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Cellular systems using adaptive antennas for spatial processing have been shown to provide an increase in capacity. When em-
ploying adaptive antennas, the standard approach to achieve capacity gain has been to maximize the link quality between the
mobile and base station via optimum combining. This paper presents an alternative optimization approach based on jointly op-
timizing the adaptive antenna array to maximize the spatial and trunking efficiencies. An upper bound on the joint optimization
was formulated to evaluate the capacity. Based on this upper bound, the effect of using adaptive antenna arrays to maximize the
trunking efficiency was subsequently an outstanding issue. Monte Carlo simulations, substantiated with theoretical analysis, were
used to evaluate this issue. Based on the analysis, utilizing the adaptive antennas to optimize trunking efficiency could increase the
capacity by 2 to 4 times.
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1. INTRODUCTION

The information age has accelerated the need for communi-
cations and the mobile society has brought about an ever-
increasing demand for access to untethered communica-
tions. Current wireless telephony services are dominated by
the design constraints imposed by speech; whereas, the third
generation systems are exploring concepts to handle mixed
signal environments. The increase in demand and the abil-
ity to handle multimedia applications have increased the
need to achieve greater spectral efficiency. To address these
needs, spatial processing is being vigorously pursued in both
academia and industry. Adaptive antennas are regarded by
many within the industry as one component in meeting the
service needs in future generation mobile networks [1, 2]. At
issue is the method for utilizing adaptive antennas that will
achieve the greatest performance benefit.

Spectral efficiency, ηS, is a primary measure of effective-
ness for wireless services, which can be expressed as [3]

ηS = ηB × ηC × ηT erlang/m2/Hz, (1)

where ηB is the bandwidth efficiency. Spatial efficiency, ηC ,
provides a measure of the service’s efficiency of providing
traffic channels within a given area. Trunking efficiency, ηT ,
as used in this paper, is a measure of the offered traffic per
channel in the network. Spatial filtering for interference re-
duction (SFIR) and space division multiple access (SDMA)
are current methods for utilizing adaptive antennas. Both
methods affect ηC to achieve an improvement in ηS. SFIR
and SDMA exploit spatial diversity between the signal of in-
terest (SOI) and cochannel interfers by restricting signal re-
ception to the directions that enhance the SOI’s quality. For
frequency divisionmultiple access (FDMA) and/or time divi-
sion multiple access (TDMA) systems, the method in which
ηC is influenced is distinct for each spatial processing tech-
nique. In FDMA/TDMA systems, frequency planning and
cochannel reuse distances are central to network planning.
SFIR is used to reduce the impact of cochannel interference
from typically the first tier of cochannel cells, thereby allow-
ing a reduction in the reuse distance for the same quality
of service (QoS). On the other hand, SDMA allows multi-
ple users to be assigned to the same traffic channel within
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Figure 1: Example illustrating the advantage of using an adaptive
antenna array to maximize the trunking efficiency.

a cell. Spatial diversity is again used to achieve the desired
signal quality. The signal processing required is essentially
the same for both methods, but the impact on ηC can be
significantly different, depending on the underlying assump-
tions used in the analysis. For code division multiple access
(CDMA) systems, network frequency planning is less restric-
tive, but cochannel interference limits the capacity and there-
fore, spatial filtering can affect CDMA performance.

An alternative approach for utilizing smart antenna ar-
rays has been implemented commercially for CDMA/AMPS
networks as reported in [4]. The method is based on adjust-
ing each base station’s (BS) antenna pattern in order to bal-
ance the traffic loads within each cell of the network. The
antenna pattern is adjusted using phased array antennas at
the BSs in the network, which are remotely configured by
operators monitoring the traffic. Traffic channels available
within the network are thereby more likely to be utilized and
all cells in the network are less likely to exceed 100% load-
ing. Therefore, the phased array is adapted to improve ηT and
thereby improve ηS. In this paper, the impact on ηS is investi-
gated when adaptive antennas at the BSs in a cellular network
are adapted dynamically to maximize ηT . In Sections 3 and
4, the simulation model and corresponding results are pre-
sented. In order to obtain a point of validation for the simu-
lation model, an analytical solution was obtained based on a
1D network topology, as derived in Appendix A. A compari-
son of the analytical and simulation results is summarized in
Section 3.2.

Figure 1 illustrates the concept for a three-cell network
where each BS is equipped with an adaptive array. The hexag-
onal grid is used to illustrate the coverage region based on an
omnidirectional antenna at each BS. Radius d0 is the maxi-
mum radius to achieve the desired received signal-to-noise

ratio (SNR). Radius d is the corresponding maximum ra-
dius when an adaptive array is employed. If the three mobile
stations (MSs) request service at the same time, then BS-A
needs to have three traffic channels available, assuming om-
nidirectional antennas, in order to avoid blocking a service
request. Even if SDMA is employed, three FDMA, TDMA,
and/or CDMA traffic channels are still likely to be required
for the scenario depicted in the figure. This is due to the spa-
tial correlation between the received signals being too large
to allow the same traffic channel to service all three users.
Adapting the antenna array to maximize ηT , allows one traf-
fic channel from each BS to be used to handle the offered
traffic. Again, three orthogonal traffic channels are required,
but with a 67% improvement in trunking efficiency at BS-A.
Therefore, greater flexibility is provided to handle additional
traffic.

A number of studies, both analytical and field, show that
adaptive antennas can improve spectral efficiency. At issue
is how the adaptive array can be used most effectively. As
indicated by the simple example in the previous paragraph,
maximizing ηC may not always provide the best ηS. Likewise,
the converse is also true, maximizing ηT does not ensure the
best ηS. Therefore, adapting the antenna array for the joint
maximization of ηT × ηC seems appropriate. In Section 2,
the concept of jointly optimizing the adaptive antenna ar-
ray over ηT × ηC is developed further and an upper bound is
formulated such that the capacity increase over an omnidi-
rectional antenna can be evaluated. In order to evaluate the
upper bound, the effect of using adaptive antenna arrays to
maximize ηT is required and is addressed in Sections 3 and 4
as indicated above.

2. JOINT OPTIMIZATION CONCEPT

A standard optimization strategy for adaptive antenna ar-
rays to achieve spatial efficiency, max(ηC), is to mitigate
the impact of channel impairments, by optimally combining
the SOI’s multipath components and by the suppression of
cochannel interference. This is done independently for each
MS assigned to the BS [5, 6, 7, 8, 9, 10]. The adaptive antenna
weights, W, at the BS are adapted to maximize the QoS for
the SOI, S,

W∗ = argmax
W

(
SINRS

)
, (2)

where SINRS is the signal-to-noise and interference ratio for
signal S. Based on our research and the research of others
[11, 12, 13, 14, 15, 16, 17, 18, 19], using this approach in
conjunction with SFIR can achieve a reuse factor reduction
from 7 to either 3 or 1, with a corresponding capacity in-
crease of either 133% or 600%, respectively. The effectiveness
of using an adaptive antenna for SDMA in an FDMA/TDMA
system is somewhat less clear. From the results published in
the literature [13, 14, 15, 20], a capacity increase over SFIR
of approximately 40%–20% is indicated. The lower capaci-
ties were achieved with an antenna array of approximately
4 elements, while the higher capacities typically required in
excess of 8-element antenna arrays.
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For CDMA-based systems, using an adaptive array can
provide spatial diversity and reduce the impact of interfer-
ence, especially under imperfect power control. Capacity and
performance issues, when using adaptive antennas in CDMA
based systems, have been addressed in [21, 22, 23, 24, 25, 26].
Results in both [24, 25] indicate a 500% increase in capacity
over an omnidirectional antenna using an antenna array of
approximately 8 elements.

Using (2) to optimize the link quality between each BS
to MS independently, appears to provide an increase in ca-
pacity regardless of the multiple access technique used by the
cellular service. As indicated above, using (2) in conjunction
with SFIR and/or SDMA maximizes ηc, but it does not take
into account the impact that the adaptive antenna array may
have on ηT . The following alternative approach, which opti-
mizes the adaptive array to jointly maximize spatial efficiency
and trunking efficiency, that is, max(ηC ×ηT), should achieve
greater spectral efficiency. Letting n represent the number of
signals of interest within the coverage region of b BSs, then
the solution to max(ηC × ηT) is based on adapting the weight
matrix W =

[
W1 · · · Wb

]
where W j , j = 1, . . . , b, are the

weight vectors corresponding to each BS in the network. The
objective is to determineW∗ such that

W∗ = argmax
W,{Si}

(∣∣{Si}∣∣|Pr (SINRSi ≤ γi
) ≤ ξi, i ∈ 1, . . . , n

)
,

(3)
where (|{Si}||Pr(SINRSi ≤ γi) ≤ ξi) is the cardinality of the
set of signals {Si} with their required QoS satisfied. The QoS
is based on the outage probability, Pr(SINR ≤ γ), with the
protection ratio γ. Equation (3) optimizes the adaptive ar-
ray to maximize the number of signals that meet or exceed
the desired QoS, that is, minimizes the blocking probabil-
ity. Therefore, the solution to (3) maximizes spatial efficiency
and trunking efficiency, max(ηC ×ηT). The direct implemen-
tation of (3) can be highly complex, since W∗ needs to be
determined for each user in the network. As required by (3),
this means determiningW∗ for one user is dependent on the
W∗s for all the other users. The formulation does suggest
a more tractable two-step approach: dynamically adapt the
coverage region of the BS based on the spatial distribution of
the MS and then employ SFIR and/or SDMA to enhance the
QoS.

In order to evaluate the capacity increase provided by
an adaptive antenna array optimized based on (3), an up-
per bound on max(ηC × ηT) is formulated. A simple upper
bound is given by

max
(
ηC × ηT

) ≤ max
(
ηC

)
max

(
ηT

)
. (4)

The first term in the bound, max(ηC), is based on using (2)
to optimize the adaptive antenna weights. The correspond-
ing capacity gains have been addressed in the literature, as
reviewed above. Equality in (4) is unlikely, since ηC and ηT
are not independent functions. As is evident from (3), trade-
offs are required in determining the optimal set of weights.
In (2), the weights are optimized to maximize the SINR of
each MS to BS assignment, with assignments typically made

to minimize cochannel interference. In (3), this constraint
is relaxed by allowing MSs to be assigned to BSs that re-
quire an increase in directional signal power and hence cause
an increase in cochannel interference. The trade-off involves
balancing the degradation in network performance caused
by the increase in cochannel interference with the benefit of
improved load balancing. This required trade-off is not re-
flected in the bound presented on the right-hand side of (4).

In order to evaluate max(ηT), a simplified version of (3)
is used,

W∗ = argmax
W,{Si}

(∣∣{Si}∣∣|D(
BSj ,MSi

) ≤ d,

∀ j ∈ 1, . . . , b; ∀i ∈ 1, . . . , n
)
,

(5)

where (|{Si}||D(BSj ,MSi) ≤ d) is the cardinality of the set
of signals {Si} within the network assigned to a BS, and
D(BSj ,MSi) is a distance measure between the jth BS and
the ith MS. Based on (5), the adaptive array is adapted to
provide range extension. The range extension is then used
to optimize the BS to MS assignment in order to minimize
the blocked traffic, that is, min(nb), where nb is the num-
ber of users blocked in the network. Alternatively, (5) can be
viewed as maximizing the number of channels utilized by the
network. In (5), the QoS is assumed sufficient, given that the
MS is within distance d of the assigned BS. This imposes the
requirement that cochannel interference is mitigated by ei-
ther using orthogonal traffic channels, SFIR/SDMA, channel
allocation to minimize interference, or some combination of
the techniques to ensure that the required QoS is obtained.
The solution for min(nb) based on (5) always exists and, in
general, the MS to BS assignment that achieves the min(nb)
is not unique. However, additional constraints could be im-
posed to obtain the solution that minimizes cochannel inter-
ference, power, and/or hand-off frequency.

The optimization of (3) or (5) will be dependent on the
multiple access technique(s) used for the service. For exam-
ple, the downlink for a CDMA service requires simultane-
ous transmission to all users assigned to the BS in order to
maintain orthogonal coding. Therefore, for CDMA the so-
lution to W∗ in (5) can be viewed as a reshaping of the cell
boundaries based on the traffic load (similar to the approach
used in [4]). The resulting trunking efficiency obtained for
CDMA using this approach will most likely be different than
optimizingW∗ for an individual MS, as may be possible in a
FDMA/TDMA based service. A goal of the paper is to present
a general upper bound. Tighter bounds could be obtained by
utilizing system specific characteristics.

In evaluating max(ηT), there are two important issues:

(1) the feasible range for extending the BS coverage using
an adaptive array, and

(2) the spatial traffic model used in the evaluation. Based
on the simulation results presented in [27], using a
circular adaptive antenna array at the BS could ex-
tend the coverage range by a factor of 2.8 or 5.5 with
a 10- or 100-element antenna array, respectively. This
conclusion is based on a 3◦ scattering angle, path loss
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exponent of 4 and a single MS. An analytical study
[28], based on the match filter bound on the bit er-
ror rate probability, indicates the expected coverage
range for a 10-element uniform linear array (ULA) is
nearly double that of an omnidirectional antenna. The
expectation is over variation in the angle spread and
the pointing angle between the BS and MS. Based on
these results, if the adaptive array is used solely to pro-
vide range extension, then a range increase from 1.5
to 2.5 seems feasible. Using the adaptive antenna array
to achieve directional gain as well as spatial process-
ing could incur an increase in the number of antenna
elements required to obtain the desired performance.

In [29], complex deployment scenarios are specified as
test environments for third generation Universal Mobile
Telecommunication System radio services, based on proba-
bilistic models for user activity and user movement within
the network coverage area. A mixture of packet-switched
data services along with circuit-switched services at various
data rates are considered. In third generation systems, one
method for handling high data rate users is to use multi-
ple channels to provide high capacity links [30, 31, 32]. Un-
der these environments, spatially correlated traffic with a
nonuniform spatial distribution is likely. In order to evalu-
ate max(ηT) based on optimizing (5), the important aspect
of the traffic deployment is the active users’ spatial distri-
bution. This distribution can be viewed as a random pro-
cess (RP) governed by the probabilistic models of user ac-
tivity, movement and service types. The traffic models used
in the analysis are based on evaluating the RP at a given in-
stant in time. Therefore, the traffic models are random vari-
ables (RV) that describe the location of active users within
the network coverage region at an instant in time. Two traffic
models were considered. The first traffic model was used to
provide a baseline, with the users’ traffic spatially indepen-
dent and identically distributed (iid), with a uniform distri-
bution over the network coverage region. The second traf-
fic model was based on a stochastic model developed to de-
scribe cell load activity within a network [33]. Based on em-
pirical data of cell load activity, statistical analysis was used
to analyze the hypothesis that the logarithm of the cellular
traffic can be described by a Gaussian distribution. The hy-
pothesis was rejected for only a small percentage of cases.
The standard deviation for the log-normal distribution, σTr,
was determined based on the empirical data with most val-
ues ranging from 3 to 4 dB erlang. This empirical study was
used in developing the second traffic model as discussed in
Section 3.1.

3. MODEL DEVELOPMENT

In order to analyze the capacity enhancement based on us-
ing adaptive antennas to maximize the trunking efficiency,
the conditional blocking rate probability density function
(pdf), pBr(nb|d/d0), was evaluated, where nb is the number
of blocked users in the network and d/d0 is the relative range
extension provided by the adaptive antenna array over an
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Figure 2: Linear grid cellular system used for 1D network model.

omnidirectional antenna. A closed form solution for the pdf
is, in general, difficult to obtain due to the combinatorics in-
volved with determining the number of blocked users when
d/d0 > 1.0. This difficulty can be observed in even the three-
cell network depicted in Figure 1. A Monte Carlo simulation
was therefore used to estimate the pdf. In Section 3.1, the
simulation model used in the analysis is presented.

Analytical results were tractable for a 1D network model,
Figure 2. A derivation of the cumulative distribution func-
tion (cdf) for d/d0 = 1.0 is presented in Appendix A.1.
A corresponding upper bound and estimate of the cdf for
d/d0 > 1.0 are presented in Appendix A.2. The analytical re-
sults were used to show that the Monte Carlo results were
consistent with analytical results for the 1D cellular system.
A comparison of the 1D network model results is summa-
rized in Section 3.2.

3.1. Simulationmodel

Monte Carlo simulations were used to estimate the condi-
tional blocking rate pdf, pBr(nb|d/d0). For the simulation re-
sults presented in Section 4, a 2D network model was used.
The 2D network model consisted of a

√
b ×

√
b hexagonal

grid of cells with each of the b BS located at the center of a
hexagon. The BS coverage range was d0, with an omnidirec-
tional antenna, and d, with an adaptive antenna array. The
network coverage region was defined as the area contained
within the union of the circles with radius d0 and the cir-
cles centered at each BS. Therefore, the region over which the
users are distributed within the network remains the same,
regardless of the extension in coverage range provided by the
adaptive array.

The cells within the network could each support up to
m traffic channels. The total traffic in the network at a given
instant in time is n, where n = bmGc and Gc is the offered
traffic per channel in the network. Therefore, Gc is the net-
work trunking efficiency for which the corresponding block-
ing rate pdf is to be estimated. The analysis focuses on sce-
narios where sufficient channels are available in the network
to service the users’ requests, that is, 0 < Gc ≤ 1 and examines
the network’s ability to be configured to provide coverage for
the n users.

As indicated in Section 2, the user spatial distribution can
impact the trunking efficiency. Because of this, two RVs were
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used to spatially distribute the MS traffic load: Traffic Model
I and Traffic Model II. For Traffic Model I, the MSs were
iid with a uniform distribution over the network coverage
area. For Traffic Model II, the traffic load at each cell was iid
with a log-normal distribution. The log-normal distribution
was zero mean with standard deviation, σTr. The values of
σTr used in the simulation were based on typical values re-
ported in [33]. Based on the load distribution obtained us-
ing the log-normal RV, the combined traffic load over all b
cell sites was normalized to equal n. The resulting traffic load
within each cell was spatially iid, with a uniform distribution.
The approach used for Traffic Model II was consistent with
the stochastic traffic model developed in [33] as discussed in
Section 2.

To estimate pBr(nb|d/d0), multiple trials were performed
using the same parameters, that is, the following parameters
were fixed for each experiment: d/d0, m, Gc, n, b, and the
Traffic Model (I or II). For each trial in an experiment, the
following steps were performed:

(1) distribute user traffic load within the network coverage
region based on Traffic Model I or II;

(2) assign MS to BS to achieve min(nb);
(3) determine number of users blocked, nb, and update

histogram;
(4) terminate experiment when the expected value of

PrBr(nb|d/d0), for all nb was within ±0.01, with a 95%
confidence.

Based on the trials performed for the experiment, pBr(nb|
d/d0) was then estimated.

The assignment strategy, step 2, was the essential com-
ponent in maximizing ηT , by minimizing nb. The adaptive
antenna weights were implicitly optimized based on (5). A
heuristic was used to approximate min(nb) and the details of
the heuristic are given in Appandix B.

3.2. Simulationmodel validation based on 1D
statistical analysis

In order to corroborate the results from the simulation
model discussed in the previous section, statistical analy-
sis was performed on a 1D network topology, Figure 2. In
Appendix A.1, the blocking rate cdf, PBr(nb|d/d0 = 1.0),
is derived based on an omnidirectional antenna at the
BS. A comparison of the blocking rate pdfs obtained with
the analytical, (pBr(nb|d/d0 = 1.0))Th, and simulation,
(pBr(nb|d/d0 = 1.0))Sim, are given in Figure 3 (line graphs
used for clarity; pdfs are sequence of impulses at 0 to n − 1).
The results were based on a 1D network with b = 10, m = 5,
Gc = 1.0, and n = 50 users. The users were iid and uniformly
distributed within the cellular system coverage area. The re-
sults from the simulation were consistent with the confidence
interval used for estimating the blocking rate probabilities.
The pdf comparison in Figure 3 reflects typical error results
when d/d0 = 1.0.

An analytical solution for the probability of blocking
in the 1D network when d/d0 > 1.0 was not tractable.
The difficulty in formulating a solution was in determining
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Figure 3: Comparison of the blocking rate pdf obtained based on
analytical evaluation and simulation estimation. The pdf is for 1D
model with b = 10,m = 5, Gc = 1.0, n = 50, and d/d0 = 1.0.

the likelihood of the channels from adjacent cells be-
ing available to prevent blocking within their extended
coverage region. An upper bound on the blocking rate
cdf,

(
PBr

(
nb|d/d0 = (1.0 + α)

))
Bound ≥ PBr

(
nb|d/d0 = (1.0 + α)

)
(6)

with 0 ≤ α ≤ 1.0, was formulated based on assuming that
all m channels from the adjacent cells were available within
their extended coverage region. Thereby, a lower bound on
the number of blocked users was obtained. The derivation for
(6) is given in Appendix A.2. For small values ofGc and α, the
bound should be tight, since the adjacent cells extended cov-
erage region is small and the likelihood of an adjacent cell’s
channels being available to service the MSs within these re-
gions is high. As either Gc or α increases, the bound becomes
less tight.

An estimate of the blocking rate cdf,

(
PBr

(
nb|d/d0 = (1.0 + α)

))
Est

≈ PBr
(
nb|d/d0 = (1.0 + α)

)
with 0 ≤ α ≤ 1.0,

(7)

was also formulated, Appendix A.2. The estimate is based on
assuming that M̂ channels from the adjacent cells were avail-
able in their extended coverage region, where M̂ is the ex-
pected number of available channels based on the level of
user activity within the network.

The analytical bound in (6) and analytical estimate in
(7) were compared to the blocking rate probability estimates
obtained by the simulation. In Figure 4, the blocking rate
cdfs are compared based on a 1D network topology with
d/d0 = 1.25, b = 10, m = 5, Gc = 0.8, and n = 40. In Table 1,
the expected blocking rates, µBr(nb|d/d0), obtained by the
three approaches are provided, based on the 1D network and
for several values of range extension and user activity. The
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Figure 4: Blocking rate cdf comparison between the analytical up-
per bound, analytical estimate, and the cdf estimate based on the
simulation model. Results are for a 1D network topology with
b = 10,m = 5, Gc = 0.8, n = 40, and d/d0 = 1.25.

Table 1: Comparison of expected blocking rates based on b = 10
andm = 5 for 1D model.

Expected blocking rate

Gc = 0.4 ⇒ n = 20 Gc = 0.8 ⇒ n = 50

d/d0 = 1.25 d/d0 = 2.0 d/d0 = 1.25 d/d0 = 2.0

(µBr)Bound 0.025 3.4 × 10−12 1.2 7.0 × 10−6

(µBr)Est 0.025 6.2 × 10−7 1.6 0.64

(µBr)Sim 0.042 7.9 × 10−4 2.0 0.25

results obtained by the simulation were consistent with re-
sults obtained by both the bound and estimate.

4. RESULTS

Simulation results are presented in this section based on the
Monte Carlo approach outlined in Section 3.1. In Figure 5,
graphs for five pdfs, pBr(nb|d/d0), are given. The pdfs are
based on a 5 × 5 hexagonal grid of cells where, for each
trial, 25 MSs (25BS × 1MS/BS) were uniformly distributed
over the network coverage region. Then, based on the value
of d/d0 and the resulting MS to BS assignment, the num-
ber of blocked MSs, nb, was recorded. Similar experiments
were performed to obtain estimates for pBr(nb|d/d0) over
the desired parameter ranges. The pdf estimates were then
used to determine the mean, µBr(nb/n|d/d0), and standard
deviation, σBr(nb/n|d/d0), of the blocking rate versus the of-
fered traffic per channel, Gc. Figure 6 shows the results for
the statistical analysis performed on the estimated pdfs with
m ∈ {1, 5, 10, 20} and d/d0 ∈ {1, 1.5, 2.0} obtained for
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Figure 5: Estimate for the conditional blocking rate density func-
tion based on b = 25,m = 1, Gc = 1, n = 25, and Traffic Model I.

Traffic Model I. Note that µBr(nb|d/d0) < 10−3 for [m ∈
{5, 10}, d/d0 = 2.0] and that [m = 20, d/d0 ∈ {1.5, 2.0}] over
the range of Gc evaluated.

Figure 7 shows the results for the statistical analysis per-
formed on the estimated pdfs obtained for Traffic Model II:
σTr = 3 dB in graphs (a) and (b) and σTr = 4 dB in graphs
(c) and (d). Several observations can be made concerning
the impact increasing the coverage range has on the grade
of service (GoS), that is, the blocking rate probability. First,
comparing µBr(nb/n|d/d0 = 1.0) with µBr(nb/n|d/d0 = 2.0)
for σTr = 3 dB (Figure 7a), an order of magnitude improve-
ment in GoS is obtained. By doubling the coverage range, all
channels in the network are used to satisfy the offered traf-
fic, Gc = 1.0, on average. To achieve the same expected level
of GoS with the standard cellular coverage, the offered traf-
fic decreases to Gc ≈ 0.4. Examining σBr for the same pdfs
(Figure 7b), we can see that the slope of the σBr(nb/n|d/d0 =
2.0) graph dramatically falls off as Gc decreases; whereas, the
slope of σBr(nb/n|d/d0 = 1.0) is nearly constant, with a value
exceeding 2% blocking. Therefore, if the blocking rate design
criteria is based on a constraint to improve robustness, that
is, µ + βσ , β > 0, then the impact on Gc will be significantly
less when range extension is employed.

Another interesting observation, based on Figure 7, is the
effect of trunking. Doubling the number of channels per BS
(5 to 10 or 10 to 20) does not significantly impact the relative
performance until Gc drops below a certain level. Since the
traffic load is not uniform over the network coverage region,
MSs have a higher probability of being grouped within a re-
gion, that is, a hot spot. Adding additional channel capacity
uniformly over the entire network does not solve the prob-
lem. On the other hand, with d/d0 sufficiently large, channel
capacity is available to handle the offered traffic, while reduc-
ing the number of channels at each BS.

To illustrate the impact on capacity, the desired GoS was
set at a 2% blocking rate, with a 95% probability, Pr(nb/n ≤
0.02) = 0.95. The estimated pdfs were then evaluated to
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Figure 6: Statistical analysis for blocking rate simulations with uniform distributed cell traffic load, Traffic Model I.

determine the probability for each experiment conducted.
The results are shown in Table 2, based on the percentage of
the maximum network capacity utilized, given that the spec-
ified GoS was satisfied. The maximum network capacity was
the total number of channels available in the network (third
column of the table). The results for both traffic models are
shown in the table. The same trends as noted in the previ-
ous paragraphs can also be observed. That is, a significant
improvement occurs in the capacity as d/d0 increases and no

significant change in the relative efficiency occurs when the
number of trunks increases (m > 1 and log-normal traffic
distribution). Again, focusing on σTr = 3 dB, for m = 5, 10,
or 20 with a 50% extension in range, the capacity can bemore
than doubled. Extending the range by 250% results in a 100%
utilization of the network resources, while still satisfying the
specified GoS. Hence, a 4-fold capacity increase is achieved.

As evident from the results in Figure 6 and Table 2, for
the uniform traffic distribution, increasing the number of
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Table 2: Percentage of the maximum capacity utilized by the network based on a GoS blocking probability of 2%.

σTr m Max. # channels
% Maximum capacity

d/d0 = 1 d/d0 = 1.5 d/d0 = 2 d/d0 = 2.5

Uniform

1 25 < 10 31 50 81

5 125 40 81 100 100

10 250 60 95 100 100

20 500 73 100 100 100

3 dB

1 25 17 29 63 85

5 125 25 56 81 100

10 250 25 63 81 100

20 500 26 64 81 100

4 dB

1 25 6 24 46 72

5 125 19 42 58 82

10 250 20 45 61 84

20 500 20 44 60 83

channels at each BS provides a relative improvement in per-
formance, for all d/d0. For this traffic model, given that the
BSs have a sufficient number of channels, load balancing pro-
vides only a marginal benefit. An economic benefit is pos-
sible, since fewer channels could be deployed at each BS to
achieve the desired GoS. This benefit would need to be bal-
anced against the complexity of implementing the algorithm
to achieve load balancing. From the results in Figure 7 and
Table 2, for the nonuniform traffic distribution, a thresh-
old is reached beyond which adding additional channels
provides little or no relative improvement in performance.
Under this condition, load balancing using adaptive antenna
arrays to extend coverage range could provide a significant
enhancement.

5. CONCLUSIONS

In this paper, we have introduced an alternative method for
optimizing the adaptive antenna arrays at the BSs in a cellular
system. The method was based on adapting the array weights
to maximize ηC × ηT . An upper bound was formulated for
evaluating the impact on spectral efficiency. To assess the
bound, the effectiveness of using an adaptive antenna array to
maximize the trunking efficiency was evaluated.Monte Carlo
simulations were used to evaluate the trunking efficiency and
the corresponding impact on capacity. For a linear grid cellu-
lar system, both theoretical analysis and Monte Carlo simu-
lations were developed. The Monte Carlo simulations results
were consistent with the theoretical results. Based on the sim-
ulation results for a 2D network with a uniform traffic distri-
bution, the performance improvement gained by load bal-
ancing is dependent on the number of available channels at
the BS. For the nonuniform traffic model, the results were
significantly different. Over a 200% improvement in capac-
ity was achieved when the adaptive antenna array was used
to extend the coverage range by 50% and a 400% capacity
improvement for a range extension of 250%. These results

were not dependent on the relative number of available chan-
nels at the BS. Based on (3) and (4), the full advantage of
load balancing is achieved when excess spatial channels from
one cell are utilized to support traffic activity in neighboring
cells, such that the overall traffic carried by the network is
increased.

A portion of the research presented in this paper ap-
peared in [34].

APPENDICES

A. STATISTICAL ANALYSIS USING 1D NETWORK

The following 1D network model, as illustrated in Figure 2,
was used for the statistical analysis. A linear grid cellular net-
work topology of b cell sites was considered with cell-1 adja-
cent to cell-b. The BS coverage range was d0 with an omnidi-
rectional antenna and d with an adaptive antenna array. Each
cell could support up tom traffic channels. At a given instant
in time, n users required a traffic channel,

n = bmGc, (A.1)

where Gc is the offered traffic per channel in the network.
The approach used in the derivation was based on an in-
stantaneous analysis of the network activity. Therefore, the
dynamics of the user call activity were modeled as a lumped
parameter,Gc. The n users were assumed to be uniformly and
independently distributed within the coverage region of the
b cell sites.

A.1. Statistical analysis using 1D network topology
and d/d0 = 1

The blocking rate was evaluated by letting the RV nb repre-
sent the number of users not serviced within the network at
a given instant in time. Then, using the model defined in the
previous paragraph, a closed form solution was derived for
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Figure 7: Statistical analysis for blocking rate simulations with log-normal distributed cell traffic load: (a) and (b) log-normal traffic load
standard deviation, σTr = 3 dB; (c) and (d) σTr = 3 dB.

the cdf for nb when d/d0 = 1.0,

PBr
(
nb|d/d0 = 1.0

)
=

n−1∑
j=0

PrBr
(
nb = j|d/d0 = 1.0

)
u
(
nb − j

)
,

(A.2)

where u(·) is the unit step function; PrBr(nb = j|d/d0 =
1.0) is the probability that j users are blocked due to ex-
cess traffic channels required in one or more cell sites when
an omnidirectional antenna is employed at the BS. With
a linear network topology, uniformly distributed users and
equal area cells, evaluating PrBr(nb = j|d/d0 = 1.0) required
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enumerating the permutations and combinations for nb = j
based on n users and b cell sites as derived below.

Let ck be an ordered b-tuple, representing one of the pos-
sible combinations of n users in b cell sites where

ck =
(
ck1 , ck2 , . . . , ckb

)
, 1 ≤ k ≤ sc, 0 ≤ cki ≤ n, 1 ≤ i ≤ b.

(A.3)

In addition, the following constraints are required on the el-
ements of ck: cki ≥ ckj , ∀i < j and

∑b
i=1 cki = n. The total

number of ordered combinations is sc. For each combination
ck, the number of blocked users, nbk , is given by

nbk =
b∑
i=1

max
(
0, cki −m

)
, 0 ≤ nbk < n. (A.4)

Next, let r j be the set of combinations such that the number
of blocked users in each combination is equal to j, that is,

r j =
{
ck |nbk = j, 0 ≤ j < n − 1, 1 ≤ k ≤ sc

}
. (A.5)

Note that ri∩r j = φ and
⋃n−1

i=0 ri =
⋃sc

k=1 ck. Then, the blocking
rate probability can be expressed as

PrBr
(
nb = j|d/d0 = 1.0

)
=

∑
ck∈r j

xk yk, (A.6)

where xk is the number of permutations for combination ck
and yk is the corresponding probability for ck.

For each combination ck, xk is the number of unique ways
the elements of ck may be reordered amongst the b cell sites,
given by

xk =
n∏
i=1

(
b −∑i=1

j=1 wkj

wki

)
, (A.7)

wherewki represents the number of occurrences for a specific
number of users, i, in ck. This can be expressed as

wkj =
∣∣{ckj |ckj ∈ ck, ckj = i, 1 ≤ j ≤ b

}∣∣, 1 ≤ i ≤ n, (A.8)

where | · | is the cardinality of a set.
The probability that the combination ck occurs is

yk =
b∏
i=1

(
n −∑i=1

j=1 ckj
cki

)
q
cki
i , (A.9)

where qi is the a priori probability that a user is within the
coverage range of cell site i. Since it is assumed that each cell
has equal coverage area and that the n users are uniformly
and independently distributed, each cell site is equiprobable,
q = q1 = · · · = qb = 1/b. Therefore,

yk = b−n
b∏
i=1

(
n −∑i=1

j=1 ckj
cki

)
. (A.10)

Thus, substituting the results of (A.5), (A.7), and (A.10)
into (A.6), a closed form solution for PrBr(nb = j|d/d0 = 1.0)

is obtained. To illustrate: for b = 4,m = 1, and Gc = 1 ⇒ n =
4, the

PrBr
(
nb = 2|d/d0 = 1.0

)
= x2y2 + x3y3

=

[(
4

1

) (
3

1

)][
4−4

(
4

3

) (
1

1

)]

+

[(
4

2

)][
4−4

(
4

2

) (
2

2

)]
,

(A.11)

since r j=2 = {c2c3} = {(3, 1, 0, 0)(2, 2, 0, 0)}. Note that the
combinations involving 0 have been excluded from (A.11).
In this fashion, (A.6) can be evaluated over the range for nb,
0 ≤ nb < n, to obtain (A.2), PBr(nb|d/d0 = 1.0).

A.2. Statistical bound using 1D network topology
and d/d0 ≥ 1

In this section, an upper bound for the blocking rate cdf for
d/d0 > 1 is derived based on the 1D network model:

(
PBr

(
nb|d/d0 = (1.0 + α)

))
Bound ≥ PBr

(
nb|d/d0 = (1.0 + α)

)
,

(A.12)

where 0.0 < α < 1.0. Using the same notation as used in de-
riving (A.2), (PBr(nb|d/d0 = (1.0 + α)))Bound is obtained by
determining a lower bound on the number of blocked users,
n̄bk ≤ nbk , for each combination ck of n users in b cells. There-
fore, for ck there are cki users within cell i distributed within
three regions. Referring to Figure 2, these regions are desig-
nated L, C, and R. Since the users are uniformly distributed
in the coverage region, the cki users are uniformly distributed
within cell i. Let ηl = (ηl1 , ηl2 , ηl3 ) be a 3-tuple, representing
one of the possible combinations of the cki users, where ηl1 ,
ηl2 , and ηl3 are the number of users in region-L, region-C,
and region-R, respectively. Note that the index ki has been
dropped from ηl in order to simplify the notation. All possi-
ble 3-tuples are considered, which satisfy

∑3
z=1 ηlz = cki and

ηlz ≥ 0, ∀z. The total number of combinations is sη. For each
combination ηl, the number of blocked users, βl, is given by

βl = max
(
0, ηl2 −MC

)
+max

(
0, ηl1 −

(
ML +max

(
0,MC − ηl2

)))
+max

(
0, ηl3 −

(
MR +max

(
0,max

(
0,MC − ηl2

)
−max

(
0, ηl1 −ML

))))
,

(A.13)

where the adjacent BSs provide ML and MR channels to
regions L and R, respectively, and the cell i BS provides MC

channels that can be used to provide service anywhere in the
cell. The first term in (A.13) expresses the number of blocked
users in region-C, which can only be serviced by the cell’s BS.
The second term expresses the number of blocked users in
region-L, where the channels provided by the left adjacent BS
are used in preference to those available from the cell’s BS.
The last term, in a similar fashion, determines the blocked
users in region-R.
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In general,ML,Mc, andMR are dependent on the specific
permutation of the ordered b-tuple ck and therein lies the dif-
ficulty in determining the general solution to PBr(nb|d/d0 =
(1.0 + α)). In order to determine (PBr(nb|d/d0 = (1.0 +
α)))Bound, a lower bound on the blocking rate for ηl, β̄l ≤ βl, is
required. LettingML = MC = MR = m in (A.13) gives β̄l ≤ βl.
Then a lower bound on the number of users blocked in cell i,
given cki users, is

n̄bk,i =
sη∑
l=1

(
Pr

(
ηl
)
β̄l
)∣∣∣

cki
≤ nbk,i, (A.14)

where

Pr(ηl) = (α/2)ηl1 (1 − α/2)ηl2 (α/2)ηl3

×
(
cki
ηl1

)(
cki − ηl1
ηl2

)(
cki − ηl1 − ηl2

ηl3

)
.

(A.15)

Using (A.14), a lower bound on the number of users blocked
for ck is

n̄bk =
b∑
i=1

n̄bk,i ≤ nbk . (A.16)

Using (A.16) in conjunction with (A.2), (A.3), (A.5), (A.6),
(A.7), (A.8), (A.9), and (A.10) provides that (pBr(nb|d/d0 =
(1.0 + α)))Bound.

The tightness of the blocking probability bound is depen-
dent on the offered traffic, Gc. For low values of Gc, using
ML = MC = MR = m is a reasonable assumption. For Gc = 1,
the bound is poor since the total number of channels avail-
able per cell is 3m and therefore will significantly underesti-
mate the number of users blocked.

A better approximation for the blocking probability can
be obtained. Instead of assuming that ML = MR = m, the
number of channels available from adjacent BSs is condi-
tioned on the expected activity in each cell, that is, n/b. Using
the expected activity, the unallocated channels in each cell
can be estimated by

M̂ = max
(
0, m −

⌈n
b

⌉)
. (A.17)

An estimate for the blocking probability, (PBr(nb|d/d0 =
(1.0 + α)))Est, can be obtained by using ML = MR = M̂, and
MC = m in (A.13).

B. MS TO BS ASSIGNMENT ALGORITHM

Heuristic used to determine the MS to BS assignment in or-
der to approximate min(nb).

Define:
Mj ≡ unassigned mobile j,
Bi ≡ base station i, i = 1, . . . , b,
(M∗

j , B
∗
i ) ≡ Assignment ofMj to Bi to min(nb),

C(Bi) ≡ Set of unassigned traffic channels at Bi,
D(Mj, Bi) ≡ Distance betweenMj and Bi,

NC(Mj) ≡ | ∪ C(Bi)|D(Mj, Bi) ≤ d|, that is,
number of traffic channels to which Mj could be as-
signed, and | · | is the cardinality of a set, RB(Bi) ≡
|C(Bi)|/|{Mj |D(Mj, Bi) ≤ d, ∀ j}|, that is, For Bi, the ratio of
the number of unassigned channels at Bi by the number of
unassigned mobiles within distance d of the base station.

Repeat the following until all mobilesMj, j = 1, . . . , n are
either assigned or blocked:

(1) G = {Mj | argminMj
(NC(Mj))}, determine the set of

unassigned mobiles with the minimum number of
possible unassigned traffic channels,

(2) (M∗
j , B

∗
i ) = argmaxBi,G

(RB(Bi)|Mj ∈ G,D(Mj, Bi) ≤ d),
make the base station to mobile assignment based on
the unassigned mobiles from step (1) and the assign-
ment that maximizes RB(Bi),

(3) Update set of unassigned channels and unassigned
mobiles based on assignment from step (2) and re-
move blocked traffic, that is, NC(Mj) = 0 ⇒ Mj is
blocked.
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