Ṽ ′(z)W̃ (z) + 2~QW̃ ′(z)− ~
2W̃ (z, z) = f̃(z) =

1

τk

k−1
∑

s=0

D̃s

z2+s
. (A.6)

Large z expansion provides useful results on D̃s as shown in (3.41). Some information we

need are listed as follows:

[D̃k−1]α0=0,α1=0,··· ,αk−2=0 = 2~bNkβ
(k) (A.7)

[D̃s]0,··· ,0,αt=1,0,··· ,0 = (−1)s−t2~bNkβ
(k) (1 ≤ t ≤ s ≤ k − 2) (A.8)

and for s ≤ k − 2

[D̃s]0,··· ,0,αs,αs+1,··· ,αk−2
≡ 0 unless αs = 1 , αs+1 = · · · = αk−2 = 0 . (A.9)

Note that the information holds to the all order of large N . We present how to find D̃s in

the following steps.

Step [1]: Find D̃k−1 in power series in κk−2. Use the consistency flow along τk and

κk−2

∂2H̃(k)

∂κk−2∂τk
=

∂2H̃(k)

∂τk∂κk−2
(A.10)

and find D̃k−1 in power series in κk−2. This will determine [D̃k−1]α0=0,α1=0,··· ,αk−3=0,αk−2

with αk−2 ≥ 0.

The consistency condition gives

k−1
∑

s=0

k
∑

j=k−s

κj
j

∂

∂κk−2

(

Aj−(k−s)D̃s

)

= − τk
k − 2

∂

∂τk

(

k−1
∑

s=k−t

As−2D̃s

)

(A.11)

When τk → 0, r.h.s. of (A.11) obviously vanishes. In addition, the initial condition (A.9)

shows that D̃s = 0 for 0 ≤ s ≤ k − 3 when (τk, κ1, · · · , κk−3) → 0, and therefore, the

equation (A.11) simplifies to





k
∑

j=k−2

κjAj−1

j



 D̃′
k−1 +





k
∑

j=k−2

κjA
′
j−1

j



 D̃k−1 = −
k
∑

j=k−2

κj
j
(Aj−2D̃k−2)

′ (A.12)

– 25 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
6

where X ′ denotes derivative with respect to κk−2. The initial condition (A.8) shows that

D̃k−2 = 2~bNkβ
(k)κk−2. Therefore, (A.12) is the inhomogeneous first oder equation of

D̃k−1, which gives the simple recursion relation for the power series in κk−2. This fixes

D̃k−1 in power series in κk−2 with the initial condition [D̃k−1]κk−2=0 = 2~bNkβ
(k) as given

in (A.7).

Step [2]: Find D̃k−2 and D̃k−1 in power series in κk−3 and κk−2. Next step is

to use the consistency flow along τk, κk−3 and κk−2.

∂2H̃(k)

∂τk∂κk−3
=

∂2H̃(k)

∂κk−3∂τk
,

∂2H̃(k)

∂κk−2∂κk−3
=

∂2H̃(k)

∂κk−3∂κk−2
. (A.13)

This additional two equations provide the recursion relations for D̃k−1 and D̃k−2 in

power series of κk−3 and κk−2 when {τk, κ1, · · · , κk−4} → 0. Using the result ob-

tained from the step [1], the coefficients [D̃k−1]α0=0,α1=0,··· ,αk−4=0,αk−3>0,αk−2≥0 and

[D̃k−2]α0=0,α1=0,··· ,αk−4=0,αk−3>0,αk−2≥0 are determined.

Step [3]: Inductive proof of finding D̃ℓ’s in power series in κt, · · ·κk−1. Suppose

the coefficients of D̃ℓ

[D̃ℓ]0,··· ,0,αt+1,αt+2,··· ,αk−2
for (t+ 2 ≤ ℓ ≤ k − 1) (A.14)

is known for (αt+1, · · · , αk−2) ≥ 0. The case t = (k − 3) is done in the step [1], which is

true. Therefore, our proof can be done using the inductive way.

Suppose the coefficient in (A.14) is known for a certain t < k − 3. Our claim is that

the consistency conditions

∂2H̃(k)

∂κt∂τk
=

∂2H̃(k)

∂τk∂κt
,

∂2H̃(k)

∂κt∂κa
=

∂2H̃(k)

∂κa∂κt
for (t+ 1 ≤ a ≤ k − 2) , (A.15)

will fix the next coefficient [D̃ℓ]0,··· ,0,αt,αt+1,··· ,αk−2
for (t+ 1 ≤ ℓ ≤ k − 1).

To prove this claim, let us use the consistency conditions (A.15) to get

k−1
∑

s=0

k
∑

j=k−s

κj
j

∂

∂κt

(

Aj−(k−s)D̃s

)

= −τk
t

∂

∂τk

(

k−1
∑

s=k−t

As−(k−t)D̃s

)

(A.16)

∂

∂κt

(

k−1
∑

s=k−a

As−(k−a)D̃s

)

=
a

t

∂

∂κa

(

k−1
∑

s=k−t

As−(k−t)D̃s

)

. (A.17)

We further reduce the above equations using the known information. Note that we are

trying to find the solution at τk = 0 and {κ1, · · · , κt−1} = 0. Therefore, we put τk → 0 and

discard r.h.s. of (A.16). In addition, D̃s = 0 for s = 0, · · · , t − 1 by the conditions (A.8)

and (A.9). Therefore, the non-vanishing components in the above equations are simplified.

k−1
∑

s=t

k
∑

j=k−s≥t

κj
j

∂

∂κt

(

Aj−(k−s)D̃s

)

= 0 (A.18)

∂

∂κt

(

k−1
∑

s=t

As−(k−a)D̃s

)

=
a

t

∂

∂κa

(

k−1
∑

s=t

As−(k−t)D̃s

)

. (A.19)
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Note that we put the lower limit of the summation s = t in (A.19) using Aℓ = 0 when ℓ < 0,

without which the lower limit should be s = max(k − a, t) (l.h.s.) and s = max(k − t, t)

(r.h.s.).

Note that D̃t is known and linear in κt in (A.8) and (A.9). The unknowns are D̃s with

(t + 1) ≤ s ≤ (k − 1). Therefore, it is convenient to put the equations (A.18) and (A.19)

in a simple product form

k−1
∑

s=t+1

ÃsD̃
′
s = Bt ,

k−1
∑

s=t+1

As−(k−a)D̃
′
s = Ba for (t+ 1 ≤ a ≤ k − 2) (A.20)

where X ′ denotes derivative with respect to κt. Ãs is the weighted sum of As, Ãs =
∑k

j=k−s(κjAj−(k−s)/j) and Bt and Ba contain D̃s’s but no derivatives of κt’s.

Bt = −
k−1
∑

s=t

k
∑

j=k−s

κjA
′
j−(k−s)D̃s

j
− ÃtD̃

′
t ,

Ba =
a

t

∂

∂κa

(

k−1
∑

s=k−t

As−(k−t)D̃s

)

− δt,k−a D̃
′
t .

where D̃′
t = 2~Nkβ

(k).

Putting the new equations in a matrix form AD
′ = B, we have (k− t− 1)× (k− t− 1)

invertible matrix A

A :=























Ãt+1 Ãt+2 · · · · · · Ãk−1

At−1 At · · · · · · Ak−3

At−2 At−1 · · · · · · Ak−4
...

...
...

...
...

...

At−(k−t−2) At−(k−t−3) · · · · · · At























(A.21)

and k − t− 1 column vectors D and B

D =







D̃t+1
...

D̃k−1






, B =







Bt
...

Bk−2






. (A.22)

Inverting the matrix equation we have D
′ = A

−1
B. When D is put in power series

of κt, D =
∑

a≥0Daκ
a
t , the inverted equation provides the recursion relation of the Da’s.

which is solved if the initial condition D0 is known. Note that D0 is the assumption of our

claim (A.14). Therefore, the claim is proved.

Note that the iteration goes from t = (k − 3) to t = 1. The procedure determines all

the contribution to D̃ℓ (2 ≤ ℓ ≤ k − 1) when τk = 0. The remaining D̃1 is already known

completely in (A.8) and (A.9) when τk = 0.
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