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The gas-liquid phase coexistence in a two-dimensional Lennard-Jones system is investigated using Maxwell construction method 
together with molecular dynamics simulations. The results of phase coexistence in different truncations of the potential are com-
pared with data obtained from the literature, and the corresponding critical properties calculated. The crossover from Ising-like to 
mean field behavior is observed and confirmed as the temperature approaches the critical point from below. Performing simula-
tions on systems with different sizes, we find that a finite size effect is more significant than those shown in most of the previous 
results, and a lower critical temperature is obtained when the full extent of this finite size effect is considered. 
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The phase behavior of two-dimensional (2D) systems con-
tinues to attract much attention from both experimental and 
theoretical points of view. Although a perfect 2D system 
does not exist in nature, it has practical relevance because 
many systems can be modeled as a 2D system, such as 
monolayers adsorbed on solid substrates, physisorption of 
gases on solid surface, and thinning of completely wetted 
films on clean mica surfaces. 

There are a variety of techniques introduced to obtain 
phase coexistence properties [1–9], among which the Gibbs 
ensemble Monte Carlo (GEMC) method appears as the most 
popular because of its simplicity and efficiency [1]. Despite 
very impressive progress in recent years, there remain some 
problems and issues that need to be addressed. To efficient-
ly obtain the phase coexistence properties of systems with 
complex molecular structures, some molecular dynamics 
(MD) methods have been proposed of late [2–4]. In  
three-dimensional (3D) systems, phase coexistence results 
from experiments, simulations, and theories are in reasona-
ble agreement with each other. However, understanding 

gas-liquid (GL) phase coexistence and characterizing the 
related physical properties and precise location of the phase 
coexistence curve in 2D systems, even for simple fluids, 
still remains incomplete. The typical system, (i.e. 2D Len-
nard-Jones (LJ) fluid), has a very rough and foamy GL in-
terface because of low surface tension, making it difficult to 
determine the GL phase coexistence curve. Among previous 
results from simulations of this 2D system, there is wide 
deviation in these curves.  

Using the Gibbs ensemble technique, Singh et a1. [5,10] 
obtained the phase diagram and estimated the critical point 
of this 2D LJ system, with a critical temperature that was 
much lower than results from equation-of-state (EOS) fit-
tings. Afterwards, Smit and Frenkel [11] revisited the GL 
phase coexistence of the same system. They improved the 
data and obtained a higher critical temperature as well as 
investigated the significant effect of the cutoff distance for 
the potential on the GL phase coexistence, an effect also 
occurring in 3D LJ systems [12]. Panagiotopoulos [13] 
studied the GL phase coexistence via GEMC in both 2D and 
3D LJ systems. He observed that the phase coexistence of 
2D LJ system had a crossover from Ising-like behavior to 
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mean field behavior when the temperature approached the 
critical temperature from below, whereas such a crossover 
did not appear in 3D systems. Jiang and Gubbins [14] found 
that the resulting coexistence curve in GEMC for the ad-
sorbed system was very close to that for the unperturbed 2D 
LJ film, and this suggested that experimental studies of such 
coexistence curves for simple systems could be approxi-
mately taken to be similar to those for an unperturbed 2D 
system. Meanwhile, they found that the results away from 
the critical temperature appeared to be essentially inde-
pendent of the number of particles via GEMC simulations 
in systems of large size. 

In this paper we adopt the Maxwell construction method 
together with MD simulations to investigate the GL phase 
coexistence in a 2D LJ system. Using different truncation 
potentials, the method involves obtaining the GL phase co-
existence curves and critical properties which we then 
compare with other results from the literature. Furthermore, 
we perform simulations on different-sized systems to ob-
serve any finite-size effects on the GL phase coexistence. 

1  Model and simulation methodology 

The interacting potential in the LJ system is given by 
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where rij is the pair distance between the ith and jth particles. 
The parameter ε governs the strength of the interaction, 
while σ defines the length scale. For convenience, reduced 
units are used in simulations, where ε, σ, and the mass of LJ 
particle m are chosen as basic units. 

As conventionally adopted, the truncation of the interac-
tion is used in the force calculation, as well as the periodic 
boundary conditions, and minimum image conventions are 
applied [15–17]. The LJ interactions decay rapidly with 
cutoff distance, thus a truncation correction is often made in 
calculations of thermodynamic quantities by adding a tail 
contribution, namely the so-called long-range correction. In 
Maxwell construction method, the focus is mainly on pres-
sure. With the assumption that the radial distribution func-
tion g(r) ≈ 1 when rij is greater than the cutoff distance, the 
corresponding long-range correction to the pressure is 
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Here rcut is the cutoff distance of the interaction truncation. 

Note that the long-range correction for the 2D LJ system is 
different from that for the 3D case. 

The MD simulations are performed in the canonical (or 
NVT) ensemble, i.e. the total number of particles N, the 
temperature T, and the volume of simulation cell V are kept 
constant. The equation of motion for the particles is inte-
grated using the velocity Verlet algorithm with time step δt = 

0.002 and temperature controlled via a Berendsen thermo-
stat [18]. For a typical NVT simulation, the procedure is as 
follows: Initially, the N particles are homogeneously put 
into the simulation cell separately. Their initial positions are 
on a square lattice and their initial velocities satisfy the 
Maxwell-Boltzmann distribution. Next, the system is heated 
to a higher temperature (T > Tc) so that the initial configura-
tion has completely melted. Subsequently, the configuration 
is cooled down to the desired temperature and allowed to 
relax for some time steps so as to reach equilibrium. Finally, 
another long run is initiated and the calculated values of 
various physical properties are recorded every few time 
steps to obtain average values. 

The GL phase coexistence curves are obtained via the 
Maxwell construction method, so a set of NVT simulations 
are performed along an isotherm. In the present work, the 
set of simulations was started from a very dilute gas phase 
(ρ = 0.001), and went through a typical NVT process. Next, 
the simulation cell was compressed to a smaller volume and 
another NVT simulation began. Note that the initial config-
uration of the next simulation is obtained directly from the 
previous configuration so that there is no need to initialize 
the configuration again. By repeating this procedure until a 
large enough density or a small enough volume needed for 
the Maxwell construction is reached, ample data relating 
pressure to volume are collected. To eliminate hysteresis 
effects, procedures are reversed, i.e. expansion is started 
immediately after compression is finished. By fitting the 
data for a series of temperatures, we can obtain the GL 
phase coexistence curve. 

Figure 1 is a typical example of Maxwell construction 
fitting, which allows us to obtain the coexisting densities for 
pure gas and pure liquid. Due to finite-size effects, the P-T 
phase-diagram results from computer simulations can ap-
pear similar to mean field predictions, so we can treat the 
van der Waals loop by fitting a mean field equation. Specif-
ically, we fit the isotherm data for which the compressibility 
is positive using a modified van der Waals equation of state 
[19] 
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where ai (i = 0, 1, 2, 3) are adjustable parameters. The circle 
and the square symbols correspond respectively to com-
pression and subsequent expansion along an isotherm. Note 
that the logarithm is taken on the x-axis (volume) for a 
clearer view of the plots. 
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Figure 1  A typical curve using the Maxwell construction at T = 0.5 and 
rcut = L/2 together with long-range correction. Open circles (squares) repre-
sent P-V results obtained under compression (expansion). The solid line is 
the Maxwell construction fitting using eq. (4). 

2  Results and discussion 

The truncation of the interaction has a significant effect on 
the GL phase coexistence in both 2D and 3D systems. To be 
able to compare conveniently our results with those found in 
the literature, we used three typical cutoff distance values:  
rcut = 2.5, rcut = 5.0, and rcut = L/2. The number of particles is 
typically N = 256. Note that the long-range correction is 
only applied for rcut = L/2 (see eqs. (2) and (3)) so that the 
full potential is represented. 

Results for the GL phase coexistence of the 2D LJ sys-
tem are plotted in Figure 2. As reported in the literature, the 
well-known scaling relations are usually adopted to estimate 
the critical temperature Tc and critical density ρc [17]: 

 | |L G cA T T βρ ρ− = − , (5) 

and 

 ( ) 2 | | .L G c cB T Tρ ρ ρ+ = + −  (6) 

As confirmed empirically in GEMC simulations, the 
phase coexistence curves can be fitted with an exponent β = 

0.125 (Ising value) over a wide range of temperatures. 
Some years ago, Panagiotopoulos [13] used GEMC to ob-
serve a clear crossover from Ising-like (β = 0.125) to mean 
field (β = 0.5) behavior as the temperature approached the 
critical point from below. For the 2D LJ system, the order 
parameter can be defined as 

 ( ) .ρ ρ= −L GM T  (7) 

In Figure 3, we plotted the results of M2 and M8 versus T 
with different interaction truncations. To ensure the values 
of M8 and M2 have approximately the same numerical range, 
the M8 curves are shifted up by multiplying by 5. In all cas-
es, the exponent β has a value of 0.125 when the tempera-
ture T is away from the critical temperature (Tc) and ap-
proaches 0.5 when T is close to Tc (see the linear fitting line 
in Figure 3), in accord with observations reported in  

 

Figure 2  Gas-liquid phase coexistence using different interaction trunca-
tions. The number of particles is N = 256. rcut = 2.5 (a), 5.0 (b), L/2 (c). Note 
that the long-range correction is only applied for rcut = L/2. Open circles 
(squares) represent results obtained under compression (expansion). 

ref. [13]. 
The estimates of Tc can be obtained by linearly fitting the 

curve of M8 versus T. Apparently the intercept of the fitting 
line on T axis is exactly the critical temperature Tc (Figure 
3). The value of Tc for all cases was estimated by this pro-
cedure, and the corresponding critical densities ρc are fitted 
using eq. (6). The results of these critical points are listed in 
Table 1 where other critical properties (including critical 
pressure Pc and critical compressibility factor Pc/ (Tcρc)) are 
also calculated using long runs of NVT simulations at the 
estimated critical points. 

From Table 1, when the cutoff distance rcut is increased 
from 2.5 to 5.0, the critical temperature Tc increases corre-
spondingly from 0.457 to about 0.5. In particular, when the 
cutoff distance approaches a large enough value, rcut = 5.0, 
the results are almost the same as those of the full potential 
(rcut = L/2 plus long-range correction), which means that the 
effect of truncation on the GL phase coexistence is slight or 
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Figure 3  Curves of order parameter M versus T. Open circles (squares) 
represent results of M2 versus T obtained under compression (expansion). 
The number of particles is N = 256. rcut = 2.5 (a), 5.0 (b), L/2 (c). Solid 
circles (squares) represent results of M8 versus T obtained under compres-
sion (expansion). The solid (dashed) line denotes linear fitting in the region 
of mean field (Ising-like) behavior. 

even negligible. Santra et al. [20] obtained similar converg-
ing results; they observed that the gas and liquid coexist-
ence densities at a certain temperature remained unchanged 
for large enough cutoff distance. This can be explained by 
eqs. (2) and (3). As is well-known, the GL phase coexist-
ence at a desired temperature is determined by the equilib-
rium of both pressure and chemical potential. Assuming that 
rcut = 5.0, we obtain Ptail = 0.0151ρ2 and μtail = 2Utail≈ 

0.0101ρ, the latter being the long-range correction of the 
chemical potential. Compared with the total value and sta-
tistical uncertainties of P and μ, such long-range correction 
is small enough as to be negligible when rcut > 5.0. In the 3D 
LJ system, the long-range correction has a relatively larger 
value and is approximately proportional to 3

cut
−r  while the 

long-range correction in the 2D LJ system is approximately 
proportional to 4

cut
−r . 

It is worthwhile comparing our estimated critical points 
with available literature data. To begin, let us focus on the 
case rcut = 2.5. Rovere et al. [6,21] have suggested a critical 
temperature Tc = 0.5, afterwards giving an improved esti-
mate, i.e. Tc = 0.472 and ρc = 0.35. Smit and Frenkel [11] 
performed GEMC simulations for the 2D LJ system, and 
obtained a lower critical temperature value Tc = 0.459 to-
gether with ρc = 0.35. Using data from GEMC simulations 
and an Ising exponent to fit the phase coexistence curve 
away from the critical point, Panagiotopoulos [13] obtained 
Tc = 0.477 and ρc = 0.38. Our results of critical temperature 
Tc = 0.457 is closer to the Smit-Frenkel result except for a 
slightly higher critical density. Actually, the estimate of the 
critical temperature depends sensitively on the data collect-
ed just below the critical point. In Figure 3, one can see that 
the system has a mean field behavior in a wide range of 
temperatures from T = 0.45 to T = 0.48. Previously, authors 
empirically claimed that the phase coexistence curves could 
be fitted over a wide range of temperatures using the Ising 
value in 2D systems. As our phase coexistence data is not 
well-fitted by eq. (5) with Ising value β = 0.125, we have  

Table 1  Critical point and critical properties for Ising-like behavior and mean field behavior using different interaction truncations. The number of particles 
is N = 256. The compressibility factor is defined as τc = Pc /(Tcρc). Note that the long-range correction is applied for rcut = L/2 so that the full potential is represented 

Ising-like behavior fitting 

rcut 
Compression  Expansion 

Tc ρc Pc τc  Tc ρc Pc τc 

2.5 0.457 0.386 0.021 0.119  0.457 0.386 0.0209 0.1185 

5.0 0.499 0.36 0.0246 0.1366 0.5 0.36 0.0241 0.1341 

L/2 0.501 0.363 0.0239 0.1315 0.5 0.365 0.0231 0.1268 

Mean field behavior fitting 

rcut 
Compression  Expansion 

Tc ρc Pc τc  Tc ρc Pc τc 

2.5 0.487 0.407 0.0363 0.1832  0.487 0.408 0.0367 0.1849 

5.0 0.54 0.38 0.044 0.2149 0.538 0.381 0.0429 0.2096 

L/2 0.542 0.396 0.0441 0.2051 0.541 0.394 0.0429 0.2013 
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only taken the region of Ising-like behavior to obtain the 
critical point omitting the region T > 0.45. This is probably 
the reason for the difference between our results and those 
in the literature. 

With a full potential (rcut = L/2 plus long-range correc-
tion), it is already clear that the estimate of Tc = 0.472 by 
Singh et al. is too low, while our results are in fairly good 
agreement with GEMC simulations [10,11,13,14,22]. Spe-
cifically, Jiang and Gubbins [14] performed GEMC simula-
tions on several large-sized systems; essentially, their re-
sults appeared to be independent of N. It should be men-
tioned that the critical points we obtain here (Table 1) are in 
excellent agreement with Jiang and Gubbins’ results, Tc = 

0.498±0.002 and ρc = 0.36±0.005. Figure 3 shows that 
Ising-like behavior predominates over a wide range from 
low temperature to T≈0.48 and mean field behavior pre-
dominates only above T = 0.5, a feature that is quite differ-
ent if rcut = 2.5. Therefore, it is no surprise that the critical 
point can be estimated very well. 

Away from the critical point, the system can accommo-
date all relevant fluctuations and exhibit Ising-like behavior. 
Close to the critical point, the system is too small to ac-
commodate every fluctuation because the correlation length 
increases notably exceeding the size of the simulation box, 
and, as a consequence, mean field behavior is observed. The 
phase coexistence for finite-size systems can be observed at 
temperatures higher than the estimated critical point (Fig-
ures 2 and 3), which implies significant finite-size effects. 
Next, let us explain why results reported in some of the lit-
erature are higher than our estimates. If we consider finite 
systems, especially small systems, and try to estimate the 
critical point, the data close to the critical point must be 
included. To fit the phase coexistence region close to Tc 
where the system presents the mean field behavior, a dif-

ferent critical point, specifically a higher Tc, can be 
achieved. The results are also compiled in Table 1. As is 
well-known, the results from equations of state (EOS) also 
have a higher Tc. For instance, Reddy and O’Shea (RO) [5] 
used EOS together with additional data from conventional 
Monte Carlo simulations (rcut = L/2, with long-range correc-
tion) and the viral EOS to fit a 33 parameter Benedict- 
Webb-Rubin equation. From the EOS, they obtained an 
estimate for the critical point of Tc = 0.537 and ρc = 0.365. It 
seems that the estimated Tc via EOS is in good agreement 
with our results, viz. Tc = 0.54 estimated by fitting the region 
of mean field behavior. Such good agreement is, however, 
somewhat exaggerated, because the EOS in ref. [5] seems to 
have an artifact and exhibits a strange hump close to the 
critical point where the mean field behavior has been pre-
viously investigated. Some years ago, Mulero et al. [23] gave 
the data of GL phase coexistence from the semi-empirical 
RO EOS. For comparison, their results are listed in Table 2 
together with our results for the full potential (rcut = L/2 plus 
long-range correction). The phase coexistence obtained 
from RO EOS is in excellent agreement with our Maxwell 
construction results at low temperature. When the tempera-
ture is increased, the deviation between RO EOS data and 
our results becomes increasingly significant. Furthermore, 
when we try to calculate the order parameter M2 and M8 
using the data of EOS, the crossover from Ising-like behav-
ior to mean field behavior is not found at all via the relation 
of M versus T. 

As is well-known, the van der Waals loops in simulations 
are due to finite-size effects and may become weaker for 
systems with large particle numbers [24]. To further explore 
finite-size effects in the 2D LJ system, we perform another 
set of simulations using the Maxwell construction in sys-
tems where N = 144, 196, 324, 400, 1024. We begin by  

Table 2  Gas-liquid phase coexistence at full potential (rcut = L/2 together with long-range correction) 

 Ref. [23]  This paper (compression)  This paper (expansion) 

T ρG ρL  ρG ρL  ρG ρL 

0.42 0.01776 0.75532  0.01311 0.7637 0.01405 0.76399 

0.43 0.02109 0.74685  0.01266 0.74879 0.01242 0.74908 

0.44 0.02494 0.73755  0.01874 0.73738 0.01798 0.73695 

0.45 0.0294 0.72752  0.02577 0.72799 0.02525 0.7271 

0.46 0.0346 0.71677  0.03287 0.71484 0.0333 0.71609 

0.47 0.0407 0.70521  0.04284 0.70283 0.04238 0.70212 

0.48 0.04794 0.69262  0.0487 0.68722 0.05201 0.68703 

0.49 0.05672 0.67859  0.06849 0.6726 0.06484 0.66996 

0.5 0.06772 0.66236  0.09541 0.65181 0.08678 0.65004 

0.51 0.08241 0.6422  0.12938 0.62791 0.13335 0.62819 

0.52 0.10504 0.61268  0.1611 0.59728 0.16921 0.59323 

0.53 0.23368 0.48612  0.25263 0.5358 0.23151 0.54528 
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studying the conventional case with rcut = 2.5. The curves of 
the estimated critical temperature in the region of Ising-like 
behavior Tc versus N are shown in the top panel of Figure 4 
(including our previous result with N = 256). The curve cor-
responding to critical density versus system size is not pre-
sented because no clear trend is seen due to statistical un-
certainties. Looking at the figure, the estimated Tc is de-
pendent on the size of system, i.e. the Tc of larger systems 
are obviously lower than those of smaller systems. This is 
different from the results obtained in GEMC simulations 
[11,13], where finite-size effects are much smaller and often 
approximately negligible. In GEMC simulations, the total 
volume of two simulation boxes is kept constant but the size 
of each box fluctuates, so the system size can only be con-
trolled by varying the number of particles and initial densi-
ties of the two boxes together with the preliminary estimates 
of the equilibrium densities for each system and temperature 
studied. However, in a typical set of Maxwell construction 
simulations, volumes of the simulation boxes are varied 
during compression or expansion procedures; therefore the 
system size is actually not constant and not comparable to 
that in GEMC simulations. Strictly speaking, the system 
size during our simulations is not constant either because 
the volume is varied relatively by changing the number of 
particles. It is probably for this reason why our results of 
finite size effect are so different from those obtained via  

 

Figure 4  Particle number (N) dependence for the estimated critical tem-
perature Tc in the region of Ising-like behavior. (a) rcut = 2.5; (b) full poten-
tial. Open circles (squares) represent results obtained under compression 
(expansion). 

GEMC. Indeed there are some previous results of finite-size 
effects which are in agreement with our present observation. 
For instance, we recently used the particle-transfer MD 
simulation method to construct the phase coexistence curve 
of the 3D LJ system, and observed that the results on fi-
nite-size effects were also different from GEMC results [4]. 
Wilding and Bruce [25,26] even reported an extensive MC 
study of the density and energy fluctuations in 2D LJ fluids 
within the grand-canonical ensemble, and the results are 
analyzed using finite-size-scaling theory. Their study lead to 
Tc = 0.440±0.005. Note that their cutoff distance for the po-
tential truncation is rcut = 2.0, so the obtained critical tem-
perature should be slightly lower than for rcut = 2.5. Never-
theless, their result is in perfect accord with our present re-
sult (Figure 4(a)). 

Furthermore, we investigated the case of full potential 
with different system sizes. The curve for the estimated Tc 
versus N is plotted in Figure 4(b). From the tendency of the 
curve, we can obtain an approximate value of the critical 
temperature for the system with full potential, i.e. Tc ≈ 0.485, 
which is also smaller than previous results [11,13,14]. 

In general, we note that most previously estimated Tc 
values for the 2D LJ system are too high when considering 
the full extent of finite-size effects. 

3  Conclusion 

In this paper, we described the use of the Maxwell construc-
tion method together with MD simulations in the investiga-
tion of GL phase coexistence in a 2D LJ system. The critical 
points were estimated and the corresponding critical proper-
ties calculated. Differences between our results and those 
found in the literature were analyzed in detail. In agreement 
with previous GEMC results, the estimated critical temper-
ature depended significantly on the truncation method of the 
LJ potential, although the critical density showed no clear 
trend as a result of statistical errors. Moreover, when the 
cutoff distance approached sufficiently large values, the GL 
phase coexistence curve and estimated critical point are 
identical to those of the full potential. 

The finite-size effects in the 2D LJ system were further 
studied. Via order parameter versus temperature fitting both 
in the region away from the critical point and in the vicinity 
of the critical point, the crossover phenomenon from Ising- 
like behavior to mean-field behavior, was observed and 
confirmed. Our simulation data indicated that the estimated 
critical temperatures are largely dependent on system size, 
in contradistinction to previous GEMC simulation results. 
When the full extent of finite-size effects is considered, we 
observed an estimated critical temperature of Tc ≈ 0.485, 
which is evidently lower than most of reported results, i.e. 
most estimated critical temperatures found in the literature 
are probably too high. 
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