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We provide regression analysis-based statistical models to explain the usage of wireless spectrum across four mid-size US cities
in four frequency bands. Specifically, the variations in spectrum occupancy across space, time, and frequency are investigated
and compared between different sites within the city as well as with other cities. By applying the mixed-effects models, several
conclusions are drawn that give the occupancy percentage and the ON time duration of the licensed signal transmission as a
function of several predictor variables.

1. Introduction

Spectrum measurement studies conducted by wireless com-
munications researchers have shown that the utilization
of licensed wireless spectrum is relatively low [1]. This is
a result of the fact that frequency bands are exclusively
licensed to specific services and entities on a command-and-
control basis by regulatory agencies, for example, U.S. Federal
Communications Commission (FCC), Industry Canada, and
U.K. Office of Communications (OfCom). Although such a
scheme is effective in protecting the rights of the incumbent
license holders, a completely new strategy of spectrum
allocation is needed in order to accommodate the increasing
need for efficiently utilizing the wireless spectrum. This
new strategy, called dynamic spectrum access (DSA), can be
enabled by highly agile wireless platforms called cognitive
radios [2]. Recently, as a significant step in this direction, the
FCC has adopted the initial rules for the use of unlicensed
devices in TV bands [3]. Consequently, there is a need to
accurately assess and characterize wireless spectrum in order
to facilitate the transition to this new spectrum allocation
strategy.

Some of the earlier works aimeing at quantifying the
spectrum usage within the context of DSA-oriented cogni-
tive radio using actual real-time measurements have been
reported in [1, 4]. A comprehensive summary of spectrum
occupancy for New York City and several locations in

Virginia were reported in [1]. Reference [4] presents similar
results for locations in the state of Georgia. In particular,
spectrum occupancy variations as a function of varying
thresholds and across the different angles of arrival at the
receiver were presented. In [5], a more thorough math-
ematical analysis based on continuous-time semi-Markov
models is provided using spectrum measurement data of
WLAN channels. More recently, closed-form probability
distributions are presented for several fixed bandwidth
signalling channels in [6] using the datasets presented in [1]
whereas in [7], a comparison of the spectrum occupancy
characteristics in four mid-size US cities is provided.

Spectrum measurement-based studies similar to those
described above have also been conducted outside of the
United States. In [8], spectrum occupancy for several bands
in the frequency range from 806 MHz to 2750 MHz in
urban Auckland, New Zealand is provided. In [9], four
spectrum sensing methods have been proposed, and their
performance is compared for UMTS uplink and GSM 1800
uplink bands. In [10], a methodology has been developed to
identify TV whitespace frequencies in the UK, using digital
TV coverage maps in conjunction with a database containing
their locations.

Although the paradigm shift in wireless spectrum reg-
ulatory approaches is based on the assumption that the
majority of wireless spectra are extensively underutilized
by the incumbent license holders, who rely on several
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Table 1: List of spectrum measurement locations.

Location
City

ROCHESTER, NY BUFFALO, NY PITTSBURGH, PA WORCESTER, MA

19th & 20th June 2008 21st & 22nd June 2008 23rd & 24th June 2008 17th, 26th, & 27th July 2008

SITE 1 S. Plymouth & E. Huron St. & 16th St Bridge & SE of Boynton Hall

Exchange Blvd Washington St. N of 1711 Penn. Av. WPI

SITE 2 Jay St. & Swan St. & Sheraton St. & Vernon St. &

Verona St. E. Michigan Av. Fort Pitt Bridge Dorchester St.

SITE 3 Prince St. & Pearl St. & Riverfront Park next to Bell Hill Park

Univ. Av. Church St. Birmingham bridge (off Belmont St.)

SITE 4 Mortimer St. & W. Genesee St. & Craig St. & Major Taylor Blvd. &

N. Clinton St. Seventh St. N. 5th Av. Thomas St.

SITE 5 Pearl St. & Oak St. & Grandview St. & Gateway Park (Parking lot)

Averill Av. Clinton St. Ulysses St. WPI

independently conducted measurement campaigns, there
still exists a definite need to obtain a deeper understanding
of this natural resource. By gaining insights into wireless
spectrum occupancy characteristics, appropriate technical
and legislative actions can be taken in order to support con-
tinued growth in the wireless sector. In this paper, we present
a statistical analysis for the wireless spectrum occupancy
across the spatial, temporal, and frequency dimensions using
measurements collected in four mid-size US cities, namely,
Rochester, NY; Buffalo, NY; Pittsburgh, PA; Worcester, MA.
Although we have collected these measurements across
several bands within the 88 MHz–3 GHz frequency range,
results pertaining to only certain bands are presented for the
purpose of brevity.

The rest of this paper is organized as follows. In Section 2,
the measurement setup consisting of the hardware and
software tools used to collect the data is described. Then,
a description of the statistical results extracted from the
measured data is presented in Section 3. A brief discussion
of the linear mixed-effects model followed by its application
to the collected measurement data is provided in Sections 4
and 5. Finally, we conclude the paper by highlighting the key
conclusions in Section 4.

2. SpectrumMeasurement Setup

In our measurement campaign, we used two antennas for
scanning the low- and the high-frequency ranges. For the
low-frequency range, from 88 MHz to 1240 MHz, we used
a Diamond D-220 mini-Discone antenna with an operating
frequency range of 100–1600 MHz. For the high-frequency
range, from 1850 MHz to 2686 MHz, we used an Advanced
Technical Materials (ATM) 07-18-440-NF horn antenna
with an operating frequency range of 0.7–18 GHz and an
aperture of 60◦. This helped us in observing the variation
in spectrum usage across different angles of arrival. During
our operation, one of these antennas is wired to an Agilent
CSA series N1996A spectrum analyzer with frequency range

ranging from 100 kHz to 3 GHz and consisting of a low-noise
amplifier (LNA). We use an in-house software tool called
SQUIRREL (Spectrum Query Utility Interface for Real-time
Radio Electromagnetics) to communicate remotely with the
spectrum analyzer via commands issued through a simple
graphical user interface on a laptop. The GUI accepts
details such as the center frequency, the span around the
center frequency, and the resolution bandwidth. SQUIRREL
communicates with the spectrum analyzer using TCL (Tool
Command Language) over TCP/IP. After the sweep action
is performed by the spectrum analyzer, the data points are
returned to the GUI in a comma-spaced value format. In its
current format, the GUI and the server are written in JAVA
and can be deployed on a variety of operating systems and
computers.

The details about the locations and the dates of our
spectrum measurement campaign are given in Table 1.
We chose five locations which were at least a mile apart
from each other, so that we would be able to capture
the spatial variation as we go higher in frequency in the
radio frequency (RF) spectrum. We measured usage activity
across approximately 70% of the wireless spectrum from
88 MHz to 2686 MHz. We omitted those bands in which the
average usage has been previously reported to be extremely
low. Thus, we focused on the remaining bands of interest.
Also, in our measurement procedure, we sweep a particular
frequency band, for example, Personal Communications
Service (PCS) from 1850 MHz to 1990 MHz, completely for a
specific number of times and then proceed to the next band
instead of scanning a wide frequency range. By performing
the sweeps in this manner, our goal was to capture temporal
variations over small periods of time. We chose a constant
resolution bandwidth of 20 kHz, and the number of sweeps
recorded per band per site is 25. Figure 1 provides a first-
step summary of all the data points collected across all
the frequencies in bins of 20 kHz. This plot which is a
complementary cumulative distribution function shows the
spectrum occupancy in each of the four cities as a function
of energy.
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Figure 1: Cumulative distribution functions showing spectrum
occupancy for the four cities surveyed.

3. SpectrumOccupancy Characteristics

Figure 1 shows the trend in the occupancy irrespective of
the cities, sites, time, and frequency. Although it serves the
purpose of summarizing the measured results, a great deal of
details remain hidden in the data with respect to both the
occupancy characteristics over time, frequency, and space,
and their dependance on other influencing factors. One way
of analyzing the occupancy results is presented in [7] where
we have provided occupancy values in percentages across
different channels, along different angles of arrival and over
several time sweeps as observed during the measurement
duration. Another way of performing the analysis is from the
point of associating the measured data with certain predictor
variables in a linear mixed-effects model as we will explain
below.

Due to the differences in the signal modulation involved
as well as the differences in the bandwidths utilized by each
channel, energy spectral densities corresponding to signals
transmitted for different wireless services can be expected
to be different. Thus, the four different wireless services
analyzed, namely, paging, TV, WCS, and PCS correspond to
four different predictor variables. Similarly, the four US cities
are also predictor variables. Assuming that the spectrum
usage is dependant on two other factors, namely, the time
of the day and day of the week, they are incorporated as
well. Due to the fact that our data corresponds to only four
mid-size US cities, we do not claim that our model is a
representative of all the mid-size US cities. This is the reason
why although our model is not as general as we would like it
to be, due to practical constraints involved, we, nevertheless,
believe that it is indicative of the general trends in spectrum
occupancy characteristics that can be expected in any typical
US city. Moreover, we considered the population densities
associated with the measurement sites as our random-effects

term to reflect this fact. In the following sections, we provide
more details regarding the occupancy values by grouping
the appropriate collected data points as functions of several
predictor variables. We now briefly explain the algorithm
used to determine the presence/absence of the licensed user
signal.

In order to show a comparison of the spectrum usage as
a function of the variables mentioned above, an optimum
threshold is computed using Otsu’s gray-level thresholding
algorithm [11] for each of the datasets. Otsu’s optimum
threshold provides a maximum separation between the two
classes of data, namely, the signal and the noise (There are
alternative approaches for computing the threshold, some of
which are explained in [4]). Our primary motivation to use
Otsu’s thresholding algorithm is influenced by the nature of
the data collected. Our measured data is in fact samples of
energy spectral density (ESD) across a band of concentration
and not time samples. We cannot apply traditional signal
detection-based techniques due to total absence of phase
information. Therefore, we detect the presence of the signal
in the data purely from the point of view of separating
data into two distinct distributions. The optimal threshold
calculated using Otsu’s algorithm is known to maximize the
variance between the two classes of data, namely, the signal
and the noise classes. Therefore, we employ this algorithm in
our analysis.

In order to apply Otsu’s algorithm, a matrix M(t j , fi)
is formed from the collected data points where the row t j
contains data points over all the frequency locations in the
band of interest during one particular time instant, and
the column fi represents the data points observed in that
frequency bin over all time sweeps during the measurement
process. The next step is to transform the contents of this
matrix into gray-scale values by applying the procedure
given by

I
(
t j , fi

)
= 1.0− 0.0

max{M} −min{M} ×
(
M
(
t j , fi

)
−min{M}

)
.

(1)

Applying Otsu’s algorithm to the matrix, I(t j , fi), gives the
required optimum threshold, using which, all the values
that are below are classified as noise and the rest as signal.
Performing row-wise additions on the matrix, M, and
dividing each element of the obtained column matrix with
the total number of frequency locations give the percentage
occupancy during the time period when the measurements
were taken. We consider this percentage occupancy as the
response variable which is a function of predictors such as the
city, the site, the time of day during which the measurements
were taken, weekday/weekend, and the specific wireless
service corresponding to a particular frequency band, as
mentioned previously. Before proceeding to fit the spectrum
occupancy percentage as a function of these variables, we
provide a brief overview of the linear mixed-effects model
and explain its appropriateness in modeling the above-
mentioned response variable.
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4. An Overview of the Linear
Mixed-Effects Model

The normal linear model given by the equation:

yi = β1x1i + β2x2i + · · · + βpxpi + εi, (2)

explains the relationship between one or more independent
variables, called regressor variables, and a dependent variable,
called the response variable. The parameters of the model are
called the regression coefficients, specified as β1, β2, . . . ,βp,
and the error variance, defined as σ2. The above model has
one random-effect term, the error term εi given by

εi ∼ N
(
0, σ2), (3)

which is assumed to be independent and identically dis-
tributed (i.i.d.). Another important assumption is that the
sample is drawn randomly from the population of interest.
Usually, we set x1i = 1 while β1 is either a constant or an
intercept. Therefore, rewriting the model in matrix form
yields

y = Xβ + ε,

ε ∼ Nn
(
0, σ2In

)
,

(4)

where we define the following variables:

(i) y = [y1, y2, . . . , yn]T is the response vector;

(ii) X is the model matrix;

(iii) β = [β1,β2, . . . ,βn]T is the vector of regression
coefficients;

(iv) ε = [ε1, ε2, . . . , εn]T is the vector of errors;

(v) Nn represents the n-variable multivariate normal
distribution.

Estimating the parameters of the above model is a well
known linear least squares problem. The estimate of the
regression coefficient vector is given by the expression:

β̂ =
(
XTX

)−1
XTy. (5)

Several variants of the basic linear regression model
of (2) are widely used in various areas of science. One
such variant is the mixed-effect model. These models include
additional random-effect terms and are appropriate in
representing clustered, and therefore, dependent data arising
when data are collected over time on the same entities; that
is, these repeated measures data are generated by observing a
number of entities repeatedly under differing experimental
conditions, where the entities are assumed to constitute a
random sample from a population of interest. Longitudinal
data constitute a common type of repeated measures data,
where the observations are ordered by time or position
in space. In general, longitudinal data can be defined
as repeated measures data where the observations within
entities could not have been randomly assigned to the levels
of a “treatment” of interest (usually time or position in
space); hence, serial correlation results.

Writing the linear mixed-effect model of the form shown
in (2) yields

yi = β1x1i + β2x2i + · · · + βpxpi

+ b1z1i + b2z2i + · · · + bqzqi + εi,
(6)

where

bi ∼ N
(
0, σ2D

)
,

εi j ∼ N
(
0, σ2Λ

)
.

(7)

Alternately, but equivalently, the above model can be written
in matrix form as

yi = Xiβ + Zib + εi,

b ∼ Nq
(
0, σ2D

)
,

εi ∼ Nni

(
0, σ2Λ

)
,

(8)

where we define the following variables:

(i) yi is the ni × 1 response variable for observations in
the ith group;

(ii) Xi is the ni × p model vector for the fixed effects for
observations in the ith group;

(iii) β is the p×1 vector of fixed-effects coefficients for the
ith group;

(iv) Zi is the ni × q model matrix for the random effects
for observations in the ith group;

(v) bi is the q×1 vector of random-effects coefficients for
the ith group;

(vi) εi is the ni × 1 variable of error for the ith group;

(vii) σ2D is the q × q covariance matrix for the random-
effects;

(viii) σ2Λ is the ni × ni covariance matrix for the errors in
the ith group.

From the above representation, define X = [X1
T,X2

T, . . . ,
XM

T]T, D̃ = diag(D1,D2, . . . ,DM) and Z = diag(Z1,Z2, . . . ,
ZM). When the variance components Λ and D are known,
the standard estimators for β and b are the generalized linear

estimator β̂lin = (XTV−1X)−1XTV−1y where V = Λ + ZDZT

and the posterior mean, b̂lin = DZTV−1(y − Xβ̂). The

estimates β̂lin and b̂lin jointly maximize the function [12]:

glin
(
β, b | y) = −1

2
σ−2(y −Xβ − Zb

)T
Λ−1(y −Xβ − Zb

)

− 1
2
σ−2bTD̃b.

(9)

The above function is the logarithm of the posterior density
of b (up to a constant) for fixed β and for fixed b is the log-
likelihood for β (up to a constant). Equation (9) has two
terms, a sum of squares term and a quadratic term in b. By
transforming the quadratic term in b to an equivalent sum
of squares term, the optimization can be treated purely as a
least squares problem. Then it is straightforward to translate
it into the nonlinear setting.
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Table 2: Fixed effects.

Coefficient Std. Error DF t-value P-value

(Intercept) 13.28 0.244 473 54.354 <.0001

TV 5.82 0.317 473 18.36 <.0001

PCS 4.33 0.225 473 19.23 <.0001

WCS 4.08 0.202 473 20.11 <.0001

Roch 1.37 0.423 473 3.23 7e-4

Buff 4.98 0.273 473 18.21 <.0001

Pitt 3.67 0.356 473 10.29 <.0001

AN 0.5 0.159 473 3.15 9e-4

Weekend −1.12 0.116 473 −9.68 <.0001

Table 3: Fixed effects.

Coefficient Std. Error DF t-value P-value

(Intercept) 2.33 0.12 473 19.44 <.0001

TV 2.21 0.132 473 16.73 <.0001

PCS 1.02 0.056 473 18.23 <.0001

WCS 1.24 0.24 473 5.16 <.0001

Roch 2.12 0.474 473 4.47 <.0001

Buff 3.26 0.778 473 4.19 <.0001

Pitt 2.74 0.769 473 3.56 2e-4

AN 2.03 0.76 473 2.67 <.0001

Weekend −1.87 0.227 473 −8.23 <.0001

5. Linear Mixed-Effects Model Applied to
Real-TimeWireless Spectrum Analysis

5.1. Regression Fit for Percentage Spectrum Occupancy. The
model for the performed analysis on the spectrum occupancy
percentage using a linear mixed model is as follows:

Occ.Perci j = β0 + β1TVi j + β2PCSi j + β3WCSi j

+ β4rochi j+β5buffi j+β6pitti j+β7ANi j

+ β8weekendi j + bi0 + bi1PDi j + εi j .

(10)

As seen from the above model, we have selected three indica-
tor variables (i.e., either 1 or 0) for the types of the wireless
service (TV, PCS, WCS), three indicator variables for the
cities (Rochester, Buffalo, Pittsburgh), one indicator variable
for afternoon/before noon, and one indicator variable for
weekend/weekday. The intercept represents the spectrum
occupancy in the paging band for Worcester, Massachusetts.
As mentioned previously, the response variable in the
regression analysis that we considered is the percentage
spectrum occupancy which is calculated after applying Otsu’s
thresholding algorithm. Also, notice that the population
density of the sites is chosen as the random-effects term
which is specific to each of 20 groups (4 cities × 5 sites).
Since, we collected 25 wireless spectrum sweeps in each
of the 5 sites from each city, the population density is

chosen as the random effect that is different among the
sites. Moreover, the population density is rounded off to
the next highest multiple of 100. Thus, discrete values
are considered, which helps in the interpretation of the
obtained results. Fitting the linear mixed model gives the
following results in Table 2. The parameters associated with
the random effects are as follows: standard deviation of the
intercept = 2.14, standard deviation of the population density
= 0.12, and the correlation coefficient of the population
density = 0.007.

From the above random effects, the covariance matrix of
the random effects [13] can be calculated as follows:

σ2D =
⎡
⎣ 2.142 2.14× 0.12× 0.007

2.14× 0.12× 0.007 0.122

⎤
⎦

=
⎡
⎣ 4.58 1.8e − 3

1.8e − 3 0.0144

⎤
⎦.

(11)

5.1.1. Interpretation of the Obtained Regression Fit. From
Table 2 mark (in Tables 2 and 3, DF is short for degrees of
freedom), we see that the percentage spectrum occupancy
for Worcester in the paging band is 13.28% with a P-value
of < .0001. With all other regressors remaining constant,
the percentage spectrum occupancy for the city of Rochester
in the paging band increases to 14.65%; that is, it is 1.37%
higher than that of the city of Worcester with the associated
P-value being 7 × 10−4. Similarly, with the city under
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(a) Quantile-quantile plot for the fit shown in (10)
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(b) Quantile-quantile plot for the fit shown in (12)

Figure 2: Quantile-quantile plots for the proposed linear mixed-effects models.

consideration, the type of the wireless service, and the time
of the day remaining constant, the spectrum occupancy
decreases by 1.12% on the weekends for a P-value of < .0001.
Notice that we have obtained all of the above coefficients
at very low P-values indicating the statistical significance of
each of the regressors. Also, the structure of the D matrix
which is almost diagonal suggests that the assumed normality
assumption on the random effects is valid. The plot of the
standardized residuals shown in Figure 2(a) also supports
this assumption on the residuals since approximately 95%
of the residuals lie in the range [−1.96, +1.96]; that is, they
follow a standard normal distribution very closely.

5.2. Regression Fit for ON Time Duration of the Licensed Signal
Transmissions. The model for the performed analysis on the
ON time duration of the licensed signal transmissions in
the four bands considered is similar to that of the spectrum
occupancy percentage. Thus, it follows that

ON. timei j =β0 + β1TVi j + β2PCSi j + β3WCSi j

+ β4rochi j+β5buffi j+β6pitti j+β7ANi j

+ β8weekendi j + bi0 + bi1PDi j + εi j .

(12)

In this case, the response variable in the regression
analysis performed is the ON time duration which is
calculated after applying Otsu’s thresholding algorithm. We
calculated the amount of time during which the licensed
signal transmission was consistently above the calculated
threshold. The regressor variables are the same. Fitting the
linear mixed model gives the following results presented in
Table 3. The parameters associated with the random effects
are as follows: standard deviation of the intercept = 1.58,
standard deviation of the population density = 0.34, and the
correlation coefficient of the population density = 0.005.

From the above random effects, the covariance matrix of
the random effects can be calculated as follows:

σ2D =
⎡
⎣ 1.582 1.58× 0.34× 0.005

1.58× 0.34× 0.005 0.342

⎤
⎦

=
⎡
⎣ 2.49 2.7e − 3

2.7e − 3 0.1156

⎤
⎦.

(13)

5.2.1. Interpretation of the Obtained Regression Fit. From
Table 3, we see that the ON time duration for the city of
Worcester in the PCS band is 3.35 s with a P-value of <.0001.
It is 1.02 higher than that of the paging band. With all other
regressors remaining constant, the ON time duration of the
licensed signal transmissions for the city of Pittsburgh in the
PCS band increases to 6.09 s; that is, it is 3.76 s higher than
that of the city of Worcester with the associated P-value being
2×10−4. Similarly, with the city under consideration, the type
of the wireless service, and the time of the day remaining
constant, the ON time duration decreases by 1.87 s on the
weekends for a P-value of < .0001. Again, we have obtained
all of the above coefficients at very low P-values indicating
the statistical significance of each of the regressors. Again,
the normality assumption on the random effects is validated
by the structure of the D matrix which is almost diagonal.
We also show the quantile-quantile plot of the standardized
residuals in Figure 2(b). Even though, towards the lower tail
of the distribution, there is a slight deviation from the normal
scores, we believe that it is not significant enough to seriously
violate the normal distribution assumption.

6. Conclusion

In this paper, we analyzed the spectrum occupancy charac-
teristics for four mid-size US cities in four frequency bands
from a spectrum survey point of view. A linear mixed-effects
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model fit was obtained, and the selected regressor variables
were shown to be statistically significant. The residual plots
shown are a good indicator of this. Extending the considered
models to include other regressor variables without making
the interpretability of the models difficult is an important
area in the field of regression analysis. In future work, we
plan to study other techniques available in order to explain
the spectrum occupancy characteristics for the other bands.
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