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Perioperative aspirin improves neurological
outcome after focal brain ischemia possibly via
inhibition of Notch 1 in rat
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Abstract

Background: Perioperative discontinuation of aspirin is often considered due to bleeding concern. We determined
whether this discontinuation affected neurological outcome after brain ischemia.

Methods: Adult male Sprague–Dawley rats were subjected to a 90-minute right middle cerebral arterial occlusion
(MCAO). They received 30 mg/kg/day aspirin via gastric gavage: 1) for 2 days at 5 days before MCAO; 2) for 2 days
at 5 days before MCAO and for 3 days after MCAO; 3) for 7 days before MCAO; or 4) for 7 days before MCAO and
for 3 days after MCAO. Neurological outcome was evaluated 3 days after the MCAO. Ischemic penumbral cortex
was harvested 1 or 3 days after MCAO for determining Notch intracellular domain (NICD), IL-6 and IL-1β levels.

Results: Aspirin given by regimen 2 and 3 but not by regimen 1 improved neurological outcome. Neuroprotection
was achieved by N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), a Notch activation
inhibitor. DAPT and aspirin given only by regimen 2 and 3 reduced NICD, IL-6 and IL-1β in the ischemic penumbral
cortex. NICD was found in microglial nuclei. Microglial activation in the ischemic tissues was inhibited by aspirin.

Conclusion: Aspirin use during the perioperative period provides neuroprotection. Inhibition of Notch activation
and neuroinflammation may contribute to the neuroprotection of aspirin.
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Introduction
Aspirin is commonly used in patients who have risks for
cardiovascular events [1]. It can reduce cardiovascular
events through multiple mechanisms including anti-
platelet actions [2,3]. Studies have shown that giving
aspirin before or repeated doses after brain ischemia re-
duces brain infarct volume and neurological deficits
[4,5]. However, aspirin may be discontinued during the
perioperative period due to the concern of bleeding in
the wound [6,7]. It is not clear whether this discontinu-
ation affects the neurological outcome if an episode of
brain ischemia occurs, which is not an infrequent event
during the perioperative period.
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The mechanisms for aspirin to improve neurological
outcome after brain ischemia are not clear. One possible
mechanism is to reduce neuroinflammation that is a
major secondary insult to cause cell injury after brain is-
chemia [8]. Aspirin has been shown to reduce brain
ischemia-induced neuroinflammation [9]. However, it is
not clear how aspirin can reduce neuroinflammation.
Recently, it has been shown that brain ischemia can acti-
vate Notch, which then contributes to induce neuroin-
flammation [10].
Based on the above information, we hypothesize that

discontinuation of aspirin use during the perioperative
period abolishes the neuroprotective effects of aspirin and
that the aspirin-induced neuroprotection is mediated by
reducing Notch activation and the subsequent neuroin-
flammation. To address these hypotheses, we simulated
different clinical scenarios of perioperative aspirin use and
subjected rats to a transient focal brain ischemia. The
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Notch 1 activation was assessed by measuring the level of
Notch intracellular domain (NICD).

Materials and methods
The animal protocol was approved by the Institutional
Animal Care and Use Committee of the University of
Virginia (Charlottesville, VA, USA). All animal experi-
ments were carried out in accordance with the National
Institutes of Health Guide for the Care and Use of
Laboratory Animals (National Institutes of Health pub-
lications number 80–23, revised in 1996). Efforts were
made to minimize the number used and suffering of ani-
mals. Our manuscript was written up in accordance with
the Animal Research: Reporting In Vivo Experiments.
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Figure 1 Diagrams of experimental protocols. (A) Protocol for experime
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arterial occlusion.
Experimental protocols
Four experiments were performed. In experiment 1, male
Sprague–Dawley rats weighing 270 to 300 g (Charles River
Laboratories Inc., Wilmington, MA, USA) were randomly
assigned to receive aspirin (Sigma Aldrich, Saint Louis,
MO, USA) via gastric gavage at a dose of 30 mg/kg/day
(Figure 1): 1) for 2 days at 5 days before a 90-minute
right middle cerebral artery occlusion (MCAO); 2) for
2 days at 5 days before the MCAO and then for 3 days
starting from the surgery day to create the MCAO; 3) for
7 days before the MCAO; and 4) for 7 days before the
MCAO and for 3 days starting from the surgery day to
create the MCAO. An additional group was included in
the randomization. This group of rats received saline via
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nt 1. (B) Protocol for experiment 2. (C) Protocol for experiments 3 and 4.
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gastric gavage for 10 days during the peri-MCAO period.
The neurological outcome was evaluated 3 days after the
MCAO (n = 10 per group).
Experiment 2 was performed in a similar way as for

experiment 1 but without the second and the fourth as-
pirin regimen. A sham operated group was included in
this experiment (Figure 1). The right frontal cortex area
1 (Fr1) was harvested at 24 hours after the MCAO to
measure NICD by western blot and the levels of IL-6
and IL-1β by ELISA (n = 8).
In experiment 3, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-

S-phenylglycine t-butyl ester (DAPT; Sigma Aldrich), a
Notch activation inhibitor, was used. Rats were ran-
domly divided into five groups (Figure 1). This included
the saline group and the groups with aspirin regimen 2
and 4 as described for experiment 1. In the DAPT
group, 0.03 mg/kg DAPT was injected into right cere-
bral ventricle immediately after the 90-minute MCAO.
The fifth group was the combination of DAPT therapy
and the aspirin treatment of regimen 4. Neurological out-
come was evaluated at 3 days after the MCAO (n = 6).
Experiment 4 was performed in the same way as for

experiment 3. In addition, a sham operated group was
included (Figure 1). The right Fr1 was harvested at 3 days
after MCAO for measuring the expression of NICD, IL-
6 and IL-1β (n = 8).

Drug application
Aspirin solution (6 mg/ml) was prepared freshly each
day by dissolving the powder in normal saline. Applica-
tion of 1.5 ml aspirin solution or saline was performed
to rats in the morning via gastric gavage (Fine Science
Tools, Foster City, CA, USA).
DAPT solution (1 μg/μl) was prepared by dissolving

DAPT powder in 0.01 M phosphate-buffered saline con-
taining 5% dimethyl sulfoxide (Fisher Scientific, Fair Lawn,
NJ, USA). The solution was filtered and stereotactically
injected into the right cerebral ventricle using the follow-
ing coordinates: −0.8 mm anteroposterior, ±1.5 mm med-
iolateral, and −4.5 mm dorsoventral from the bregma [11].
The rats that did not require DAPT injection in experi-
ments 3 and 4 received injection of the vehicle for DAPT
in the same way.

Transient middle cerebral arterial occlusion
Right MCAO was created as we have described before
[12]. Briefly, rats were induced with isoflurane, intubated
and mechanically ventilated with 2% isoflurane. A
temperature probe was placed in the temporalis muscle.
A servo-controlled warming blanket was used to main-
tain the temporalis muscle temperature at 37°C. The
MCAO was achieved by advancing a 3–0 monofilament
nylon suture (Beijing Sunbio Biotech Co. Ltd, Beijing,
China) with a rounded tip to the right internal carotid
artery via the external carotid artery until slight resist-
ance was felt. Rat’s heart rate and pulse oximeter oxygen
saturation were monitored continuously and noninva-
sively using a MouseOX Murine Plus Oximeter System
(Starr Life Sciences Corporation, Oakmont, PA, USA).
Isoflurane anesthesia was stopped once the suture was
in place. Rats were re-anesthetized by isoflurane at
90 minutes after the onset of MCAO to remove the su-
ture. All animals with surgery received infiltration to the
surgical wound with 0.25% bupivacaine before general
anesthesia was stopped.

Evaluation of motor coordination, neurological deficit
scores, infarct volumes and hemorrhagic volumes
Motor coordination was evaluated by using an accelerat-
ing rotarod as we have described before [13]. Each rat
was tested three times in the formal test. The latency
and speed of the rat falling off the rotarod were re-
corded. The speed–latency index (latency in seconds ×
speed in rpm) of each of the three tests was calculated
and averaged for reporting.
Neurological deficit scores were evaluated by a person

blinded to the group assignment based on an eight-point
scale as we have described before [14,15].
Infarct volumes were measured after staining of the

2-mm thick slices with 2% 2,3,5-triphenyltetrazolium
chloride as we have described before [14,15]. The per-
centage of infarct volumes in the ipsilateral hemisphere
volume was calculated to account for cerebral edema
and differential shrinkage from brain ischemia and tis-
sue processing and to correct for individual differences
in brain volumes. The hemorrhagic volumes were mea-
sured in the same way as for measuring infarct vol-
umes, but measurements were performed before the
slices were stained by 2,3,5-triphenyltetrazolium chlor-
ide because the staining process would wash away
blood in the brain slices.

Brain tissue harvesting
Rats were killed by deep isoflurane anesthesia and trans-
cardially perfused with normal saline at 1 day or 3 days
after the MCAO. The Fr1, an ischemic penumbral re-
gion in this model [15], between bregma + 2 and 0 mm
was harvested for Western analysis of NICD expression
and ELISA of IL-6 and IL-1β.

Western analysis
Fr1 tissues were homogenized in buffer A (10 mM HEPES,
1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 0.05% NP40,
pH 7.9) with protease inhibitors (10 mg/ml aproteinin,
5 mg/ml peptastin, 5 mg/ml leupeptin, and 1 mM phenyl-
methanesulfonylfluoride) on ice as we have described
before [16]. The homogenates were centrifuged at 4°C at



Figure 2 Aspirin-induced neuroprotection. Rats received various aspirin treatments around a 90-minute middle cerebral arterial occlusion
(MCAO). The results were evaluated at 3 days after the MCAO. (A) Brain slices stained with 2,3,5-triphenyltetrazolium chloride from representative
mice. (B) Percentage of brain infarct volume in ipsilateral hemisphere volume. (C) Neurological deficit scores evaluated immediately before the
animals were euthanized for the assessment of infarct sizes (data are presented in panel B). ●, Lowest or highest score (the score will not show
up if it falls in the 95% interval); between lines, 95% interval of the data; inside boxes, 25-75% interval including the median of the data. (D) The
performance on rotarod. Rats were tested before and 3 days after the MCAO and the speed–latency index ratio of these two tests are presented.
All results except for those in panel C are the means ± SEM (n = 10). *P < 0.05, compared with the animals subjected to MCAO only. ASA,
acetylsalicylic acid.

Figure 3 Aspirin-induced inhibition of Notch activation and proinflammatory cytokine production. Rats received various aspirin
treatments around a 90-minute middle cerebral arterial occlusion (MCAO). The right frontal cortex area 1 was harvested at 24 hours after the
MCAO. The cytosol was prepared for Western blotting for Notch intracellular domain (NICD) and ELISA for IL-6 and IL-1β. (A) NICD expression.
Top panel shows representative Western blots and bottom panel shows the quantification results. (B) IL-6 results. (C) IL-1β results. Results are the
means ± SEM (n = 8). *P < 0.05, compared with sham operated animals; ^P < 0.05, compared with the animals subjected to MCAO only. ASA,
acetylsalicylic acid.
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Figure 4 Aspirin attenuated ionized calcium binding adapter
molecule 1 (Iba-1) expression in the ischemic penumbral tissues.
Rats received or did not receive aspirin for 7 days before a 90-minute
middle cerebral arterial occlusion (MCAO). Brain was harvested 24 hours
after the MCAO for immunostaining of Iba-1. (A) Representative immu-
nostaining images. Scale bars = 200 μm. (B) Graphic presentation of the
percentage area that is Iba-1-positive stained in the total area of the
image. Values presented as mean ± SEM (n = 8). *P< 0.05, compared
with sham; ^P < 0.05, compared with MCAO. ASA, acetylsalicylic acid.
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13,000 rpm for 25 minutes. The supernatant was harvested
and used for Western blotting.
The primary antibodies used were the rabbit anti-

Notch1 NICD antibody (1:1000; Cell Signaling Tech-
nology, Danvers, MA, USA) and the rabbit anti-β-Actin
antibody (1:4000; Cell Signaling Technology). A sec-
ondary horseradish peroxidase-conjugated goat anti-rabbit
antibody (1:5,000; Pierce, Rockford, IL, USA) was used.
The protein bands were visualized with the enhanced
chemiluminescence methods. Quantitative analysis of the
protein bands was performed using an Image-Quant 5.0
GE Healthcare Densitometer (GE Healthcare, Sunnyvale,
CA, USA). The densities of NICD protein bands were nor-
malized to those of β-Actin proteins from the same sam-
ple to control for errors in protein sample loading and
transferring during Western analysis.

ELISA assay of cytokines in the brain tissues
IL-1β and IL-6 levels in the Fr1 tissues were determined
with Quantikine ELISA kits (R&D Systems, Minneapolis,
MN, USA) according to the manufacturer’s instructions
as we have described before [17,18]. Briefly, brain tissues
were homogenized on ice in 20 mMTris–HCl buffer
(pH 7.3) containing protease inhibitors (10 mg/ml apro-
teinin, 5 mg/ml peptastin, 5 mg/ml leupeptin, and 1 mM
phenylmethanesulfonylfluoride). Homogenates were cen-
trifuged at 10,000 g for 10 minutes at 4°C. The super-
natant was then ultracentrifuged at 150,000 g for 2 hours
at 4°C. Bradford protein assay of the supernatant was per-
formed for each sample. The supernatant was used in
ELISA. The quantity of IL-1β and IL-6 in each brain sam-
ple was standardized to its protein contents.

Immunofluorescent staining
The staining and quantification of the staining were per-
formed as we have described before [19]. Briefly, rats
were killed by deep isoflurane anesthesia and transcar-
dially perfused with 4% paraformaldehyde at 1 day after
the MCAO. Brains were harvested, fixed in 4% parafor-
maldehyde at 4°C for 18 hours and then embedded in
paraffin. Coronal sections at 5 μm were mounted on
slides. Antigen retrieval was performed in sodium citrate
buffer (10 mM sodium citrate, 0.05% Tween 20, pH 6.0)
at 95 to 100°C for 20 minutes. The sections were then
incubated with 5% normal donkey serum and 1% bovine
serum albumin in Tris-buffered saline for 2 hours at
room temperature.
To stain ionized calcium binding adapter molecule 1

(Iba-1) for its quantification, the sections were incubated
at 4°C overnight with rabbit polyclonal anti-Iba-1 anti-
body (1:500; Wako Chemicals USA, Richmond, VA,
USA) and then rinsed in Tris-buffered saline containing
0.025% triton-X 100. The donkey anti-rabbit IgG anti-
body conjugated with Alexa Fluor 488 (1:200; Invitrogen,
Eugene, ON, USA) was applied for 1 hour at room
temperature in a dark room. To stain Iba-1 for its co-
localization with NICD, sections were incubated with goat
polyclonal anti-Iba-1 antibody (1:200; Abcam, Cambridge,
MA, USA) and then donkey anti-goat IgG antibody conju-
gated with Alexa Fluor 488 (1:200; Invitrogen). For glial
fibrillary acidic protein (GFAP) staining, the mouse mono-
clonal anti-GFAP (1:300; Chemicon, Temecula, CA, USA)
and the donkey anti-mouse IgG antibody conjugated with
NL493 (1:200; R&D Systems, Minneapolis, MN, USA)
were applied in the same way as for staining Iba-1. The
antibodies used to stain microtubule-associated protein 2
(MAP-2) were mouse monoclonal anti-MAP-2 antibody
(1:300; Abcam) and the donkey anti-mouse IgG antibody
conjugated with NL493. To stain NICD, the rabbit anti-
Notch1 NICD antibody (1:100; R&D Systems) and the
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donkey anti-rabbit IgG antibody conjugated with NL557
(1:200; R&D Systems) were applied. Images were acquired
with a fluorescence microscope with a charge-coupled
device camera. A negative control omitting the incuba-
tion with the primary antibody was included in all
experiments.
For quantification of Iba-1 staining, three independent

microscopic fields in each section were randomly ac-
quired in the Fr1 area, and three sections per rat were
imaged. The number of pixels per image with intensity
above a predetermined threshold level was considered to
be positively stained areas. This measurement was per-
formed by using the Image J 1.47n software. The degree
of positive immunoreactivity was reflected by the per-
centage of the positively stained area in the total area of
the image. All quantitative analyses were performed in a
blinded fashion.
Statistical analysis
Parametrical data are presented as means ± SEM. The
results of speed–latency index ratio, infarct volume,
edema index, western blotting, ELISA and Iba-1 im-
munofluorescent staining were analyzed by one-way
analysis of variance, followed by the Tukey test. Neuro-
logic deficit scores were analyzed by one-way analysis of
variance on ranks, followed by the Tukey test. A P < 0.05
was accepted as significant. All statistical analyses were
Figure 5 Cellular localization of Notch intracellular domain (NICD) in
24 hours after a 90-minute middle cerebral arterial occlusion. Representativ
bars = 100 μm. GFAP, glial fibrillary acidic protein; MAP-2, microtubule-asso
performed using the SigmaStat program (SYSTAT Soft-
ware Inc., Point Richmond, CA, USA).

Results
No animals had an episode of hypoxia (defined as oxy-
gen saturation of arterial blood <90%) during the surgery
to create MCAO. Use of aspirin for 2 days at 5 days be-
fore the brain ischemia did not affect the brain infarct
volumes and neurological functions. However, aspirin
use for 2 days at 5 days before the brain ischemia and
then for 3 days starting from surgery day to induce the
brain ischemia, use of aspirin for 7 days only before the
brain ischemia or continuation of aspirin use throughout
the perioperative period significantly reduced brain in-
farct volumes and improved neurological functions as
measured by rotarod performance and neurological def-
icit scores (Figure 2).
There was a significant increase of NICD, IL-6 and IL-

1β in the ischemic penumbral tissues. These increases
were inhibited by continuous use of aspirin during the
perioperative period and were not affected by aspirin use
for 2 days at 5 days before the brain ischemia (Figure 3).
Similarly, continuous use of aspirin during the peri-
operative period inhibited the increase of Iba-1, a micro-
glial marker, in the ischemic penumbra (Figure 4).
Interestingly, NICD positive staining in the ischemic pen-
umbra appeared in the nuclei of cells that were also posi-
tively stained for MAP-2, Iba-1 and GFAP (Figure 5).
the ischemic penumbral brain tissues. Brain was harvested at
e immunostaining images of frontal cortex area 1 are presented. Scale
ciated protein 2.



Wang et al. Journal of Neuroinflammation 2014, 11:56 Page 7 of 10
http://www.jneuroinflammation.com/content/11/1/56
MAP-2 and GFAP are markers for neurons and astro-
cytes, respectively.
Application of DAPT, a Notch activation inhibitor, im-

mediately after brain ischemia reduced brain infarct vol-
umes and edema as well as improved neurological
functions. Similar results were observed with aspirin use
for 2 days at 5 days before the brain ischemia and then
for 3 days starting from surgery day to induce the brain
ischemia, continuation of aspirin use throughout the
Figure 6 Aspirin and DAPT-induced neuroprotection. Rats received var
middle cerebral arterial occlusion (MCAO). Intracerebroventricular injection
(DAPT) was performed immediately after the MCAO. The results were evalu
triphenyltetrazolium chloride from representative mice and percentage of b
index. (C) Percentage of hemorrhagic volume in ipsilateral hemisphere volu
immediately before the animals were euthanized for the assessment of infa
(the score will not show up if it falls in the 95% interval); between lines, 95
median of the data. Right panel shows the performance on rotarod. Rats w
index ratio of these two tests are presented. All results except for those in
compared with the animals subjected to MCAO only. ASA, acetylsalicylic ac
perioperative period, and the combination of DAPT and
aspirin use throughout the perioperative period. These
uses of aspirin and DAPT had a trend of reducing
hemorrhagic volumes but none of these reductions
reached statistical significance (Figure 6).
As expected, DAPT significantly reduced the expression

of NICD, IL-6 and IL-1β in the ischemic penumbral brain
tissues. Similarly, aspirin use for 2 days at 5 days before the
brain ischemia and then for 3 days starting from surgery
ious aspirin treatments around or immediately after a 90-minute
of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester
ated at 3 days after the MCAO. (A) Brain slices stained with 2,3,5-
rain infarct volume in ipsilateral hemisphere volume. (B) Edema
me. (D) Left panel shows the neurological deficit scores evaluated
rct sizes (data are presented in panel A). ●, Lowest or highest score
% interval of the data; inside boxes, 25-75% interval including the
ere tested before and 3 days after the MCAO and the speed–latency
the left panel of panel D are the means ± SEM (n = 6). *P < 0.05,
id.
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day to induce the brain ischemia, continuation of aspirin
use throughout the perioperative period, and the combin-
ation of DAPT and aspirin use throughout the periopera-
tive period also reduced the expression of NICD, IL-6 and
IL-1β in the ischemic penumbral brain tissues (Figure 7).

Discussion
Perioperative stroke rate ranges from 0.2% in patients
after total joint arthroplasty [20] to 3.3% in patients after
carotid endarterectomy [21]. Although the preventive ef-
fects of aspirin on cardiovascular events are well docu-
mented [1], discontinuation of aspirin use during the
perioperative period is often considered due to the con-
cern of bleeding [6]. In fact, the new guidelines from the
American College of Chest Physicians include discon-
tinuation of aspirin use for 7 to 10 days before the sur-
gery for patients with low risks for cardiovascular events
[7]. However, it is not clear whether discontinuation of
aspirin during the perioperative period affects the neuro-
logical outcome if brain ischemia occurs. Our results
clearly showed improved neurological outcome by con-
tinuation of the aspirin regimen. An alternative approach
to achieve this beneficial effect is to start aspirin therapy
immediately after brain ischemia if aspirin regimen has
to be stopped prior to surgery because our study showed
that aspirin therapy for 2 days at 5 days before the
MCAO and then for 3 days starting from surgery day to
Figure 7 Aspirin-induced inhibition of Notch activation and proinflam
treatments around a 90-minute middle cerebral arterial occlusion (MCAO).
S-phenylglycine t-butyl ester (DAPT) was performed immediately after the MC
MCAO. The cytosol was prepared for Western blotting for Notch intracellular
panel shows representative Western blots and bottom panel shows the quan
SEM (n = 8). *P < 0.05, compared with sham; ^P < 0.05, compared with the an
create the MCAO also improved the neurological out-
come. Similarly, aspirin use only before the brain ische-
mia for 7 days also provided significant protection,
suggesting that post-brain ischemia aspirin use may not
be critical for the protection.
Neuroinflammation is a major secondary insult to

cause cell injury and death after brain ischemia [8]. A re-
cent study suggests that Notch activation plays an im-
portant role in neuroinflammation after brain ischemia
[10]. When Notch in the plasma membrane is bound
with its ligands presented by a neighboring cell, Notch is
activated. This activation produces NICD that can travel
to nuclei to induce expression of various genes including
proinflammatory cytokines [22]. Our studies showed
that NICD was increased in the ischemic penumbral tis-
sues and that this increase was abolished by DAPT.
DAPT also inhibited the increased IL-6 and IL-1β in the
ischemic tissues and improved neurological outcome.
These results suggest that brain ischemia-induced Notch
activation and the subsequent proinflammatory cyto-
kines contribute to ischemic brain injury. Consistent
with this finding, our previous study showed a critical
role of IL-1β in ischemic brain injury [23].
Our studies also showed that aspirin reduced NICD,

IL-6 and IL-1β in the ischemic brain tissues. In addition,
the combination of aspirin and DAPT did not provide
better neuroprotection than DAPT or aspirin alone.
matory cytokine production. Rats received various aspirin
Intracerebroventricular injection of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-
AO. The right frontal cortex area 1 was harvested at 3 days after the
domain (NICD) and ELISA for IL-6 and IL-1β. (A) NICD expression. Top
tification results. (B) IL-6 results. (C) IL-1β results. Results are the means ±
imals subjected to MCAO only. ASA, acetylsalicylic acid.
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These results suggest that inhibition of Notch activation
in the ischemic penumbral brain tissues contributes to
the neuroprotection of aspirin. In supporting this sug-
gestion, microglial activation as reflected by increased
Iba-1 expression in the ischemic brain tissues was inhib-
ited by aspirin use. Microglial activation in the ischemic
brain tissues is known to be mediated by Notch signal-
ing [10]. Consistent with this knowledge, our study
showed that NICD was expressed in the nuclei of micro-
glial cells in the ischemic brain tissues. However, the
Notch signaling in the neurons and astrocytes of these
tissues may also be activated because NICD was found
in their nuclei as well. These cells participate in inflam-
matory responses in the brain because they also can pro-
duce inflammatory cytokines, such as IL-1β [18].
In addition to anti-inflammatory effects, aspirin is

antipyretic. This effect may also contribute to its neuro-
protection because brain ischemia often induces pyrexia
that can worsen neurological outcome. However, the
pyrexia caused by brain ischemia in rats is resistant to
aspirin [24,25]. Thus, the antipyretic effects may not be
a mechanism for the neuroprotection induced by aspirin
in our study.
Multiple effects in addition to the anti-inflammatory

effects may contribute to the neuroprotection of aspirin.
For example, aspirin has been shown to preserve ATP
levels and reduce extracellular glutamate levels in the is-
chemic brain tissues [9,26]. This effect can attenuate glu-
tamate excitotoxicity, a major secondary insult leading
to cell injury after brain ischemia [8]. Also, peripheral
immune responses to stroke can affect the degree of is-
chemic brain injury [27]. We chose systemic aspirin use
to simulate the clinical situation. This use may affect the
peripheral immune responses to provide neuroprotec-
tion that was observed in this study.
Aspirin use may cause significant bleeding in the sur-

gical wound [6] or intracranial tissues [28,29]. However,
the hemorrhagic volumes in the brain tissues were not af-
fected by aspirin use in our study. Future studies are
needed to determine whether aspirin increases hemorrhagic
transformation in the ischemic brain tissues.
Therapeutic dosages of aspirin in humans for relieving

pain and fever are 325 to 650 mg orally or rectally every
4 hours as needed. The dosages for similar purposes in
rats are 100 to 150 mg/kg orally every 4 hours as needed
[30,31]. Prophylactic doses of aspirin are 75 to 325 mg
orally once every day in humans. We used 30 mg/kg as-
pirin orally once a day in rats in this study, which should
fall into the prophylactic dosage window in rats.
In summary, we have shown that continuation of aspirin

use improves neurological outcome after focal brain ische-
mia. This effect may be mediated by inhibition of Notch
activation and the subsequent proinflammatory cytokine
production in the ischemic penumbral brain tissues.
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