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Abbreviations
CNS	� Central nervous system
DMT1	� Divalent metal transporter 1
IL	� Interleukin
PKAN	� Pantothenate kinase-associated 

neurodegeneration
NADPH	� Nicotinamide adenine dinucleotide phosphate
NO	� Nitric oxide
RNS	� Reactive nitrogen species
ROS	� Reactive oxygen species
TNF-α	� Tumor necrosis factor α
6-OHDA	� 6-hydroxydopamine

Introduction

Neurodegenerative disorders are accompanied 
by inflammation and iron deposition

The most prevalent neurodegenerative disorders of the 
central nervous system (CNS) are characterized by their 
chronic affection of specific neuronal nuclei or regions, 
which leads to various clinical phenotypes (Table 1). Col-
lectively, the loss of neurons in neurodegenerative disorders 
leads to a gradual loss of functional capacity with largely 
irreversible symptoms. The time course from the initiation 
of neuronal cell death to the appearance of clinical symp-
toms varies but generally decades span until a sufficient 
amount of neurons are affected, which opens therapeutic 
possibilities, the focus being to halt further neuronal loss 
[1].

Abstract  Neurodegenerative disorders are characterized 
by the presence of inflammation in areas with neuronal 
cell death and a regional increase in iron that exceeds what 
occurs during normal aging. The inflammatory process 
accompanying the neuronal degeneration involves glial 
cells of the central nervous system (CNS) and monocytes 
of the circulation that migrate into the CNS while trans-
forming into phagocytic macrophages. This review outlines 
the possible mechanisms responsible for deposition of iron 
in neurodegenerative disorders with a main emphasis on 
how iron-containing monocytes may migrate into the CNS, 
transform into macrophages, and die out subsequently to 
their phagocytosis of damaged and dying neuronal cells. 
The dying macrophages may in turn release their iron, 
which enters the pool of labile iron to catalytically pro-
mote formation of free-radical-mediated stress and oxida-
tive damage to adjacent cells, including neurons. Healthy 
neurons may also chronically acquire iron from the extra-
cellular space as another principle mechanism for oxida-
tive stress-mediated damage. Pharmacological handling of 
monocyte migration into the CNS combined with chelators 
that neutralize the effects of extracellular iron occurring 
due to the release from dying macrophages as well as intra-
neuronal chelation may denote good possibilities for reduc-
ing the deleterious consequences of iron deposition in the 
CNS.
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Neurodegenerative disorders are also adjoined by vari-
ous degrees of aseptic inflammation and iron accumulation 
[2–5]. Inflammatory cells are often present in the vicinity 
of the affected neurons with varying appearance ranging 
from robust in Alzheimer’s disease to somewhat slighter 
in Parkinson’s disease and amyotrophic lateral sclero-
sis (ALS). The inflammatory process accompanying the 
degenerating involves glial cells of the CNS, mainly astro-
cytes and microglia, and monocytes of the circulation that 
migrate into the CNS to transform into phagocytic mac-
rophages [6–11]. The presence of phagocytic monocytes 
migrating into the CNS together with local recruitment of 
activated microglia denotes a prominent apparatus for kill-
ing and phagocytosis of damaged and dying neurons [12].

Characteristically, all disorders mentioned in Table  1 
also lead to iron accumulation in the areas affected by neu-
rodegeneration; a feature different from that of the aging 
CNS, which also increasingly accumulates iron but without 
adjoining inflammation [13–17]. Iron-containing inflamma-
tory cells, including microglia and macrophages, are con-
sistently present in inflamed brain tissue, suggesting the 
latter as sources for both iron donation and contribution to 
production of reactive oxygen species (ROS) via release of 
free radicals as part of their respiratory burst activity [18, 
19] (Fig. 1).

Outline

The changes in the concentration of transient metals like 
iron, copper, and zinc with increasing age are general 

phenomena with the increase in iron being the most nota-
ble [3, 15]. The sources explaining the additional increase 
in iron in neurodegeneration are reasonably mainly exter-
nal. Migration of inflammatory cells from the periphery 
thus may pave the way for the iron accumulation known 
to take place in the degenerating CNS, as monocytes that 
transform into tissue macrophages while migrating passed 
the blood–brain barrier into the CNS contain a high con-
centration of labile iron and the iron-storing protein fer-
ritin capable of binding approximately 4,500 atoms of 
iron to each ferritin molecule [18, 20]. We hypothesize 
that macrophages, which participate in the phagocytosis 
of damaged and dying cells, are likely to die out them-
selves, leading to the release of their iron content inside 
the CNS. The iron could transform from the repository of 
ferric iron present inside ferritin to the more available but 
also labile ferrous iron that might contribute to production 
of ROS.

Apart from the interests in the contribution of iron for 
ROS production, little activity has been devoted to the 
mechanisms underlying the causes of deposition of iron 
in CNS areas affected with neurodegeneration. The main 
topic of this review is therefore to cover the significance 
of the iron carried into the CNS by circulatory monocytes 
during the process of inflammation, its contribution to neu-
rodegeneration, which clearly occurs in mechanisms differ-
ent from the handling of the increasing levels of iron in the 
CNS during normal aging and the therapeutic potential of 
preventing migration of iron-containing phagocytic mac-
rophages into the CNS.

Table 1   Neurodegenerative disorders with inflammation and accumulation of iron- and ferritin-containing macrophages

CNS central nervous system, PKAN pantothenate kinase-associated neurodegeneration

Disorder Pathological features associated with neuronal 
degeneration

Affected CNS region accompanied by iron 
accumulation

References

Alzheimer’s disease Intracellular deposition of neurofibrillary 
tangles containing hyperphosphorylated 
tau-protein and extracellular deposition of 
amyloid

Cerebral cortex, hippocampus [138–143]

Parkinson’s disease Aggregate-like structures formed by alpha-
synuclein in affected dopaminergic neurons 
leading to formation of solid inclusion bod-
ies known as Levy Bodies

Substantia nigra, striatum [61, 144–152]

Huntington’s disease Mutation in the gene encoding the huntingtin 
protein leading to accumulation of aggre-
gates containing fragments of huntingtin in 
spiny neurons

Striatum [125, 153–155]

Amyotrophic lateral sclerosis Affection of motor neurons caused by compro-
mised production of superoxide dismutase

Cerebral cortex, spinal cord [156–160]

Wilson’s disease Mutation in the gene encoding a copper-trans-
porting protein ATP7B

Striatum [161–165]

PKAN Autosomal recessive disease involving mul-
tiple genes characterized by excessive iron 
accumulation in the CNS

Striatum [166–170]



1609Iron deposits in central nervous system

1 3

Ferritin concomitantly increases in the normal aging 
brain to scavenge excess iron

Throughout life, the CNS continuously takes up iron from 
the circulation by means of receptor-mediated endocyto-
sis of iron-transferrin by brain capillary endothelial cells 
denoting the blood–brain barrier [21]. The CNS does not 
excrete iron to the same extent, explaining why the CNS’s 
turnover of iron is extremely low [16, 22]. Reflecting the 
increasing iron concentration of the aging CNS, iron dis-
tributes to all cell types but its detection is hampered by 
that only iron on its oxidated ferric form can be detect-
able using histological approaches. Neuronal iron almost 
exclusively appears in neurons on its ferrous form [23] 
and does not appear in neurons as ferric iron until aging 
[23–25]. The cells of the normal aging CNS generally 
seem capable of handling the increasing iron as they read-
ily respond by increasing their content of ferritin [26]. At 
the cellular level, the main feature of the aging CNS is 

that oligodendrocytes substantially increase their ferritin 
protein expression, which is a dramatic change that rep-
resents a raise from virtually no expression during devel-
opment through an intermediate in the normal adult CNS 
[27]. Neurons of many brain regions also increase their 
iron and ferritin content with increasing age, but in a 
much more heterogeneous pattern than seen in oligoden-
drocytes, suggesting that the handling of iron by neurons 
differs among various regions of the CNS. Microglia also 
increasingly expresses ferritin with aging, whereas astro-
cytes paradoxically maintain a virtual complete lack of 
ferritin protein in the development CNS and throughout 
adulthood and aging despite the fact that they have the 
capacity to take up iron [28].

Mechanistically, being part of the Fenton and Haber–
Weiss reactions iron can contribute to neuronal oxidative 
stress and damage by participating as ferrous iron, i.e., 
on its reduced form) (Fig. 1). However, as the increasing 
concentration of iron is reflected by a parallel increase in 
ferritin in the aged CNS, iron is likely to occur on its oxi-
dized ferric form due to the ferroxidase activity denoted 
by ferritin [29]. Hence, the ready translation of ferritin 
mRNA in response to increasing iron levels as well as the 
enormous capability to bind iron makes it likely that suf-
ficient ferritin expression is proper relative to the cellular 
level of iron during aging, which thus prevents ferrous 
iron from participating in unwanted ROS formation [26, 
29].

Concomitant to the increasing content of iron of the 
aging CNS, ROS formation also increases, which is attrib-
uted to a lower functioning of the enzymes of the mito-
chondrial respiratory chain in addition to a weakened 
antioxidative defense from molecules such as glutathione 
[30, 31]. Hence, while important to scavenge the risks of 
the increasing iron for catalyzing free radicals, ferritin is 
simultaneously at risk of being damaged by ROS itself, 
which could release iron from ferritin and subsequently 
allow unbound iron to enter the pool of labile iron known 
to be chemically much more reactive than ferritin-bound 
iron [29, 32]. The increasing ROS formation could also 
hamper the functioning of iron-responsive proteins or their 
transcription, which may further impede the regulation of 
ferritin mRNA translation [33]. The risk is therefore that 
the increased ROS formation in the aging CNS, incom-
pletely compensated by an antioxidant response, damages 
ferritin with a resulting release of iron and leading to a fur-
ther increase in ROS production, hence creating a vicious 
cycle [29, 34]. Human cases and animal models mutated in 
ferritin achieve a neurodegenerative state supporting that 
mismatch in the capability to increase the expression of 
ferritin in response to increasing iron leads to neuropathol-
ogy [34, 35].

Fig. 1   Overview of major events that lead to iron accumulation in 
the central nervous system. Dysregulation of cellular iron homeosta-
sis is likely to happen if ferritin expression is hampered leading to a 
failure in the binding of residual iron. Iron may also pathologically 
accumulate inside cells due to inhibition of ferroportin mediated 
by hepcidin (see also text and Fig. 5). Iron accumulating in cells is 
likely to play a significant role for initiating neurodegeneration via 
promoting free radical formation by Fenton chemistry. Ferrous iron 
(Fe2+) of the labile iron pool gets catalyzed to ferric iron (Fe3+) in 
a chemical reaction mediated by hydrogen peroxide (H2O2) formed 
as a byproduct of oxidative metabolism, which leads to formation 
of hydroxide radical (OH•). Depletion in antioxidants inside the cell 
may fail to scavenge hydroxide radicals and propagate neurotoxicity. 
BBB blood–brain barrier
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Oxidative stress formation in the inflamed CNS 
receives a significant contribution from iron‑containing 
macrophages

During the processes of oxygen metabolism and ATP for-
mation, mitochondria form ROS and reactive nitrogen spe-
cies (RNS) as by-products [30, 36, 37], and oxidative stress 
occurs when the formation of ROS and RNS exceeds the 
elimination capacity of antioxidative defense system [38, 
39]. The CNS receives approximately 20  % of the blood 
supply of the entire body, and the extraction of oxygen 
from the blood by the CNS is concomitantly high, mak-
ing the microenvironment of the CNS rich in oxygen radi-
cals [40]. The tissue of the CNS is rich in peroxidized fatty 
acids, and even though the cells of the CNS also harbor 
an antioxidant defense system, the CNS is highly prone 
for impact by ROS and RNS [41]. Oxidative stress gener-
ally plays a role in disease pathogenesis in consequence 
of distressed metabolism in the CNS because of the tox-
icity of ROS produced in neurons and inflammatory cells. 
Many cellular biochemical reactions are responsible for 
the production of ROS and also RNS in the presence of 
nitric oxide (NO). The ROS are free radicals of great physi-
ological importance for cells of the innate immune system 
like monocytes and macrophages functioning to eliminate 
invading pathogens and dying cells following phagocytosis, 
while migrating into the CNS in various disease conditions 
[2, 4–8]. However, the ROS released from monocytes and 
macrophages are also potentially harmful to tissues of the 
CNS, because of their ability to react with almost any cel-
lular component including DNA, lipids, and proteins [42].

The ROS-producing macrophages entering the brain can 
be functionally sub-categorized into two distinct groups; 
the pro-inflammatory M1 phenotype and the anti-inflam-
matory M2 phenotype [43, 44]. Different iron handling 
between these subgroups of macrophages can be observed 
in various conditions with chronic inflammation outside the 
CNS. While activated M1 macrophages readily increase 
their iron-content, e.g., via DMT1, M2 macrophages are 
characterized by a much lower iron content due to continu-
ous release of iron through the iron-exporter ferroportin 
[44, 45]. Being resident macrophages, microglia can also 
be subdivided into M1 and M2, both of which have been 
described in areas of neurodegeneration [8]. The participa-
tion from each of these subtypes in chronic neurodegenera-
tive disorders are generally less accounted for compared to 
the macrophages of peripheral tissues, and therefore cannot 
be taken into consideration on the distribution and function-
ality of macrophages entering the brain [8]. However, evi-
dence from transgenic Alzheimer’s disease mice suggests 
that a phenotypic shift from M2 to M1 microglia occurs in 
models of prolonged neuroinflammation potentially aggra-
vating neuronal degeneration with increasing age [46]. 

Furthermore, inflammatory stimulation of microglia leads 
to expression of DMT1 (normally undetectable in resting 
microglia), which possibly accounts for the increased iron 
content of activated microglia in regions affected by neuro-
degeneration [47].

ROS are not only produced by mitochondria but also by 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidase, an enzyme found in the plasma membrane of 
all cell types of the CNS, which forms superoxide when 
metabolizing molecular oxygen [48]. There is strong evi-
dence that NADPH oxidase is upregulated in affected 
regions during neurodegeneration, e.g., in an experimental 
model of Parkinson’s disease, activation of macrophages 
and microglia induced by NADPH oxidase triggered a sub-
sequent production of ROS, thus damaging adjacent neu-
rons, suggesting that the inflammatory process affecting a 
single region may spread to adjacent regions and hamper 
otherwise unaffected/healthy neurons [49–51]. Further-
more, depletion of the peripheral functioning monocytes 
may lead to improved neural outcome, indicating that 
migration of monocytes into the CNS is of significance [52, 
53].

Another possible contributor to the oxidative environ-
ment in neurodegenerative disorders is NO released from 
CNS macrophages. The NO can diffuse into neurons from 
the vicinity of the macrophages and catalyze the formation 
of the damaging pro-oxidant peroxynitrite via chemical 
reaction with neuronal superoxide (Fig. 2) [54–59]. NO is 
also known to interact directly on the binding of iron to fer-
ritin, as NO can release iron from ferritin, causing iron to 
appear on reactive loosely bound forms [60].

The migration of monocytes into the CNS is dramati-
cally increased in virtually any condition with pathol-
ogy inside the CNS (Fig.  3) [6–11]. Concomitantly to 
the increase in this migration, the concentration of iron 
increases in affected CNS regions, e.g., the concentration 
of iron increases in the substantia nigra and striatum in 
Parkinson’s disease, in hippocampal and many forebrain 
regions in Alzheimer’s disease, and in the striatum in Hun-
tington’s disease [61–63], which makes it obvious to sug-
gest that the migration of iron-containing monocytes into 
the diseased CNS explains the increasing concentration of 
iron, which will be dealt with in the following section.

Iron‑mediated pathology in neurodegeneration 
as interplay between increased deposition, oxidative 
stress formation, and impaired iron efflux

In accordance with our hypothesis, accumulation of iron 
in the CNS during neurodegenerative diseases could 
be attributable to inflammatory cells migrating into the 
affected areas and deposit iron [5]. Other possible sources 
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Fig. 2   Macrophages migrat-
ing into the brain release nitric 
oxide radicals (NO•), a process 
that involves the catalytic 
oxidation of ferrous iron. NO• 
is capable of diffusing pass 
the cellular membranes and 
into neurons where it can react 
with superoxide (O2•−) and 
promote formation of the highly 
reactive and toxic peroxynitrite 
(ONOO−)

Fig. 3   Migration of monocyte into the normal (a) and neurodegen-
erating (b) brain. The monocytes migrate through the brain capillar-
ies that form the blood–brain barrier even in normal conditions. In 
conditions with pathology, the migration of monocytes into the brain 
through the blood–brain barrier is much more pronounced. In conse-
quence of this migratory process, the monocytes transform into mac-
rophages with immediate access to neuronal projections and astro-
cytic end-feet forming the so-called glia limitans, demarcating the 
brain perivascular space. BCEC brain capillary endothelial cells. Bot-
tom Inflammatory cells in the substantia nigra reticulata identified by 
ferritin labeling. Rats were injected unilaterally into the striatum with 

a glutamate agonist to induce degeneration in the striatal nigral path-
way. The loss of striatal innervation of the substantia nigra reticulata 
leads to a gradual degeneration that is followed by chronic inflam-
mation and iron accumulation (Sastry and Arendash, 1995). A The 
mesencephalon with the affected substantia nigra reticulata indicated 
(asterisk). B In the substantia nigra reticulata of the unaffected side, 
the ferritin-containing cells are virtually only seen in oligodendro-
cytes (arrows), whereas in the affected substantia nigra reticulate (C), 
ferritin-containing cells are identified as monocytes and macrophages 
(arrowheads) and oligodendrocytes (arrow) (Thomsen and Moos, in 
preparation). Magnification: A ×5. B–C ×200
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for chronic iron deposition are due to changes in the 
physiological transport of iron across the blood–brain 
barrier and an impaired cellular capability to export iron. 
The following paragraphs are devoted to these issues via 
a sequential coverage of: (i) The blood–brain barrier in 
inflammatory conditions; (ii) accumulation of inflamma-
tory cells and iron deposition in both non-neuronal and 
neuronal tissues; (iii) transport of non-cellular iron across 
the blood–brain barrier in chronic CNS inflammation, and 
(iv) compromise in the capability to export iron from the 
CNS.

The blood–brain barrier in inflammatory conditions

The blood–brain barrier, consisting of non-fenestrated 
capillary endothelial cells with their intermingling tight 
junctions, denotes a morphological interface situated 
between the circulation and the CNS parenchyma [64, 
65]. These endothelial cells prevent large, especially 
lipid insoluble, molecules from entering the CNS and 
also closely regulates the level of nutrients, vitamins, 
and minerals that enters the CNS. An extended interface 
between the blood and the CNS is formed by the brain 
capillary endothelial cells, their basement membrane, and 
glial cells such as astrocytes and pericytes, which together 
form the so-called neurovascular unit [64]. While not 
directly involved in regulating barrier permeability, these 
glial cell types are important for the induction and main-
tenance of the barrier characteristics of the brain capillary 
endothelial cells [66].

The integrity of the blood–brain barrier is reportedly 
compromised and thought to play a significant role in 
many different neurological disorders, including epilepsy, 
migraine, stroke, and various neurodegenerative disorders 
[67–70]. Among the latter, disruption of the blood–brain 
barrier was described in Alzheimer’s disease, Parkinson’s 
disease, and amyotrophic lateral sclerosis [71–74]. In Alz-
heimer’s disease, inflammation of the cerebral vasculature 
seems to be an early event in the progression of neuroin-
flammation and Aβ deposition [75, 76]. Early inflamma-
tion of the blood–brain barrier was recently observed 
together with changes in permeability and upregulation of 
MECA-32 and selectin expression in experimental models 
of neurodegeneration [67, 68, 70]. Hence, activation of the 
endothelium coincides with early leakage of the blood–
brain barrier, which may allow for inflammatory cells like 
monocytes and macrophage to enter the CNS locally early 
in disease to initiate deposition of iron. Inflammation of 
the periphery may also lead to opening of the blood–brain 
barrier, increased migration of monocytes into the CNS, 
microglial activation, damage to dopaminergic neurons, 
and exaggerated deposition of iron inside the CNS [47, 52, 
53].

Deposition of iron in non‑neurological disorders is 
associated with ROS formation and chronic inflammatory 
pathology

Migration of monocytes through an endothelial barrier 
is characteristic for several chronic inflammatory condi-
tions in non-neuronal tissues. The monocytes harbor the 
largest pool of labile iron among the hematopoietic cells 
[18]. This labile iron pool is important for the adhesion 
of the monocytes to endothelial cells, and subsequently 
their migration through endothelium in non-neuronal tis-
sues and their transformation into macrophages [77, 78]. 
This labile iron pool is, however, loosely bound to proteins 
and prone to participate in cellular destructive reactions 
when monocytes are attracted to regions of tissue inflam-
mation [18]. Inflammation and essential metals are highly 
entwined with respect to diverse peripheral chronic inflam-
matory disorders. The role of iron as a potential catalyst 
of inflammation and degeneration in non-neuronal tis-
sues has been investigated intensely with regards to the 
chronic inflammation that occurs in various conditions 
such as joint diseases, atherosclerosis, and inflammatory 
bowel disorders. The literature discloses evidence that 
iron deposits in synovial fluid in numerous inflammatory 
and degenerative joint disorders, e.g. rheumatoid arthri-
tis, osteoarthritis, hemophilic synovitis, and seronegative 
arthritis [79–86]. In these joint diseases, just as in inflam-
matory disorders of the bowel, accumulating iron seem-
ingly takes on a part as a villain to maintain and exacer-
bate chronic inflammation.

Perhaps the most obvious example of how monocytes 
and macrophages may deposit iron and exacerbate pathol-
ogy is seen in atherosclerosis, which shares similarities 
with the inflammation of the CNS with respect to the pres-
ence of endothelial abnormalities, transmigration of mono-
cytes through activated endothelial cells, local recruitment 
of macrophages to the sites of inflammation, and accu-
mulation of iron [87]. In atherosclerosis, the process of 
chronic vascular inflammation gets significant contribution 
from circulating iron-containing monocytes that migrate 
into the sub-endothelial compartment attracted primarily 
by the endothelial expression of adhesion molecules like 
vascular cell adhesion molecule-1 (VCAM-1), intercel-
lular adhesion molecule-1 (ICAM-1), and chemo-attract-
ant chemokine (C–C motif) ligand 2 (CCL2), molecules 
also being expressed by the activated brain endothelium 
in inflammatory conditions in the CNS [88–90]. In the 
inflamed subintimal zone of the arteries, the labile iron pre-
sent in macrophages is likely to play a detrimental role as 
it prompts formation of ROS and free radicals through the 
Fenton and Haber–Weiss reactions [91, 92]. Accumulation 
of iron in non-neurological diseases, particularly athero-
sclerosis, thus supports the notion that inflammatory cells 
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migrate into inflamed tissues where they deposit iron and 
thereby contribute to ongoing inflammation.

The accumulation of inflammatory cells and iron 
deposition in neuronal tissue

Monocytes migrate through the blood–brain barrier in brain 
ischemia, transform into tissue macrophages, and carry 
iron into the brain where it exerts deleterious effects [93, 
94]. The migrating monocytes therefore denote a plausible 
source of iron for the affected areas in neurodegenerative 
disorders (Fig.  3). Similar to the events taking place dur-
ing inflammation in non-neuronal tissues, in inflammatory 
conditions of the CNS, the expression of selectins by brain 
capillary endothelial cells leads to attachment of mono-
cytes that “roll” in the direction of the circulation towards 
the endothelial surface. After adhesion to immobilized 
chemokines, the integrins of the migrating monocytes bind 
to ligands, e.g., ICAM-1, which in turn leads to a tighter 
adhesion of the monocytes to the surface of brain capillary 
endothelial cells. Subsequently, protruding processes of the 
monocytes are likely to facilitate the search for chemokines 
expressed on the abluminal surface of the brain capillary 
endothelial cells, which enable their further entry into the 
perivascular space when passing though the brain endothe-
lium. Here, the monocytes may additionally secrete matrix 
metalloproteinases to degrade the extracellular matrix of 
the basement membrane or bind to the extracellular matrix 
through β1-integrin, thereby facilitating the final migration 
into the brain parenchyma [95]. The presence of Aβ, either 
on its soluble form near the luminal side of brain capillary 
endothelial cells or on its aggregated form on their ablu-
minal side, significantly potentiates the transmigration of 
monocytes in an in vitro model of the blood–brain barrier 

[96] and clearly suggests that monocytes of the periphery 
enter the CNS in pathological conditions.

There is strong evidence from experimental studies sup-
porting that pathological conditions of the CNS leads to 
iron accumulation in affected brain regions, e.g., chemical 
lesion of the striatum leads to degeneration accompanied 
by manifest inflammation and iron deposition not only in 
the striatum but also significantly in the substantia nigra 
that communicate bilaterally with the striatum [5]. Hence, 
in good agreement with our hypothesis, macrophages 
migrating into the substantia nigra may phagocytose dam-
aged neurons and subsequently deposit iron. Therefore, the 
chronic migration of monocytes could also play an impor-
tant role in the progression of neurodegenerative disorders 
(Fig.  4) [60]. While acting as activated phagocytic cells, 
the macrophages release NO that can directly promote iron 
release from ferritin [59]. Moreover, the macrophages will 
eventually die out by apoptosis to terminate the inflamma-
tory process unless chronic stimuli precedes [59, 97, 98]. 
This will lead to release of the labile iron present inside 
the macrophages, which subsequently becomes accessible 
for both already damaged and otherwise healthy neurons 
(Fig.  4). The iron released from dying macrophages can 
play a significant role not only for direct neuronal damage 
and resulting cell death but also by means of ROS-medi-
ated post-translational affection of proteins to gradually 
perturb their function, e.g., by promoting neuronal fibril 
and aggregate formation as seen in Parkinson’s disease that 
eventually could also lead to neuronal cell death, but in a 
much more long-lasting scenery [99, 100].

In the resting brain, entering macrophages can differ-
entiate into microglia [6, 11, 101]. Activation of microglia 
is a well-described phenomenon occurring in a number 
of neurodegenerative disorders due to molecular release 

Fig. 4   Extravasated macrophages phagocytose and degrade damaged neurons and subsequently die to terminate their function, which leads to 
the release of iron into the extracellular space of the CNS on a low molecular weight form
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from dying neurons of ROS, chemokines, interleukins, and 
tumor necrosis factor α (TNF-α) [8, 102] that leads to the 
migration of the microglia towards the regions affected of 
neurodegeneration, where they participate in the phago-
cytosis and destruction of dying neurons until they die 
out themselves by apoptosis [12, 97, 103–105]. Micro-
glia contain relatively high amounts of iron bound to fer-
ritin and the migration of microglia to the degenerating 
regions therefore make a significant contribution to the 
local increase in iron by a mechanism similar to the mecha-
nism proposed to occur in macrophages [106]. Moreover, 
the activation of microglia is known to facilitate the release 
of labile iron from the ferritin complex, hereby introducing 
free iron to neurons in the areas of disease [107].

The transport of non‑cellular iron across the blood–brain 
barrier in chronic inflammation of the CNS

The regulation of iron uptake in the brain is a tightly con-
trolled process involving binding of transferrin to the 
brain capillary endothelial cells followed by endosomal 
uptake of holo-transferrin [108]. On the abluminal surface 
of the brain capillary endothelial cells, the microenviron-
ment of the CNS could drive the release of iron, which 
would subsequently be bound to parenchymal transferrin, 
citrate or ATP, and passes into the brain interstitium for 
uptake by neuronal and glial uptake. Inflammatory activ-
ity within affected regions of the CNS could lead to iron 
being released from macrophages that could bind to trans-
ferrin in the extracellular space and enter neurons by means 
of receptor-mediated uptake of iron transferrin or by non-
transferrin bound iron uptake, which would also apply to 
glial cells [109].

The fact that increasing the concentration of iron in 
plasma still fails to improve the entry of iron into the CNS 
both experimentally or in human conditions with hemo-
chromatosis indicates that the brain capillary endothelial 
cells with intact blood–brain barrier properties are able to 
down-regulate their expression of transferrin receptors in 
response to the increasing availability [108]. By contrast, 
in conditions with neurodegeneration and inflammation 
of the CNS, there is evidence for an increased opening of 
the blood–brain barrier leading to paravascular passage of 
macromolecules locally in regions with affected neurons 
[68, 110].

The activation of the endothelium in Alzheimer’s dis-
ease with down-regulation of tight junction expression 
precedes the deposition of Aβ but coincides with early 
blood–brain barrier leakage, which could represent the ear-
liest stages of disease [75, 76]. This raises the question if 
paraendothelial transfer of holo-transferrin through these 
leakages may contribute to the increased deposition of iron 
in many neurological disorders. An increase in iron entry 

through a compromised blood–brain barrier with increased 
paraendothelial transfer was recently reported in an experi-
mental model of transient forebrain ischemia [93, 94], but 
quantitative evidence that could justify whether iron-trans-
ferrin entering the brain due to a compromised blood–brain 
barrier to yield significances in iron accumulation is still 
needed.

Compromise in the capability to export iron from the CNS

In addition to its participation in intestinal absorption and 
circulatory iron homeostasis via expression in duodenal 
enterocytes, hepatocytes, and macrophages, ferropor-
tin is also expressed in neurons of the CNS with signifi-
cant regional variations [111–113]. Ferroportin is the only 
described protein known to mediate cellular efflux of iron 
[114], which would make a mismatch in the functional-
ity of ferroportin in the CNS a possibility for iron to get 
trapped inside neurons, leading to their lack of capabil-
ity to excrete iron. In turn, this incapability to export iron 
from cells would lead to accumulation of iron inside CNS 
and pose neurons to an increased risk for ROS-mediated 
damage.

Ferroportin expression is post-transcriptionally regu-
lated via interaction between iron-regulatory proteins and 
an iron-responsive element present in the 3′-end of its 
mRNA, indicating that ample presence of iron leads to 
stabilization and increased half-life of ferroportin mRNA 
leading to higher translation [114]. The expression of ferro-
portin is also post-translationally regulated by the hormone 
hepcidin, as the binding of hepcidin results in phosphoryla-
tion, internalization, and degradation of ferroportin, thus 
severely altering the ability of the cell to excrete iron [115, 
116].

Experimental neurodegeneration has never been cor-
related directly with changes in neuronal ferroportin 
expression, but injections of hepcidin into the lateral ven-
tricle of the rat leads to a decrease in neuronal ferropor-
tin, confirming the notion of a degradation of ferroportin 
in the presence of hepcidin [117]. Hepcidin is secreted 
from hepatocytes in systemic inflammatory conditions, 
and provided that pathological activity of the CNS leads to 
humoral signaling in the circulation, it is predictable that 
such activity would lead to raise hepcidin in plasma with 
the likelihood of passing into the brain, provided the integ-
rity of the blood–brain barrier gets compromised. Clearly, 
a condition with chronic pathology of the CNS leading to 
migration of iron-containing macrophages and their sub-
sequent demise as discussed in previous paragraphs would 
make it likely that the neurons could suffer from the accu-
mulation of iron released from dying macrophages com-
bined with the incapability to release iron via ferroportin 
due to the presence of hepcidin inside the inflamed CNS 
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(Fig. 5). This notion gets exaggerated by the fact that the 
turnover of iron in the CNS is very slow even in the nor-
mal brain, which can be attributed to iron being accumu-
lated in cells of the brain rather than being transported out 
of the brain (cf. [118]).

Pharmacological intervention to limit pathological iron 
deposition in neurodegenerative disorders

The chronic setting of iron-containing macrophages 
migrating into the CNS in affected areas in conditions 
with neurodegeneration gives rise to deposition of iron that 
eventual may reach limits that will promote formation of 
free radicals to an extent uncontrollable by increases in 
ferritin expression. Therefore, it is reasonable to consider 
the possibilities of pharmacological intervention to limit 
the damages of pathological iron deposition. A first strat-
egy will be to directly intervene into the events leading to 
neuronal degeneration, but the coverage of this option goes 
beyond this review. Further downstream is the cause of 
inhibiting migration of monocytes into the brain, followed 
by antioxidant therapy to neutralize the formation of excess 
free radicals, and final the possibilities of limiting iron 
deposition by means of chelator therapy that would serve to 
reduce iron occurring extracellularly due to degradation of 
damaged and dying cells including brain macrophages and 
intracellularly in neurons.

Inhibition of macrophages in neurodegeneration using 
antioxidant therapy

The local environment in affected areas in neurodegenera-
tive disorders is enriched in oxidants and the load from free 
radicals is permanently at risk for exaggerating neuronal 
cell death. The contribution of pro-oxidants can in part be 
attributed to the action of monocytes migrating through 
the blood–brain barrier and microglia migrating inside the 
CNS towards the sites of neurodegeneration. Hence, the 
inhibition of migration of monocytes into the CNS could 
be of significance to halt disease progression and contrib-
ute to the development of effective therapeutic regimens 
in conditions with neurodegeneration [119]. The action of 
migrating macrophages can qualitatively be inhibited by 
treatment with antioxidants that serve to reduce the load 
of pro-oxidant molecules, although clinical significance 
of antioxidant treatment in neurodegenerative diseases is 
yet to be proven. The impact of corticosteroids and several 
non-steroid anti-inflammatory drugs on the progression of 
Alzheimer’s disease was tested in a clinical trial, but bene-
ficial effects could not be detected [120, 121]. Among other 
promising and diverse agents such as co-enzyme Q-10 
(mitochondrial enhancer and antioxidant), minocycline 
(anti-inflammatory agent), and rasagiline (MAO-inhibitor), 
none has yet made it to the clinic [122]. Minocycline is 
highly lipophilic and hence readily crosses the blood–brain 
barrier [123]. This advantage in the pharmacokinetic profile 

Fig. 5   The macrophages, like 
monocytes and microglia, are 
capable of secreting hepcidin 
into the brain extracellular 
space. Hepatic hepcidin is syn-
thesized in response to inflam-
matory signals and secreted 
into blood plasma from where 
it can diffuse into the brain 
in areas with a compromised 
blood–brain barrier. The hep-
cidin is capable of binding and 
inhibiting ferroportin needed 
for export of iron from neurons, 
which may result in neuronal 
iron accumulation and increased 
the likelihood of neuronal dam-
age via Fenton chemistry
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would suggest the compound to be preferable for treatment 
of chronic neurodegenerative disorders, and irrespective of 
the mechanisms that could be beneficial in the usage of this 
anti-inflammatory drug, its success in clinical testing will 
probably depend on the length of the dosage regimen and 
possibly also that the onset of therapy takes place when the 
disease is not too progressed. Although pivotal progress has 
not been made, several compounds affecting oxidant levels 
were suggested for further exploration for the treatment of 
Parkinson’s disease and research into these compounds and 
their promising derivatives continues [122, 124]. This also 
applies to treatment of Huntington’s disease, where efforts 
focus on increasing autophagy and ubiquitination of mutant 
huntingtin protein mHtt combined with treatment of anti-
oxidants like co-enzyme Q10 and cysteamine [125, 126].

Iron chelators for neutralizing the effects of iron 
accumulation in neurodegeneration

Iron chelating agents were examined in various degenera-
tive disorders with iron pathogenically involved, e.g., in 
Parkinson’s disease, coronary heart disease, and general 
atherosclerosis. Studies in rodents suggest that restric-
tion in iron intake reduces progression in atherosclerotic 
plaque formation [77, 127, 128], while administration of 
excess iron on the contrary augments these processes [129]. 
Furthermore, treatment with the iron chelating agent des-
ferrioxamine has proven successful in reducing iron con-
centration in atherosclerotic plaques and decreasing ath-
erosclerotic lesion formation in animal models [130, 131]. 
In neurodegeneration, a principal target for iron chelation 
is extracellular iron due to degradation of damaged and 
dying cells including brain macrophages. As stated in the 
preceding paragraphs, the macrophages entering the CNS 
are likely to die out by apoptosis when having commenced 
their function, which will lead to their release of iron into 
the extracellular space. The iron released in such a condi-
tion will likely bind to transferrin or low molecular weight 
substances like citrate and ATP [118] and be amendable for 
therapy with extracellularly acting iron chelators, provided 
these are capable of passing the blood–brain barrier. Con-
versely, iron accumulating in neurons as part of the general 
aging and iron taken up in excess from the extracellular 
space due to the degeneration of other neurons and mac-
rophages will need the action of intracellular iron chelators.

In spite of iron chelators like desferrioxamine and 
deferiprone having been used beneficially for decades for 
the treatment of hemochromatosis and iron poisoning, 
the usage of iron chelators in neurodegenerative disorders 
has not resulted in pivotal clinical breakthroughs [132]. 
Desferrioxamine and deferiprone used clinically to treat 
thalassemia via parenteral injection were shown to success-
fully reduce striatal DA neuron depletion and behavioral 

symptoms in the 6-hydroxydopamine (6-OHDA) model 
of Parkinson’s disease after injection into the cerebral ven-
tricles [133, 134]. As desferrioxamine does not penetrate 
the blood–brain barrier, this drug has obvious limitations 
for treatment inside the CNS, but it might be valuable for 
chelation of iron extracellularly in the brain, in particular in 
pathological conditions with a perturbed blood–brain bar-
rier. This condition does not fully apply to deferiprone that 
crosses the intact blood–brain barrier to some extent [135]. 
Interestingly, deferiprone is currently being examined in 
clinical studies for its capability to reduce disease progres-
sion in PKAN [136, 137].

An alternate application of oral iron chelators is to use 
the oral route, which is particularly relevant for lipophilic 
drugs. The lipophilic molecule deferasirox was also shown 
to attenuate the loss of dopaminergic neurons and preserve 
striatal dopamine in the 6-OHDA model of Parkinson’s dis-
ease [134]. Deferasirox has been approved by the FDA for 
therapy in conditions with chronic iron overload. Contrary to 
the parenteral iron chelators, deferasirox may exert its action 
inside neurons rather than in the extracellular environment. 
This indicates that it could be favorable to combine different 
iron chelators for studies in experimental models with iron 
accumulation in an attempt to simultaneously chelate iron 
deposited extracellularly occurring from cellular debris of 
dying neurons and macrophages and iron accumulating inside 
neurons due to uptake from the pathologically iron-enriched 
immediate interstitium. The strategy of combining iron chela-
tors acting on iron present extra- or intracellularly might even 
benefit from a combination with therapeutics to inhibit migra-
tion of iron-containing macrophages into the CNS (Fig. 6).

Conclusions

For reasons still unknown, the concentration of iron 
increases in the brain with increasing age. The rise in brain 
iron content in aging is even higher in neurodegenera-
tive disorders, which is probably a result of the inflamma-
tory process occurring in areas affected by neurodegenera-
tion. The transformation of iron-containing monocytes that 
migrate across the blood–brain barrier into the CNS while 
transforming into brain macrophages is in agreement with 
this notion. As a consequence of the phagocytosis of dam-
aged and dying neurons, the entering macrophages even-
tually die out, leading to the release of their own content 
of iron into the brain interstitium from where it will enter 
the pool of loosely bound iron that catalytically may pro-
mote formation of free-radical-mediated stress and oxi-
dative damage to cell membranes in the adjacent environ-
ment. Damaged but also healthy neurons may engulf iron 
of the dying macrophages from extracellular space leading 
to cellular accumulation with the risk of further promoting 
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neuronal damage. The chronic inflammation and decreased 
blood–brain barrier integrity accompanying neurodegenera-
tive disorders may be pharmacologically managed via inter-
vention of the monocyte migration into the brain combined 
with chelator therapeutics that aim to chelate iron released 
extracellularly due to release from dying macrophages and 
chelating of iron deposited intracellularly in neurons.
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