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Abstract

Background: Biomedical image reconstruction applications require producing high fidelity images in or close to
real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with
two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data,
then creates the final 3D volume. We have implemented the algorithm using several hardware and software
approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms
used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the
CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are
compared against the heterogeneous versions written in CUDA-C and OpenCL.

Findings: Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was
evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an
AMD GPU compared to a parallel version in C with OpenMP constructs.

Conclusions: In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler’s
image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU
and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup
over the parallel CPU version.
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Findings
Introduction
CT imaging is one of the most used diagnostic methods
in interventional and minimally invasive surgeries [1]. As
the importance of the access to medical imagery before
or during surgical procedures increases, the computa-
tional need for CT imaging becomes more demanding
and challenging. It requires producing high fidelity images
in or close to real-time to avoid interruptions during the
treatment of patients. Conebeam CT is used to acquire
knowledge of parts of the human body to obtain a clear
image during/before performing a procedure. Today, most
conebeam CT scanners use the Feldkamp Davis Kress
algorithm [2] as the standard reconstruction method. The
method takes a slice of the target, weights the projection
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data and then filters the weighted data before backpro-
jecting and creating the final three dimensional image.
The last step, backprojection, is the most computation-
ally intensive with a complexity of O(N4) in the spatial
domain and it is the bottleneck [3]. Researchers have used
different architectures to accelerate this process includ-
ing Application Specific Integrated Circuits (ASICs) and
Field Programmable Gate Arrays (FPGAs). However, the
expensive nature of these boards along with the steep
learning curve necessary to program these devices often
limit their use. Graphics Processing Units (GPUs) offer
an alternative approach for accelerating computationally
intensive jobs. Algorithms such as CT image reconstruc-
tion with intensive computation and massive data paral-
lelism are particularly well suited for GPUs.
A popular image reconstruction toolbox, provided

by Fessler [4], consists of a collection of open source
algorithms for image reconstruction written in MAT-
LAB. We have implemented the FDK algorithm from this
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toolbox using several different methods including single
threaded code written in C, parallel code written in C with
OpenMP constructs, parallel code in MATLAB using the
parallel computing toolbox (PCT) and GPU codes written
in CUDA-C and OpenCL. The purpose of this study is
to explore the performance of these implementations on
different architectures. These codes are run on two types
of architectures including CPU and a combination of
CPU and GPU. We have tested our implementations on
both NVIDIA and AMDGPUs using both a mathematical
phantom and mouse scan data.
The main contributions of this paper are:

• Our implementations are compatible with Fessler’s
image reconstruction toolbox [4], a popular toolbox
of open source algorithms for reconstruction of
images written in MATLAB. We use the same input
files and same general approach as Fessler in our
implementations.

• Our implementations are tested on two types of
hardware platforms: CPU and a combination of CPU
and GPU. The performance has been evaluated using
GPUs from two different vendors: NVIDIA and
AMD.

• The performances of two complete GPU
implementations of the same approach are
compared, in CUDA-C and OpenCL, to serial and
multithreaded C and MATLAB implementations.

• Our NVIDIA CUDA code is compatible with
NVIDIA’s CUDA compiler, while other open source
software is not. Our OpenCL implementation is
optimized and complete.

Our code is available open source [5].

Background
This section describes the FDK method along with a brief
introduction to GPU computing and recent advances in
the GPU computing model. We also discuss related work
that aims at accelerating FDK using GPU, CPU, or other
heterogeneous architectures.

FDKmethod
The FDK method, published by Feldkamp, Davis and
Kramp in 1984 [2], introduced a method to reconstruct
a 3D volume from multiple 2D projections. Here a scan-
ner along with a 2D detector takes a full rotation around
the patient or object of interest to capture the data.
In this process, called conebeam scanning, the trajec-
tory of the source is circular and each horizontal row of
detector values is ramp filtered and considered as a two
dimensional object. These filtered projections are then
backprojected along the original rays. During the process
of acquiring scanned data, the X-ray source moves in a

circular orbital path, which has a radius r. The detector
plane stands perpendicular to the rotational axis of the
source and moves with it. It produces a set of projections
P1,P2, . . . ,PK at K discrete positions of the source with
uniform angular spacing. Sometimes there are mechan-
ical limitations that preclude a full rotation from being
completed.
The method can be conceptualized as a reconstruction

with weighted backprojection. It is performed in two
stages. First, the raw data is individually weighted
and ramp filtered to produce filtered projections
Q1,Q2, . . . ,QK . These projections are collected at a dis-
tance from X-ray source to detector d′ with angle θn
where 1 ≤ n ≤ K . The distance between the volume ori-
gin and the source is denoted di. Let Fx,y,z represent the
value of voxel (x, y, z) in volume F (Figure 1). The volume
is in xyz space and uv represents the projections that are
to be backprojected to the volume. Figure 1 shows the
coordinate space. In the backprojection step, the volume
F is reconstructed using the following equations [6]. From
Equation 1, it is clear that each value in the 3D volume is
independent and can be calculated in parallel.

F(x, y, z) = 1
2π t

t∑

i=1
W2(x, y, i)Qi(u(x, y, i), v(x, y, z, i)),

(1)

where W2(x, y, n) represents the weight value and
u(x, y, n) and v(x, y, z, n) represent the co-ordinates.

u(x, y, i) = d′(−x sin θi + y cos θi)

(di − x cos θi − y sin θi)
, (2)

v(x, y, z, i) = d′z
(di − x cos θi − y sin θi)

, (3)

W2(x, y, i) = di
(di − x cos θi − y sin θi)

. (4)

GPU computing
For many algorithms with massive parallelism, GPUs pro-
vided higher peak performance than CPUs. Initially GPUs
were designed for processing graphics applications and
games, but they have been increasingly used for scientific
computing and biomedical applications such as Smith-
Waterman alignment algorithm, protein folding, DNA
sequencing, statistical phylogenetics, molecular dynam-
ics, diffuse optical tomography and biological systems
simulation [7-13].
GPUs have many parallel cores that run simultaneously

and each core can run multiple threads. CT reconstruc-
tion has inherent features that can be parallelized. The
sequential parts can be run on the CPU and the com-
putationally intensive parallel parts can be accelerated on
the GPU.
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Figure 1 Co-ordinate system for backprojection.

We have implemented FDK using two GPGPU lan-
guages: OpenCL and CUDA-C. While CUDA-C runs
only on NVIDIA hardware, OpenCL is platform indepen-
dent and runs on several hardware architectures including
AMD, Intel, and NVIDIA. NVIDIA provides optimized
libraries along with CUDA-C, which often results in
better performance. Both CUDA-C and OpenCL sup-
port heterogeneous computing with separate host and
device code. Both languages require minimal extensions
to C/C++ programs. The accuracy of the results is of
paramount importance in biomedical applications. We
have shown that the results provided by GPU may have
better precision over serial CPU code for floating point
values [14].

Related work
There are several areas to explore to make the recon-
struction faster. The first is to use a different algorithm.

Authors have used this approach to obtain around 40
times speed up of reconstruction over traditional filtered
backprojection [15,16]. However, the quality of the recon-
struction has been questioned [17]. Another area is to
explore different parallel techniques and architectures.
The intrinsic parallel nature of the algorithm makes it
amenable to hardware acceleration for real-time process-
ing. A popular hardware platform for parallel processing
is to use GPUs. Attempts to use GPU hardware to accel-
erate CT algorithms date back to the early 90s when
texture mapping hardware was used for 3D reconstruc-
tion [18]. Later Mueller and Xu used a GPU to accelerate
backprojection by using accelerated graphics components
[3,19]. Zhao et al. [1] introduced an idea to allow larger
datasets to fit in GPU memory. Noel et al. [20] used
device memory to transfer all images and calculate inten-
sity of a voxel. However accessing this memory can have
long latency, so to avoid it, Knaup et al. [21] divided the

Figure 2 Overview of serial CPU implementation and the implementation that makes use of a combination of CPU and GPU.
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Table 1 Hardware details

Processor Clock Number of Cache Memory
speed cores size size

Intel Xeon 2.00 GHz 6 15 MB 32 GB
E5-2620

NVIDIA Tesla 1.15 GHz 448 768 KB 6 GB
C2075

AMD Radeon 925 MHz 2048 768 KB 3 GB
HD 7970

total data into chunks to fit in shared memory. Mueller
et al. [22] divided the processing by doing convolution on
the CPU and backprojection on the GPU to reconstruct
faster. Themost similar work to ours is the Reconstruction
Toolkit (RTK) [23], based on the Insight Toolkit [24]. Our
approach is completely stand alone and does not require
ITK or any other packages to operate. It makes use of the
same inputs as those used by Fessler. Our CUDA-C code
is compatible with nvcc, the NVIDIA C Compiler while
that from RTK is not. Our OpenCL implementation is as
optimized as the CUDA-C version and in fact produces
superior results.
Our approach can be seen as a combination of previous

work. The implementation is divided into two parts with
convolution on the CPU and backprojection on the GPU.
In our implementation, we consider each pixel to be inde-
pendent and load the full volume on the GPU. In contrast
[25], considers all projections, but only part of the vol-
ume. We transfer the whole projection data to the GPU at
an early stage and transfer the reconstructed volume back
to the CPU at the end of all three steps: weighting, filter-
ing and backprojection. The processing steps for the CPU
and GPU implementations are shown in Figure 2. During
backprojection, a large number of threads are launched on
the GPU to compute each voxel in parallel. Each voxel is
independently mapped to the final 3D volume.
This paper presents a more complete and consistent set

of experiments and results than our previously published

work [26]. All experiments in this paper are done on the
same hardware for better comparison; the hardware is
described in Section ‘Experimental results’. The OpenCL
version is more advanced than in our previous publication
and the best OpenCL implementation of backprojection
available. The software described is now available for
download [5].

Implementations
We have several implementation of backprojection: 1) the
MATLAB code originally writtend by Fessler et al. [4],
2) a version of Fessler’s code parallelized with MATLAB
Parallel Computing Toolbox (PCT) 3) a serial implemen-
tation written in C, 4) the C implementation parallelized
with OpenMP constructs [27], 5) a version that uses a
combination of CPU and GPU written in CUDA-C that
compiles with the NVIDIA compiler, nvcc, and 6) a ver-
sion that uses a combination of CPU and GPU written in
OpenCL.
We have implemented the FDK method in a basic pro-

cessing chain in a pipelined fashion. The steps in the
pipeline are: 1) load projection data, 2) ramp filter the
weighted data and 3) backproject it to the final volume.
Note that the structure of our code follows that of Fessler’s
implementation. The input and output formats are also
the same.
For the GPU implementations, different kernels are

launched for different stages. Although the kernel calls
are issued in a non-blocking manner, they are exe-
cuted in series as each step needs to complete before
the next can begin. In the filtering stage, different pix-
els for the same projection can be simultaneously fil-
tered as there is no dependency between pixels. The
filtering stage uses a Fast Fourier Transform (FFT). In
the CUDA code we used the CUFFT available from
NVIDIA [28] while for OpenCL we use Apple’s FFT
package. The final step is to calculate voxel-based back-
projection. Here each voxel is calculated in parallel by

Figure 3 A projection of the mathematical phantom (left) and the mouse phantom (right).
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Figure 4 Comparison of results obtained using C, OpenCL and CUDA-C run on phantom data.

performing a matrix-vector product for each voxel in
order to determine the corresponding projection value
(see Equation 1). After all projections have been pro-
cessed and mapped to the appropriate voxel, the final
reconstructed volume is transferred to host memory. As
memory transfer from host to device is expensive, trans-
ferring all the data to the GPU before the start of com-
putation and transferring back the result after the final
volume is reconstructed saves data transfer cycles. We use

asynchronous data transfers to overlap data transfer with
computation.

Experimental results
We demonstrate the implementation of the FDK algo-
rithm on two types of architectures: CPU and a combi-
nation of CPU and GPU. Details of the different hard-
ware is summarized in Table 1. Note the difference

Table 2 Performance of different implementations (in seconds)

Dataset Approach Backprojection time Total time Speedup over MATLAB Speedup over C

Phantom MATLAB 51.06 51.11 – –

Phantom C 3.93 3.95 12.94 –

Phantom C + OpenMP (4 threads) 0.85 0.89 57.43 4.44

Phantom OpenCL (NVIDIA) 0.01 0.30 170.37 13.17

Phantom CUDA (NVIDIA) 0.01 0.30 170.37 13.17

Phantom OpenCL (AMD) 0.01 0.32 159.72 12.34

Mouse scan MATLAB 33760.40 33777.33 – –

Mouse scan MATLAB PCT 22506.49 22513.90 1.5 –

Mouse scan C 18451.77 18462.60 1.83 –

Mouse scan C + OpenMP 5112.94 5615.65 6.01 3.29

Mouse scan OpenCL (NVIDIA) 49.44 60.45 558.76 305.42

Mouse scan CUDA (NVIDIA) 47.79 58.87 573.76 313.62

Mouse scan OpenCL(AMD) 16.01 28.02 1205.47 658.91
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Figure 5 Runtimes of different implementations applied to phantom data (top), mouse data (middle) andmouse data for each
implementation component (bottom).
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in numbers of cores. As will be seen in the results
section this is the largest contributor to performance
since backprojection has a large number of independent
compuations.
We have implemented the FDKmethod. Relative perfor-

mance is measured using two datasets. One, a synthetic
mathematical phantom generated by MATLAB, has an
input data size of 64 × 60 pixels with 72 projections to get
a final volume of 64 × 60 × 50 voxels. The second is a
mouse scan of 512 × 768 pixels with 361 projections. The
dimensions of the output volume are 512 × 512 × 768. A
single projection of the phantom and the animal scan is
shown in Figure 3. This data was obtained and is presented
with permission of Mass General Hospital.
The input and output sizes of the mathematical phan-

tom are both 1MB. For the mouse scan, the sizes of the
input and output projections are 542 MB and 768 MB
respectively. Note that the code and therefore the run time
only depend on the size of the data, not the content.
As mentioned earlier, the quality of reconstruction is

important. To show that accuracy is not compromised,
Figure 4 compares one slice of the final reconstructed vol-
ume in three implementations: 1) single threaded C, 2)
OpenCL on NVIDIA and 3) CUDA-C on NVIDIA as well
as the difference in values. Note that the difference in
values is bounded by 2.2 × 10−3.
The performance of different implementations is listed

in Table 2. Our performance data measure end-to-end
execution time. For GPU implementations, they include
data transfer times to and from the GPU as well as kernel
execution times.
It is evident that backprojection takes more than 99%

of the total time in the serial MATLAB code. This is the
motivation for parallelizing backprojection. The multi-
threaded MATLAB implementation shows a speedup of
1.5x over serial MATLAB for the mouse scan data. The
C implementation is 1.83 times faster than serial MAT-
LAB, and the multithreaded C implementation with four
threads is approximately 3.25 times faster again. Com-
pared to the multithreaded C implementation, GPUs give
the best performance. CUDA-C and OpenCL on the
NVIDIA GPU we targeted both give a speedup of approx-
imately 93 times over multi-threaded C. The fastest time
of all was with OpenCL run on the AMD GPU. Here
the speedup was 200 times compared to multithreaded
C. Figure 5 top and middle show the runtime of differ-
ent implementations on a logarithmic scale. The same
OpenCL run on an NVIDIA GPU takes 60.45 seconds to
reconstruct the image while it takes 28.02 seconds on the
AMD GPU we used. Figure 5 bottom shows the runtime
taken by each of the three stages of the algorithm on the
two GPU cards: AMD and NVIDIA for two implementa-
tions: CUDA and OpenCL. Measured runtimes are given
in Table 2.

Conclusions
We have implemented the FDK algorithm [2], compatible
with Fessler’s image reconstruction toolbox [4] and tested
on two different architectures: CPU and a combination of
CPU and GPU. Both NVIDIA and AMD GPUs have been
used for performance evaluation. The performance of two
GPU implementations in CUDA-C and OpenCL have
been compared to MATLAB, Multithreaded MATLAB,
and serial and multi-threaded C. The OpenCL implemen-
tation on the AMD card yields the largest speed up of 200x
over multi-threaded C and three orders of magnitude over
the original MATLAB code.
In the future, we will continue to improve our approach.

After parallelizing backprojection, the new bottleneck is
weighted filtering. We plan to investigate improved per-
formance for the filtering stage. In addition, for the GPU
implementations, only a subset of the number of launch
configurations for kernels have been tested so far. The
number of threads have been arbitrarily chosen. These
issues will be investigated with auto-tuning. The data
sizes that have been tested so far can be accommodated
in the GPU memory, but for larger data sizes, stream-
ing needs to be added to the current implementation.
We plan to do so in future versions of the open source
code.

Availability and requirements
• Project name: Accelerating 3D CBCT with GPU
• Project home page: http://sourceforge.net/projects/

acceleratecbct/
• Operating system(s): Linux
• Programming language: C with OpenMP, CUDA,

OpenCL.
• Other requirements: CUDA compiler installed
• License: GPL
• Any restrictions to use by non-academics: Only those

imposed already by the license.

Availability of supporting data
All materials are available online. The source codes as
well as input data phantom are released into the public
domain. The documentation for the software pipeline is
also included. This is available as Open Source software
under the General Public License (GPL) version 2.0. as a
part of the open source software [5].
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CUDA: Compute unified device architecture; CT: Computed tomography,
AMD: Advanced micro devices, Inc., FDK: Feldkamp–Davis–Kress, GPU:
Graphics processing unit; PCT: Parallel computing toolbox.
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