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Abstract

Local binary pattern (LBP) operators have become commonly used texture descriptors in recent years. Several new
LBP-based descriptors have been proposed, of which some aim at improving robustness to noise. To do this, the
thresholding and encoding schemes used in the descriptors are modified. In this article, the robustness to noise for
the eight following LBP-based descriptors are evaluated; improved LBP, median binary patterns (MBP), local ternary
patterns (LTP), improved LTP (ILTP), local quinary patterns, robust LBP, and fuzzy LBP (FLBP). To put their performance
into perspective they are compared to three well-known reference descriptors; the classic LBP, Gabor filter banks (GF),
and standard descriptors derived from gray-level co-occurrence matrices. In addition, a roughly five times faster
implementation of the FLBP descriptor is presented, and a new descriptor which we call shift LBP is introduced as an
even faster approximation to the FLBP. The texture descriptors are compared and evaluated on six texture datasets;

a good texture descriptor nor stable to noise.

Brodatz, KTH-TIPS2b, Kylberg, Mondial Marmi, UIUC, and a Virus texture dataset. After optimizing all parameters for
each dataset the descriptors are evaluated under increasing levels of additive Gaussian white noise. The
discriminating power of the texture descriptors is assessed using tenfolded cross-validation of a nearest neighbor
classifier. The results show that several of the descriptors perform well at low levels of noise while they all suffer, to
different degrees, from higher levels of introduced noise. In our tests, ILTP and FLBP show an overall good
performance on several datasets. The GF are often very noise robust compared to the LBP-family under moderate to
high levels of noise but not necessarily the best descriptor under low levels of added noise. In our tests, MBP is neither

1 Introduction
The texture of objects in digital images is an important
property utilized in many computer vision and image
analysis applications such as face recognition, object clas-
sification, and segmentation. Despite its frequent use and
the many attempts to describe it in general terms, texture
lacks a precise definition. This makes the development of
new texture descriptors an ill-posed problem [1,2]. The
recent textbook by Pietikdinen et al. [3] provide a good
description of texture in stating that “A textured area in an
image can be characterized by a non-uniform or varying
spatial distribution of intensity or color”.

Local binary patterns (LBPs) emerged in the mid-1990s.
At first, they were introduced as a local contrast descriptor
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[4] and a further development of the texture spectra intro-
duced in [5]. Shortly thereafter, LBP was shown to be an
interesting texture descriptor [6]. Many extensions to the
classic LBP have since then been proposed. A comprehen-
sive book about the LBP family of texture descriptors was
recently published [3]. While some propositions focus on
different sampling patterns to effectively capture the char-
acteristics of certain textures, others propose descriptors
focusing on improving the robustness to noise by using
different encoding or thresholding schemes. The latter
group is the focus of this article; considering LBP-based
descriptors where the thresholding and encoding schemes
are modified to create more noise robust descriptors.
Although several new LBP-based texture descriptors
have been published, there is a limited number of compar-
ative studies and evaluations. However, the recent study
in [7], and the previous study by the same authors in
[8], together cover six datasets from different applica-
tions, mainly in the biomedical area. They report results
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achieved using different sampling patterns and thresh-
olding schemes as well as combinations of LBP-based
descriptors with integrated ensembles of support vector
machine (SVM) classifiers. The parameter values explored
are limited and the focus is on optimizing combinations
of LBP-based descriptors that work well for several types
of texture datasets. Another recent survey is [9] where a
large number of LBP-based descriptors are compared and
put into a unifying framework called histograms of equiv-
alent patterns (HEP). These descriptors are evaluated on
11 general texture datasets and the descriptors are then
ranked based on pairwise comparisons of the classifica-
tion results in the pursuit for the overall best descriptor in
the HEP framework.

Unlike the previously mentioned surveys the aim of
this article is to evaluate the noise robustness of a num-
ber of LBP-based descriptors. The selected descriptors
are all designed to be noise robust alternatives to the
original LBP by altering the thresholding or encod-
ing scheme. The descriptors are namely improved LBP
(ILBP), median binary patterns (MBP), local ternary pat-
terns (LTP), improved local ternary patterns (ILTP), local
quinary patterns (LQP), robust LBP (RLBP), shift LBP
(SLBP), and fuzzy/soft LBP (FLBP). The SLBP descriptor
is proposed in this article as a fast and simple approxi-
mation to FLBP. The discriminating power of the texture
descriptors are evaluated by applying them to six differ-
ent texture datasets followed by a cross-validated classi-
fication using a first nearest neighbor classifier (1-NN).
Before the noise robustness is assessed all the descriptors
parameters are thoroughly optimized, exploring a search
space larger than a few combinations of parameter values,
which is commonly the case reported in the literature.

When using LBP, it is quite common to exclude the
specificity of the so-called non-uniform patterns and
count their occurrences as simply non-uniform [10]. In
brief, binary codes with more transitions between ‘0" and
‘1" than a specific value (typically two) are called non-
uniform. In this way, the number of possible binary codes
decreases but at the same time some important informa-
tion may be lost, see for example [10,11]. This is why both
uniform and non-uniform binary codes are considered in
this article.

To put the performance of the LBP-based descriptors
into perspective they are compared to the classical LBP,
a set of Gabor filters [12] and a set of commonly used
descriptors derived from the gray-level co-occurrence
matrix (GLCM) introduced by Haralick et al. [1].

2 Material

To evaluate the texture descriptors six publicly available
texture image datasets are used. They were chosen to have
different characteristics in terms of number of classes,
number of samples, class homogeneity with regards to
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scale, perspective, and illumination. The texture datasets
are Brodatz [13], KTH-TIPS2b [14], Kylberg [15], Mondial
Marmi [16], UIUC [17], and a Virus texture dataset [11].
Figure 1 shows four samples from four classes in each of
the six datasets. The basic properties of the datasets as
well as links to websites where they are accessible are listed
in Table 1.

The Brodatz dataset consists of digitized photographs
of natural and manmade textures. In the form the Bro-
datz photos are used here the dataset has many, 111,
classes but only very few, 9, relatively homogeneous sam-
ples per class. The samples are 213 x 213 pixels in size
and there is a considerable overlap between a few of
the classes making them indistinguishable. Some classes
also include large structures making the nine samples not
equally representative.

The KTH-TIPS2b dataset has 11 classes, some very het-
erogeneous, with 432 samples each. In each class, four
objects have been imaged under varying scale, illumina-
tion, and pose conditions. For example, in the class “wool”
four different fabrics and knitwear are represented which
make this class very heterogeneous not only due to the
varying imaging conditions. Most samples are 200 x 200
pixels in size, but some are smaller due to scale issues. See
the documentation in [19] for details. In contrast to [14]
where the dataset is used to study recognition of mate-
rial categories we will use images from all four material
samples as examples of the same class when training the
classifier.

The Kylberg dataset has 28 classes of 160 samples each
with gray-scale images of different natural and manmade
textured surfaces. The classes are very homogeneous in
terms of perspective, scale, and illumination. The images
in the Kylberg dataset are available in different rotations
6 € {0, én, %n,..., %n}. In this article, one orienta-
tion per image is randomly selected. The 576 x 576 pixels
images are here divided into four 288 x 288 pixels, non-
overlapping, sub images resulting in 640 samples of each
class.

The Mondial Marmi dataset is a collection of images
of granite surfaces acquired as JPEG color images (with
noticeable compression artifacts) under controlled illu-
mination conditions. The dataset was used in [21] to
evaluate robustness to rotation for LBP, coordinated clus-
ters representation, and ILBP. While the texture samples
are available in nine orientations (both hardware and soft-
ware rotated) only one orientation (0°) is used here. The
544 x 544 pixel images in the Mondial Marmi dataset
are divided into four 272 x 272 pixel, non-overlapping,
sub images. The samples are converted to gray scale as
0.2989 R+ 0.5870 G +0.1140 B, where R, G, and B are the
red, green, and blue intensities, respectively.

The UIUC dataset is based on images of different
textured surfaces. The images are provided as JPEG
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Figure 1 Texture examples. For each dataset four texture samples from four classes are shown. For the Virus dataset a dashed circle shows the
perimeter of the region wherein the texture descriptors are computed.

images and appear to have only very minor compres- The classes are more heterogeneous than in the Bro-
sion artifacts. Each class contains 40 samples (640 x  datz, KTH-TIPS2b, Kylberg, and Mondial Marmi datasets,
480 pixels) of different perspectives and scales of a texture.  see Figure 1.




Kylberg and Sintorn EURASIP Journal on Image and Video Processing 2013, 2013:17

http://jivp.eurasipjournals.com/content/2013/1/17

Page 4 of 20

Table 1 Properties of the six datasets used; references to the datasets are included

Dataset Number of Number of Total number of Sample Format Ref. Web link
classes samples samples size [px]
per class
Brodatz m 9 999 213 x 213 GIF [13] [18]
KTH-TIPS2b 1M 432 4752 200 x 200P PNG [14] [19]
Kylberg® 28 640 17,920 288 x 288 PNG [15] [20]
Mondial Marmi? 12 16 192 272 x 272 JPEG [21] [22]
uluc 25 40 1,000 640 x 480 JPEG [17] [23]
Virus 15 100 1,500 41 x 41 PNG [11] [24]
@ Each original sample is divided into four samples.
b Some samples are smaller than 200 x 200 pixels.
The Virus dataset was first used in [11], and is based 3.1 LBPs

on transmission electron microscopy images of 15 dif-
ferent virus types. The virus types vary both in size
(diameters from 25 to 270 nm) and shape; some are icosa-
hedral while others are elongated. Texture patches are
extracted as disk-shaped regions with the same diame-
ter as the viruses, centered in automatically (not always
correctly) segmented virus particles, see [11] for more
details. The texture samples are then resampled to the
same size (41 x 41 pixels) using a Lanczos kernel with a
sinc window of @ = 2. This disk-shaped region is shown in
Figure 1.

3 Methods

In the original description of LBP [6], a window of 3 x
3 pixels is used. The pixels in the window are compared to
the value of the center pixel. By coding > and < for each
comparison as a binary number the local binary code is
retrieved when reading these binary numbers anticlock-
wise as a sequence, see Figure 2(left). The histogram of
occurring binary codes in a region is the resulting fea-
ture vector for that region. Early on, the definition was
generalized to consider N sample points evenly dis-
tributed on a circle with radius R from the cen-
ter pixel [25], as illustrated in Figure 2(right). To
make the comparison in this article as fair as pos-
sible, the same generalization (using N samples on
a radius R) is introduced for the whole LBP fam-
ily of descriptors. The implementations of all the LBP
family of descriptors are based on the original LBP
implementation by Heikkildi and Ahonen accessible
at [26].

To put the performance of the LBP family of descriptors
into perspective, two other well-known texture descrip-
tors are evaluated on the same datasets. The selected
reference descriptors are Gabor filter banks (GF) and
commonly used descriptors derived from the GLCM, also
known as Haralick features. Table 2 lists all the descriptors
in the comparison.

The generalized LBP definition from [25] is used with N
sample points evenly distributed on a radius R around a
center pixel p. located at (x, y.). The position, (x,,y,), of
the neighbor point p, where p € {0,...,N — 1} is given by

(Xp> ¥p) = (¥c + Rcos(2rp/N), y.— Rsin(2np/N)).

(1)
The local binary code for the position (x,, y.) is defined as:
N-1
LBPN (%, 9) = Y s(gp — 82", 2)
p=0
where
1, x>0

s(x) = { (3)

0, otherwise

If a point p does not coincide with a pixel center, bilinear
interpolation is used to compute the gray value g,. Finally,
the histogram of occurring binary codes in a region is the
feature vector of this region.

516

8 samples in a
3 x 3 neighbourhood

N samples on radius R

Figure 2 LBP generalization. The eight neighborsina 3 x 3
neighborhood used in the classic LBP (left). The generalized
neighborhood with N samples at radius R (right). The numbers
indicate the ordering of samples.
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Table 2 Evaluated texture descriptors with abbreviations
and references

Method Abbreviation References
Local binary patterns LBP [6]
Improved local binary pattern ILBP [271
Median binary patterns MBP [28]

Local ternary patterns LTP [29]
Improved local ternary patterns ILTP [30]

Local quinary patterns LQP [8]

Robust local binary patterns RLBP [31]
Fuzzy/soft local binary patterns FLBP [32,33]
Shift local binary patterns SLBP This study
Gabor filter bank responses GF [12]
Properties of gray-level GLCM [1]

co-occurrence matrices

3.2 ILBPs

ILBP, introduced in [27], is closely related to LBP. The
main difference is that the threshold used is the mean
value of the whole neighborhood including the center
pixel. In addition, p. will also be a part of the binary code
making it N + 1-bits long. Following [27], ILBP is defined
as

N-1
ILBPn r(x,y) = Z S(gp _gmean)zp +s(ge — gmean)ZN;
p=0
(4)
where
1 N-1
&gmean = N1 pgogp +g | (5)

and the function s is defined as in Equation 3.

3.3 MBPs

MBP was introduced in [28]. In analogy to ILBP, the cen-
ter pixel p, is included in the neighborhood but here the
median gray value of the neighborhood is used instead,
giving the following definition:

N-1
MBPy r(x,y) = Z s(gp _gmed)zp + s(ge — gmed)zNy
p=0
(6)
where
gmed = median ({gO’ g1 .. ’ngl’gc}) ) (7)

and the function s is defined as in Equation 3.
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34 LTPs

To deal with the noise sensitivity of the LBP descriptor, the
magnitude of the intensity difference between the center
pixel and neighboring points can be taken into consider-
ation. However, involving the magnitude implies that the
complete invariance to intensity scaling is lost. In [29], the
LTP descriptor is proposed. Here, the difference between
neighboring values g, and the center pixel value g  are
encoded with three values using one threshold ¢;

N-1
LTPNR(%,7) = Y 53(8p 8 11)2, ®)
p=0
where
1; gp > g +
SS(gprgc; t) = 0,ge—1 =< & <g+h . %)

—1, otherwise

Instead of using a code with base 3 to encode the three
states, LTP uses two binary codes representing the posi-
tive and the negative components of the ternary code, i.e.,
two binary codes coding for the two states {—1, 1}. These
binary codes are collected in two separate histograms and,
as a last step, the histograms are concatenated to form the
LTP feature vector.

3.5 ILTPs

In analogy with the extension of LBP to ILBP, where the
neighborhood mean value is used as the local thresh-
old, LTP can be extended to ILTP. This was done in [30]
arriving at the following definition:

N-1

ILTRy R (%,5) = Y $3(gp—&mean)2” +53(gc —gmean) 2™,
p=0
(10)

where the function s3 is defined as in Equation 9 and gmean
as in Equation 5.

3.6 LQP

In [8], LQP is introduced, extending the encoding of
the local differences to five values corresponding to two
thresholds #; and ¢, resulting in

N-1

LQPy (%, y) = Z 85(gp: gor 11, £2)2F,
p=0

(11)

where the two thresholds are used in the ss-function
according to

2, g = & + i

1, g+t =% <g tb

0, gc_tl Egp <gc+t1 . (12)
—Lg—h=g<g&—t
—2, otherwise

$5(gps Go» t1 12) =
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In analogy to LTDP, the quinary code is split into four binary
codes, coding for the states {—2, —1, 1, 2}. Four histograms
are computed followed by a concatenation.

3.7 RLBP

By changing the expression (g, — g:) in Equation 2 to
(gp — g — t1) the gray value in point p has to be #;
higher than g, to produce a 1. This modification is called
RLBPs and was introduced in [31]. The RLBP descriptor
is supposed to improve robustness against small changes
in local intensities. Following the description above, RLBP
for a position (x, y) and a threshold value ¢, is defined as

N-1
RLBPN z(x, 3, 01) = Y _ s(gp — g — t1)2,
p=0

(13)

where the function s is defined as in Equation 3.

3.8 FLBP

In fuzzy [32]/soft [33] LBP (FLBP) one pixel position may
contribute to several bins in the histogram of possible pat-
terns. A membership function for a neighboring point p
to a ‘O-class; mp, and the antonym function 1, expressing
belongingness to a ‘1-class’ is defined as

O; gp Z gC +f

mo(p,f) = F%%@wfi@<&+f, (14)
1, otherwise

Wll(P;f) =1 _WZO(P): (15)

where f governs the interval of fuzzy belongingness.
Figure 3 shows a plot of function mg and m;. The con-
tribution from one pixel position (x,y) to a bin i in the
histogram H of occurring binary patterns is

N-1

[1 [bp(i)ml (& — &)

p=0

+(1 = by())mo(g: — g»)]

FLBPnz(x, ) =

(16)

T >
_f f 9p — Je
Figure 3 Membership functions in FLBP. The two membership
functions used in FLBP. The gray value difference g, — g on the
x-axis and belongingness on the y-axis.
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where b,(i) € {0,1} is the value of the pth bit of the
binary representation of pattern i. By remembering that all
considered pixel positions may contribute to bin i in the
histogram it follows that

Hprpp(i) = ) FLBPNR(%,Y,0).
xy

(17)

Analogous to the other LBP-based descriptors, the result-
ing histogram constitutes the FLBP feature vector.

3.9 SLBP

In the classical LBP definition, one pixel position gener-
ates one local binary code corresponding to exactly one
bin in the histogram of possible codes. In SLBP, a fixed
number of local binary codes are generated for each pixel
position. In analogy with RLBP the sign of an expression
(gp — 8 — k) is considered rather than the sign of (g, — gc)
as in the original LBP (Equation 2). However, in SLBP, k
is varied within an interval defined by an intensity limit /.
Each time k is changed, a new binary code is created and
added to the histogram of occurring binary patterns. SLBP
for a position (x, y) and a shift value & is defined as

N-1
SLBPN.R(%, %K) = ) s(gp — g — k)2,
p=0

(18)

where the function s is defined as in Equation 3, and k is
defined as

kel-l INZ. (19)

The number of generated binary patterns, K, for one pixel
position equals the number of different values k assumes.
From this and Equation 19 it follows that

K=2-1+1. (20)

As an example, if [ = 3, the parameter k will assume val-
ues {—3,—2,...,3}. K will hence be 7 which means that
each pixel position will contribute with 7 binary codes to
the histogram. For neighborhoods with high local con-
trast, the K binary codes may all be the same, while
neighborhoods with contrast lower than / will generate a
distribution of binary codes picking up some of the fuzzy
nature of that neighborhood. The values in the final his-
togram are divided by K, giving the histogram the sum
equal to the number of pixel positions considered (like the
rest of the LBP-family).

3.10 Rotation invariance of the LBP-family

One straight forward way to make LBP rotation invariant
is to rotate the binary code, i.e., bit-shift it, to its low-
est value [25]. For most LBP-based features, it is trivial
to introduce rotation invariance following this scheme.
Indeed, in [34], rotation invariance was introduced to
FLBP following this approach. ILBP, MBP, RLBP, and SLBP
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are made rotation invariant in this way. LTP, ILTP, and
LQP are somewhat different due to the concatenation of
binary codes. The binary codes are therefore made rota-
tion invariant prior to concatenation of the histograms
here.

3.11 Gabor filters

In 1978, Granlund [12] generalized Gabor filters to 2D and
applied them to images. In this article, the definition of the
2D Gabor filter in the spatial domain, v, is defined as in
(35]

F2
Y(x,y,F,0,y,1) = 2y &P (—F*(&'/v)* + o /m)?)

x exp (27 Fx'),

(21)

where
x' = xcosf + ysin, (22)
y = —xsinf + ycosb. (23)

F is the frequency of the wave, and 6 is the angle between
the direction of the wave and the x-axis. The Gaussian
envelope is defined by the standard deviation parallel to
the wave, y, and standard deviation perpendicular to the
wave, 1).

A set of Gabor filters with different orientations and
frequencies is commonly called a GF. Bianconi and
Fernandez [35] show that parameters with a significant
impact on the texture classification using GF are the fre-
quency ratio and the standard deviations for the Gaussian
envelope. They also conclude that a small change of a
reasonable number of orientations, 7p, or number of fre-
quencies, nr, in a GF does not significantly influence the
discriminating power for the texture datasets they con-
sider. Based on their findings, a GF with a frequency ratio
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equal to +/2 is used here. The highest central frequency,
Fy, is computed according to [35] as

(24)

B y
M7 20 + (Jloga/m))’

where y is the standard deviation of the Gaussian enve-
lope parallel to the wave. Figure 4 shows an example of
four Gabor filter kernels of the orientation 6 = 7/7 using
¥y =4, = 4 = Fp ~ 0.53 and a frequency ratio of v/(2).

When the GF descriptor is applied to a texture sam-
ple the texture is convolved with the complex conjugate
of each one of the constructed filters in the filter bank.
The mean, u, and standard deviation, o, are computed
for the magnitude of each filter response and these val-
ues are used as the feature values. This results in a feature
vector with np x nr x 2 elements on the following form

» Mnp—1,np—1, Uno—l,np—l}-

(25)

GF = {100, 000, M01,001,- - -

Rotation invariance is achieved through the procedure
proposed in [36]; for each frequency the dominant direc-
tion is computed as the orientation giving the highest
mean filter response among the filters with this frequency
in the filter bank. The elements in the GF feature vector
are then circularly shifted so that u and o of the domi-
nant direction can be found on the same positions in the
feature vector. In [36], it is shown that a rotation of an
image in the spatial domain corresponds to a circular shift
of feature vector elements.

3.12 Gray-level co-occurrence matrices

Introduced in 1973 by Haralick et al. [1], descriptors
derived from gray-level co-occurrence matrices still have a
given place among established texture features. A relation
operator is defined describing the distance and direc-
tion between pixels whose intensities are to be pairwise

. hiy

| R

@ ®

equal to v/2.

Figure 4 Examples of Gabor filters used. The real part of the Gabor filter kernels of one specific orientation (¢ = 7/7) and one Gaussian envelope
(y = 4,n = 4) are shown. (a) Highest central frequency computed to fy >~ 0.53. (b—d) The three following lower frequencies with frequency ratio

© @
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compared in the region of interest. A relation operator
can, e.g., be ‘one pixel to the right’ and the following
co-occurrence matrix, M, will then show how often a cer-
tain gray value occurs one pixel to the right of another
gray value. The gray levels of an image are commonly
quantized into a lower number of intensity levels prior
to computing the co-occurrence matrix. Quantization
into g gray levels is used in this article resulting in a
q x q co-occurrence matrix of the gray levels defined as

p(1,1) p(1,2) - p(1,9)
p2,1) p2,2) --- p(2,9)

= ) ) ) , (26)
(g, 1) pq,2) --- p(q,q)

where p(i, /) is the probability of the co-occurrence of the
gray levels i and j given a relation operator. In this arti-
cle, the four symmetric relation operators {<>, ™., 7'}
proposed by Haralick et al. is used. From the co-
occurrence matrices, the contrast, correlation, energy,
and homogeneity descriptors are computed as follows:

contrast = Z li — jI*p(, ) (27)
if
correlation = Z ) M;)p(l,/), (28)
i (IL'O‘]'
energy = Zp(i,j)z, (29)
if
homogeneity = Z M, (30)
o LHli—]l

where w; and ; are mean values computed along rows
and columns, respectively. In the same way, o; and o; are
standard deviations computed along rows and columns.

For each of the four descriptors, the average and stan-
dard deviation over the four relation operators (direc-
tions) are used as feature values. This results in a GLCM
feature vector with eight elements. To fully describe the
GLCM descriptor, the distance d in the relation operator
also needs to be set.

3.13 Classification method

To get comparable noise robustness results and parameter
optimization for the descriptors, a 1-NN with Euclidean
metric is used. Tenfolded cross-validation is used to min-
imize overfitting and to ensure that the validation is per-
formed on independent test sets and the cross-validation
is done by randomly assigning each sample a number
n e {1,2,...,10}, creating ten disjoint subsets with equal
(or approximately equal) number of samples. In the first
cross-validation fold, samples with n = 1 will be the test
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data and samples with n € {2,3,...,10} will serve as train-
ing data. In the second fold, samples with n = 2 will be the
test data and the rest is used for training, and so on. This
means that each sample will be included in the test data
once and less biased classification accuracy is obtained
compared to using the apparent error. The ten results
from the folds are combined into a single estimation.

The cross-validation folds are created once for each
dataset and are then kept fixed throughout the compari-
son. The feature values for all descriptors are normalized
to [0, 1] prior to the cross-validation.

3.14 Parameter optimization
The parameters for each texture descriptor are optimized
separately for each dataset to make as fair comparison
as possible. The parameters common for all descriptors
in the LBP family are the number of samples N and the
radius R. Besides ILBP and MBP all extensions to the clas-
sic LBP have additional parameters. The parameters are
listed in Table 3 along with the range wherein they are
varied. Since several parameters are common to several
descriptors, the table also shows for which method each
parameter is applicable.

To restrict the parameter search space, an optimization
scheme is designed as follows:

1. Find optimal N and R for LBP using a tenfold
cross-validated 1-NN classifier.
2. Use N and R from step 1 and find optimal:
(a) fuzziness, f, for FLBP,
(b) threshold ¢; for LTP, ILTP, and RLBP,
(c) threshold pairs ¢ and t, for LQP, and
(d) interval limit I for SLBP.
3. For all texture descriptors
Perform a new gradient descent parameter
search locally around the previous found best
point in the current descriptor’s full
parameter space. Repeat until stability.

In other words, an exhaustive search for the best
LBP parameters is performed. The LBP parameter val-
ues are then used when optimizing all the method-
specific parameters. They are next used as a starting guess
for an iterative optimization procedure based on gradi-
ent descent where all parameters in the descriptors are
allowed to vary.

The described optimization scheme is applied to each
dataset separately. An exhaustive search for each of the
parameters is not feasible due to the size of the datasets
and total number of parameters across the descriptors.

The parameters of the reference descriptors GF and
GLCM are also optimized for each dataset. Table 3 shows
the explored set of parameter values for both GLCM and
GF. The optimization criterion is the same as for the LBP
family of descriptors.
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Table 3 Descriptor parameters and the intervals searched
during parameter optimization

Parameter Interval/set Applicable
for method
LBP family
Number of sample points Ne{23..., 15} Al LBP variants
Radius Ref1,2,..., 20} All'LBP variants
Fuzziness fefl,2...,6} FLBP
First threshold ty €{1,2,...,20}  LTP,ILTP,
RLBP, LQP
Second threshold b=2-h LQP
Shift limit [=1{1,2,...,20}  SLBP
Other

Gaussian envelope || wave y e{1,2,...,5} GF

Gaussian envelope L wave nef{l,2...,5 GF

Quantization ge{3.4,..., 20} GLCM

Distance de{1,2,..., 20} GLCM
3.15 Introducing noise

When the descriptor parameters have been optimized for
each dataset the influence of noise is investigated. The
noise model used is additive white (uncorrelated) Gaus-
sian noise. That is, a sample from an Gaussian distribution
is added to the intensity of each pixel. This noise model is
well suited for modeling thermal noise in CCD and CMOS
sensors which are the sensors relevant for the microscopy
and photography datasets considered here. The o for
the Gaussian distribution is gradually increased. Figure 5
shows one texture sample from each dataset under three
different noise levels. The noise is added to the original
datasets, and the noisy datasets are then saved. In this way,
all the descriptors are applied and evaluated on the exact
same noisy texture samples. The 20 noise levels used are o
from 10™* to 10! with linearly spaced exponents, i.e., the
20 noise levels are equally spaced in a logjg scale.

4 Results

4.1 Parameter optimization

Table 4 lists the parameter values for each descriptor and
dataset after applying the optimization scheme described
in Section 3.14. The parameter choice does not only influ-
ence the discriminant power of the descriptor but may
also, depending on the descriptor, set the number of ele-
ments in the feature vector. In the LBP family of descrip-
tors, the feature vector length depends on the number of
samples N and whether or not the center pixel is included
in the binary code. Table 5 lists the feature vector lengths
for the descriptors after the parameter optimization.

4.2 Comparison without added noise
The discriminating power of the descriptors are compared
on the datasets without added noise by analyzing the
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combined classification accuracy of the tenfolded cross-
validation. The classification accuracy may vary between
datasets and descriptors, but also within a dataset for a
specific descriptor, i.e., all classes may not equally be easy
or difficult to discriminate. To explore this perspective,
Figure 6 shows the distribution of mean accuracy per class
for each descriptor and dataset.

Figure 6 shows that almost all descriptors perform well
on the Kylberg dataset. LTP and ILTP manage to differ-
entiate almost all classes perfectly in the Kylberg dataset
(median very close to 100%, small boxes, and short tails).
Most descriptors also perform well on the KTH-TIPS2b
dataset. Even for the many classes in the Brodatz dataset
all LBP descriptors perform overall well (100% for more
than half the classes and boxes starting at > 88%) but
there are a number of classes no method can discrimi-
nate between (lowest class accuracies are between 22 and
44.4%). This is not surprising since there is a consider-
able overlap between some of the classes in the Brodatz
dataset, as mentioned before.

The other three datasets are more problematic with
more varied results for the LBP descriptors. The overall
low accuracies achieved on the Virus dataset are probably
due to the small sample size (only 41 x 41 pixels), as well as
the heterogeneous classes originating from the automatic
extraction of patches only partly (or sometimes even not
at all) containing virus. Across these three datasets, ILTP
performs overall well as does FLBP.

GLCM is among the worst performing descriptors
for all datasets, except for the Mondial Marmi dataset.
Note however that only very few measures on the co-
occurrence matrix are extracted.

The GF descriptor performs on the same level
as several LBP-based descriptors for several datasets.
However, on the Kylberg and UIUC dataset GF is
outperformed by most LBP-based descriptors. Compar-
isons of per-class performance for the different descrip-
tors and datasets (data not shown) show that the GF
sometimes produces good results for a few specific
classes where the LBP family of descriptors do not.
This indicates that GF could be a good complemen-
tary texture descriptor and that a combination with, for
example, ILTP might improve the overall classification
accuracy on some of the datasets. However, combining
descriptors to produce the best classification result pos-
sible is not the purpose of this article, and is not further
investigated here.

4.3 Robustness to noise

Figures 7, 8, 9, 10, 11, and 12 show the mean classification
accuracies for the texture descriptors on the six datasets
under increasing levels of added noise. In all figures,
LBP, GF, and GLCM are shown in red, blue, and green,
respectively, and one of the other descriptors at a time
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Figure 5 Examples of noise levels. One texture sample from each one of the six datasets under increasing levels of additive Gaussian white noise.
For the Virus example, a dashed circle marks the region wherein the texture descriptors are computed.
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Table 4 Parameter settings for each descriptor and dataset after applied optimization scheme

Parameters per dataset

Descriptor
Brodatz KTH-TIPS2b Kylberg Mondial Marmi ulucC Virus
LBP N=38 N=38 N=38 N=9 N=1 N =10
R=2 R=2 R=3 R=4 R=6 R=4
ILBP N=9 N=28 N =10 N=38 N= N =10
R=2 R=2 R=3 R=3 R=3 R=4
MBP N=38 N=28 N=9 N=38 N=28 N=9
R=2 R=2 R=3 R=2 R=3 R=4
LTP N=28 N=28 N=9 N=9 N=11 N=10
R=2 R=2 R=3 R=4 R=9 R=4
=9 =5 =12 =4 th =6 =11
ILTP N =10 N=28 N =10 N =10 N=9 N=1
R= R= R= R= R= =4
=5 =3 =1 =5 =7 =5
LQP N=38 N=9 N=28 N=11 N=28 N=28
R=2 R=3 R=2 R=5 R=3 R=2
1 =6 =2 =6 =16 th=7 Hh =4
th=12 th= th=12 ty =32 th=14 th=
RLBP N=38 N=38 N=9 N=38 N= N=9
=1 R=2 R=3 R=3 R=4 R=4
tr=1 t1=5 t t = t = t =
FLBP N=38 N=28 N=38 N=9 N= N =10
R=2 R=2 R=3 R=4 R=3 R=4
f=4 f=8 f=14 f=9 f=6 f=20
SLBP N=28 N=28 N=28 N=9 N=11 N =10
R=2 R=2 R=3 R=4 R=6 R=4
=9 tp =10 th=9 =9 th=9 =9
GF v = y = Y= v = Y= y=
n=1 n=1 n= n= n= n=
GLCM g=17 qg=17 =18 g=15 qg=20 g=16
d=1 d=3 d=3 d=2 d=3 d=3

in black. A horizontal dotted line marks the mean accu-
racy of a random decision. The curves are interpolated
between data points using piecewise cubic interpolation.
For increasing noise levels, it is expected that the perfor-
mance of all descriptors level out to the mean accuracy of
arandom classification, i.e., a mean classification accuracy
of 1/number of classes. This is easily seen in, for example,
Figure 9. The same data as Figures 7, 8, 9, 10, 11, and 12
show can be viewed in tabular form in Tables 6, 7, 8, 9,
10, and 11 but limited to every second noise level. In the
tables, the highest mean accuracy for each noise level is
highlighted in bold and the lowest in italics.

For the Brodatz dataset, Figure 7 and Table 6, GF stands
out as the most noise robust texture descriptor but it is not

necessarily the best descriptor for low noise levels where
ILTP followed by LTP, and SLBP show good performance.
These four descriptors are better than LBP for all noise
levels. RLBP, LQP, and especially MBP all perform worse
than LBP, and in addition, the performance for LQP and
MBP drops quickly with increasing levels of noise.

For low levels of noise in the KTH-TIPS2b dataset,
Figure 8, all LBP-based descriptors (except MBP) outper-
form the original LBP and they perform on the same high
level as GF. For medium to high levels of noise all LBP-
based methods are outperformed by GF and the bottom
two LBP-based descriptors are, again, LQP and MBP.

Most LBP-based descriptors show similar performance
on the Kylberg dataset, see Figure 9 and Table 8. ILBP, LTP,
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Table 5 Feature vector length for each descriptor and dataset based on the optimized descriptor parameters

Feature vector length (number of elements)

Descriptor

Brodatz KTH-TIPS Kylberg Mondial Marmi ulucC Virus
LBP 36 36 36 60 188 108
ILBP 108 72 188 60 108 188
MBP 60 60 188 60 632 352
LTP 72 72 120 120 376 216
ILTP 240 144 432 144 240 432
LQP 144 240 144 752 144 144
RLBP 108 36 60 60 60 60
FLBP 36 36 36 60 188 108
SLBP 36 36 36 36 60 108
GF 56 56 56 56 56 56
GLCM 8 8 8 8 8 8

ILTP are generally somewhat better than LBP. LQP drops
in performance faster than the rest. The MBP perfor-
mance drops with increasing but still low levels of noise,
but then increases in performance and is among the bet-
ter descriptors for high levels of noise. A closer look at
the per-class accuracies (data not shown) reveals that it is
mainly the second texture class, see Figure 1, with large

homogeneous intensity patches in the pattern that causes
this dip in the mean accuracy curve for MBP.

For the Mondial Marmi dataset, Figure 8 and Table 9,
the curves look and behave rather differently. A reason
behind this might be the JPEG compression artifacts. This
dataset is the only dataset where GLCM perform well for
low levels of noise. GF is also found to perform well for
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Figure 6 Descriptor performance without added noise. Distribution of mean accuracy per class for each descriptor and dataset. Circles with dots
mark median values. The boxes stretch between the 25th and 75th percentiles, and the lines span all the data points.
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Figure 7 Noise tests on Brodatz. Mean classification accuracy for all descriptors on the Brodatz dataset.
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Figure 8 Noise tests on KTH-TIPS2. Mean classification accuracy for all descriptors on the KTH-TIPS2 dataset.
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Figure 10 Noise tests on Mondial Marmi. Mean classification accuracy for all descriptors on the Mondial Marmi dataset.

low noise levels and is more stable than the other descrip-
tors for increasing noise levels. ILBP, ILTP, and FLBP are
generally better than LBP. However, for low levels of noise
all the descriptors in the LBP family are similar, MBP and
LBP being the exceptions. MBP is the worst performing
descriptor as soon as low levels of noise are added and
the performance of LQP drops quickly for higher levels of
noise added.

On the UIUC dataset, LTP is the best performing
descriptor for low levels of noise and ILTP and FLBP
are in general better than the LBP, see Figure 11 and
Table 10. GF is not very good for low to moderate noise
levels but robust for high levels of noise. ILBP performs
poorly for low levels of noise. MBP is the by far the
worst performing descriptor followed by GLCM. Again,
LQP drop quickly at moderate levels of noise and is
hence less noise robust then the other LBP family of
descriptors.

On the difficult Virus texture dataset, GF, ILTP, and
FLBP are the best performing descriptors with FLBP hav-
ing a slight upper hand at low levels of noise, see Figure 12
and Table 11. On this dataset, the proposed SLBP descrip-
tor falls between these three best performing descriptors
and the rest while MBP and LQP are the two worst.

4.4 Computation time

One of the benefits of the classic LBP is that it is very
fast to compute. A comparison of computation times for
the more complex LBP descriptors is hence interesting.
Computation time for some of the descriptors depend on
the image content. Therefore, the CPU time required for
the different descriptors is here compared on one sample
from each class in the Kylberg dataset using the optimized
parameters listed in Table 4. Figure 13 shows computa-
tion time relative to the computation time of the classic
LBP. Hence, if a descriptor takes 10 times longer than LBP

Table 6 Mean classification accuracy for descriptors computed on the Brodatz dataset

Brodatz dataset

o of noise 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000
LBP 92.8 91.2 89.9 87.7 83.5 789 64.4 38.2 13.5 45 29
ILBP 94.2 939 92.5 90.7 88.8 80.0 71.8 508 276 125 6.2
MBP 925 80.6 69.0 579 459 280 236 15.2 12.2 5.2 37
LTP 96.6 94.8 94.7 918 87.9 814 68.1 43.0 208 8.7 43
ILTP 9.4 96.2 95.2 94.3 91.4 85.7 70.7 50.7 285 10.9 4.2
LQP 93.7 91.6 91.1 82.8 62.6 437 36.2 215 86 3.6 3.7
RLBP 89.4 86.6 89.0 82.9 77.9 70.6 516 26.8 11.7 45 2.6
FLBP 92.6 91.6 91.5 89.5 855 79.8 65.5 36.6 12.7 5.0 45
SLBP 93.9 93.0 924 91.1 88.2 834 68.8 393 17.2 6.4 3.0
GF 87.2 86.8 87.0 86.7 86.0 85.3 81.2 70.9 34.5 7.7 1.2
GLCM 832 813 80.6 798 752 64.7 49.8 346 13.8 4.0 0.9

Max value per noise level is in bold and min value in italics.
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Table 7 Mean classification accuracy for descriptors computed on the KTH-TIPS2b dataset

KTH-TIPS2b dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000
LBP 89.3 87.2 86.1 804 68.5 53.1 43.7 294 233 18.9 14.9
ILBP 94.5 944 936 874 74.1 59.2 474 384 277 218 174
MBP 94.1 843 73.6 60.2 48.0 404 354 289 232 17.5 14.6
LTP 95.5 94.7 932 87.2 715 554 441 32.1 253 19.5 16.2
ILTP 96.9 96.4 95.7 90.8 794 654 50.6 39.2 28.0 22.4 17.6
LQP 94.8 93.6 87.2 70.0 57.2 46.5 387 27.9 20.3 18.1 14.7
RLBP 93.8 92.7 90.6 83.7 69.9 53.0 424 304 23.0 19.3 16.0
FLBP 94.3 94.0 93.1 88.6 74.9 56.9 44.2 29.8 219 18.2 157
SLBP 94.8 94.5 935 89.2 76.6 578 441 30.1 228 18.5 16.2
GF 94.6 94.7 94.1 93.8 90.8 83.9 66.4 413 223 12.9 10.1
GLCM 76.9 76.2 76.0 739 7 62.5 540 395 250 18.7 12.7

Max value per noise level is in bold and min value in italics.

to compute the descriptor has the value 10 in the plot in
Figure 13.

Furthermore, two FLBP implementations are compared.
The version directly based on [32,33], called ‘naive’ in
Figure 13, computes the histogram bin contribution of
all bins for every neighborhood (Equation 16). However,
gray value differences outside the fuzzy region [ —f, f]
restrict the possible binary codes that a neighborhood can
contribute to. Utilizing this, a modified implementation
was developed, denoted ‘fast’ in Figure 13. It restricts the
membership computations to the subset of binary codes
possible, given the current local neighborhood. Outside
the fuzzy region, the bin contributions will be as in
the classic LBP. The computed feature vectors from the
‘naive’ and ‘fast’ implementations of FLBP are of course
identical.

Even though the ‘fast’ FLBP implementation is roughly
five times faster than the ‘naive’ implementation, they are
both very slow compared to all other descriptors. FLBP
are 922 times slower than the classic LBP. It should also
be said that the computation time for the ‘fast’ FLBP
not only depends on the fuzziness parameter (which is
the case of the ‘naive’ FLBP), but also depends on the
image content. Figure 13 shows that LQP, RLBP, ILTP, LTDP,
ILBP, and GLCM have comparable computation times to
LBP. SLBP is roughly 11 times slower than LBP which is
expected since SLBP in this test generates 11 binary codes
at every position (/ = 5 = K = 11, see Equation 20).
The MBP is relatively slow compared to most of the
LBP descriptors which is also expected since computing
median values in this implementation involves sorting the
intensity values in each neighborhood. In GE, which is 20

Table 8 Mean classification accuracy for descriptors computed on the Kylberg dataset

Kylberg dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000
LBP 97.8 97.5 97.0 95.6 89.2 70.3 44.0 224 9.2 54 5.1
ILBP 98.9 98.6 98.2 96.4 91.1 76.0 538 353 164 8.2 5.9
MBP 96.8 91.3 845 80.9 85.7 80.3 57.0 26.2 7.1 4.1 3.2
LTP 99.7 99.6 99.5 98.5 94.1 80.6 525 253 9.9 6.3 49
ILTP 99.7 99.6 994 99.0 97.2 86.1 65.1 41.1 18.0 8.3 54
LQP 99.3 98.5 98.1 937 72.1 413 239 13.8 6.3 4.6 4.2
RLBP 98.8 98.6 98.1 96.1 91.0 75.1 46.9 21.1 74 53 43
FLBP 99.2 994 994 99.0 954 76.6 452 223 8.2 4.8 45
SLBP 98.0 98.1 97.7 95.5 87.7 65.7 384 19.2 8.2 5.1 44
GF 95.2 94.7 94.0 92.8 89.7 78.7 585 326 11.5 43 3.7
GLCM 84.7 84.8 85.1 84.4 79.8 63.1 51.8 31.0 12.2 49 35

Max value per noise level is in bold and min value in italics.
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Table 9 Mean classification accuracy for descriptors computed on the Mondial Marmi dataset

Mondial Marmi dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000
LBP 859 80.2 78.1 80.7 60.9 52.1 52.1 339 240 208 224
ILBP 95.8 932 95.8 833 66.7 54.2 67.2 61.5 50.0 55.2 39.6
MBP 90.1 828 64.6 40.6 29.2 28.1 17.7 16.7 359 323 250
LTP 94.8 88.5 88.5 79.2 69.8 557 573 396 375 276 240
ILTP 938 91.1 88.5 88.0 70.8 62.5 74 552 40.6 46.9 29.2
LQP 89.6 89.6 88.5 88.0 59.9 318 370 234 28.1 255 208
RLBP 85.9 86.5 90.1 776 65.6 516 46.9 41.7 359 339 229
FLBP 953 94.3 917 813 68.8 56.3 61.5 339 224 229 15.6
SLBP 91.1 932 90.1 833 67.2 45.8 573 47.9 333 240 260
GF 94.8 94.8 943 93.2 90.1 81.3 75.5 370 255 10.9 89
GLCM 95.8 91.7 90.6 89.1 776 61.5 51.0 526 26.0 10.9 9.9

Max value per noise level is in bold and min value in italics.

times slower than LBP, each texture sample is convolved ¢ A roughly five times faster implementation of the
with a number of complex filter kernels. This is a more FLBP descriptor is described.
time-consuming task than performing multiple threshold-

ings in a small neighborhood, the operation performed in  The fast implementation of FLBP as well as an implemen-

most LBP-based descriptors. tation of SLBP are available as Matlab code at [37].
The main conclusions that can be drawn regarding the
5 Conclusions evaluated texture descriptors are
This article reports on the following:
e The descriptive performance of eight LBP-based e ILTP followed by FLBP generally perform well among
texture descriptors are evaluated and compared on the LBP-family of descriptors, outperforming the
six different datasets under increasing levels of classic LBP in all tests performed.
additive Gaussian white noise together with the * GFis often very robust for moderate to high levels of
classic LBP, Haralick descriptors, and GF. noise but is many times outperformed by several
e A new LBP-based descriptor, SLBP, is introduced as a LBP-based descriptors under low noise conditions.
fast approximation of the computationally heavy ® FLBP is very slow compared to the rest of the
FLBP. descriptors but the naive implementation can be

Table 10 Mean classification accuracy for descriptors computed on the UIUC dataset
UIUC dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000
LBP 88.1 87.2 87.5 88.6 86.4 758 538 384 223 12.5 94
ILBP 80.1 80.8 796 80.6 74.8 63.5 594 534 379 25.7 17.8
MBP 74.7 63.7 56.9 47.1 39.3 27.1 14.1 15.3 14.3 13.7 13.3
LTP 94.4 94.1 93.8 93.4 88.1 779 595 44.6 23.8 16.5 13.7
ILTP 91.9 91.5 91.9 904 85.1 729 64.2 55.6 42.7 24.7 17.9
LQP 88.3 86.5 82.8 751 494 36.0 38.7 37.7 23.2 154 12.3
RLBP 89.4 89.0 90.4 87.7 84.7 720 56.3 38.7 26.7 16.8 14.2
FLBP 913 915 91.1 90.3 87.5 79.2 64.3 433 224 135 12.2
SLBP 873 87.2 88.9 91.2 86.7 785 65.3 433 255 164 12.8
GF 74.2 741 742 744 74.5 714 67.4 58.9 36.5 184 94
GLCM 62.3 60.8 59.8 57.0 55.2 49.0 48.0 34.2 184 114 44

Max value per noise level is in bold and min value in italics.
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Table 11 Mean classification accuracy for descriptors computed on the Virus dataset

Virus dataset

Noise levels 0 0.0002 0.0006 0.0021 0.0070 0.0234 0.0785 0.2637 0.8859 2.9764 10.0000
LBP 40.3 40.1 377 345 269 17.3 13.9 10.0 75 7.2 7.7
ILBP 38.1 37.1 354 34.1 272 220 184 139 11.0 10.7 6.5
MBP 373 321 306 309 251 217 17.9 129 9.1 7.1 4.9
LTP 48.2 44.8 42.7 368 304 22.1 139 11.9 8.8 7.0 74
ILTP 53.1 515 49.2 439 36.9 29.0 20.2 14.5 10.5 84 6.8
LQP 39.1 36.1 333 277 19.7 12.1 13.1 11.8 9.5 7.8 7.7
RLBP 40.7 37.1 34.7 315 27.8 19.7 14.8 9.3 9.5 8.0 75
FLBP 54.5 53.8 50.3 47.7 36.8 243 164 10.6 7.0 83 7.0
SLBP 47.0 46.7 427 411 309 200 14.0 94 6.7 73 7.1
GF 516 515 49.2 46.9 357 27.1 15.0 10.3 7.7 76 5.7
GLCM 404 386 387 379 316 249 20.1 126 9.9 6.7 6.9

Max value per noise level is in bold and min value in italics.

improved upon by restricting the belongingness
computations to the possible subset of binary codes
given a specific neighborhood.

e MBP is very noise sensitive and has a relatively poor
performance even for low levels of noise.

e LQP suffer more of added noise than the majority of
the LBP-based descriptors.

e It is not possible to know in advance which texture
descriptor is the best performing one for a given
problem. However, a well-performing descriptor can
probably be found among a subset of the tested
descriptors, after optimizing their parameters. Such a
subset of descriptors could be ILBP, LTP, ILTP, and
FLBP. Furthermore, SLBP can sometimes be an
alternative to the computationally heavy FLBP.

In accordance with the survey in [9], ILTP is found to
be superior to LTP, LQP, and ILBP for all the datasets

evaluated. In addition, we show that ILTP retains its dis-
crimination advantage under increasing levels of added
Gaussian white noise. The results presented here also
show that even if MBP and LQP perform relatively well
on noise free data, they both suffer greatly from the intro-
duced noise. Furthermore, we find that FLBP has a good
overall performance, similar to ILTP.

It seems that it is preferable to use the more stable local
mean value of the neighborhood (including the center
pixel) as the local threshold in that ILBP often outper-
forms LBP, and ILTP often outperforms LTP. The two
descriptors using ternary patterns, LTP and ILTP, often
outperform their counterparts using binary codes, the
LBP and ILBP descriptors, suggesting that the use of
ternary patterns has its advantage.

The two descriptors MBP and LQP are often found
among the worst performing descriptors both regarding
overall accuracy and robustness to noise. The reason for
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Figure 12 Noise tests on Virus. Mean classification accuracy for all descriptors on the Virus dataset.

the poor performance of MBP can be explained by its
definition. Using the median value as the local threshold
results in that half of the gray levels in the neighborhood
will be larger and half smaller. This restricts the possible
binary codes, and as a consequent, restricts the amount
of discriminative information that can be contained in the
MBP descriptor.

GF involves convolution with relatively large (between
13 x 13 and 25 x 25 pixels) complex filter kernels and is
hence slow in comparison to most of the other descrip-
tors, proves to be a very noise robust descriptor for
all datasets but not always among the best performing
descriptors at low noise levels.

Under increasing levels of noise the discriminating
power of the descriptors is expected to drop monoton-
ically, or at least close to monotonically. This holds for
most tests reported on here except for the results for
the Mondial Marmi dataset which are somewhat odd, see

Figure 8. While the mean classification accuracies have a
decreasing trend, the curves are far from monotonically
decreasing. One possible cause may be the JPEG com-
pression artifacts present in this dataset. The blocking
artifacts from the 8 x 8 blocks used in JPEG compression
are at a scale comparable to that of the local neighbor-
hoods used in the LBP family. As expected, GF, with
its larger considered regions, shows a smoother decline
under increasing levels of noise.

A comparison of the per-class performance and confu-
sion matrices for the descriptors at a few noise levels has
been done (data not shown). The LBP family of descrip-
tors tend to have difficulties with mostly the same classes
(MBP and LQP have additional difficulties). The per-class
accuracy for GF and the LBP descriptors is often similar
even though the LBP descriptors are more alike among
themselves (apart from MBP). This is in line with the find-
ings reported in [38]. The per-class accuracy for GLCM
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differs from those of the LBP family and GF mainly in
that GLCM has additional difficulties discriminating a
number of classes. FLBP has a high over all accuracy but
with a slightly different pattern in the per-class accuracy
compared to the rest of the LBP-family on the Brodatz,
Kylberg, and Virus datasets. Similarly, GF has a slightly
different distribution of per-class accuracy than the LBP-
family on the Brodatz, KTH-TIPS2b, and Mondial Marmi
datasets.

A different distribution of per-class accuracy indicates
that the descriptors compared detect different charac-
teristics of the textures. On some datasets used here a
combination of ILTP or FLBP and GF could presumably be
beneficial for the task of texture classification. However,
combining texture descriptors to improve classification
accuracy is not within the scope of this article.

In parallel with the 1-NN classifier used in the results
reported in this article, SVMs were also investigated on
the datasets without added noise using both a linear and
a Gaussian kernel with optimized parameters. Similar
descriptor parameter values were suggested by the SVM
classifiers in the optimization procedure for the texture
descriptors. For some dataset—descriptor combinations,
the SVMs reached slightly higher classification accura-
cies. Nevertheless the 1-NN classifier was used in the
tests reported on to make the comparison between the
descriptors on the same and fair basis.
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