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1 Introduction

Dp-branes have been centering in String theory on both theoretical and phenomenological

approaches for a while. For diverse values of p (where p is spatial dimension of a Dp-brane)

and also in both type IIA and IIB string theories, they have been known as the sources of

closed string Ramond-Ramond field [1–4].

By computing some of the couplings of Dp-branes to closed string modes, some great

information have been obtained. We address various examples such as the Ads/CFT

correspondence, gauge theory and black holes. Concerning Ramond-Ramond couplings [5,

6], diverse phenomena such as [7, 8], realizing K-theory in terms of D-branes [9, 10] and

Myers effect [11–13] have been discovered.

In order to review string duality [14] is highly proposed. To observe information on

the world volume of a Dp-brane and in particular to deal with both Dirac-Born-Infeld and

Chern-Simons effective actions we refer to [15–17] and all references therein. In order to

encounter the effective action only for a bosonic Dp-brane, [18] should be highlighted. It

is widely understood that for multiple Dp-branes, references [11, 13] are the main ones to

look for bosonic action.

In order to see super symmetric action, one might search about some special references

in [19] and [20–25].

Basically one has to emphasize the fact that the higher derivative corrections of stable

and unstable branes are not involved in those effective actions, namely the only way for
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obtaining the closed form of all corrections is indeed scattering computations. To have

all corrections, recent attempts in detail have been carried out. Morever, to discover the

higher derivative corrections for stable branes, namely four field strengths’ corrections to

all orders in α′ [15] must be taken into account, also there we have shown that to α′4 order

computations are indeed consistent with literature [26–28]. To achieve two gauge field and

two scalar fields ’ corrections again to all orders of α′, [29] is suggested. Finally a pattern

and a universal prescription for all BPS branes, including corrections to four covariant

derivative of scalar fields has been found in [30].

Although in this paper we are interested in finding new couplings of gauge/scalars in the

background of one closed string Ramond-Ramond field to all orders of α′, arguing effective

actions for stable branes, addressing some recent works for unstable branes, such as [31]

and [32] is highly recommended. In particular the effective action of brane-anti brane to all

orders of α′ for two gauge and two tachyons have been derived in [33]. Recently remarks on

the effective action of brane anti brane with all their α′ corrections in [34] have been made.

Note that we do not review Wess-Zumino effective action here, but in order to follow all

needed couplings, section 5 of [31] and references [5, 8] and [6] might be studied to pursue

them for different values of p and n, where n is the rank of the field strength of the closed

string Ramond-Ramond field.

Given several goals, involving dualities of Ads/CFT [35] and some exact relation be-

tween open and closed strings inside the Ads/CFT, examining new method for higher point

string amplitudes is indeed necessary.

Two extremely important facts which must be really highlighted are:

1) In order to find all new couplings/contact interactions to all orders of α′ one has to

have the complete form of the amplitudes. Note that the result of the amplitudes at

leading orders is not very useful as we comment it in detail in this paper.

2) Once we are dealing with open-closed amplitudes T-duality transformation is not very

effective and in fact direct computations of those amplitudes are inevitable. Even

we want to work out tree level amplitude, the appearance of closed string RR makes

the calculations so complicated. It is definitely realized that in loop computations

applying T-duality is really subtle [36]. For example in [30] we have shown that it is

not possible to derive < VCVφVφVφ > from < VCVAVAVφ >. In particular we have

seen that the terms including momentum of closed string RR in transverse directions

pi, pj are not appeared in < VCVAVAVφ >.

Now we address some of the motivations for the long computations of this paper.

The first is to realize the closed form of new Wess-Zumino couplings to all orders in α′.

It was argued in [31] that for the amplitudes including scalar fields and closed string

Ramond-Ramond field, field theory vertices must be obtained just by three different meth-

ods, basically either through Myers’ terms [11] or pull-back approach or Taylor expansion.

However in this paper within detail we will show that there are some new couplings which

do come from none of them. These new couplings for sure do not come from Myers’ terms

or Taylor expansion so this is a very strong evidence in favor of modifying pull-back (see

also [29, 30]).
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The other motivation is to get more data to see whether or not essentially we can write

down the general form of DBI and Wess-Zumino effective actions. To check up to some

orders [37–39] may be useful to look at.

The third reason for including < VCVAVφVφ > is indeed its direct relation to dielectric

effect. As an example N3 entropy of M5 branes was expressed in terms of dielectric effect

in [40], for the other applications and for various configurations in M-theory see [41, 42].

Definitely the results of this paper on new couplings will provide fundamental steps for

future outcomes such as all orders dielectric effect and various research topics on world

volume dynamics of branes [35].

Two remarkable issues have been addressed. The first one is related to taking integrals

for five point open-closed strings [43] in which for the first time has been applied in [33]

and we were able to find several new couplings in the world volume of brane- anti brane

systems. The second important fact is related to Wick-like formula [44]. Making use of this

formula and by generalizing that in [15], we can now simply derive the correlation function

between two spin operators in the presence of several currents and fermion fields. To deal

with the integrations on some higher point functions, we suggest [45].

Dielectric effect does have various applications such as resolving some singularities in

Ads/CFT by making use of closed string RR field to actually polarize D3-brane (more

details can be seen in [46–48]). The importance of this effect inside M-theory is argued

in [49, 50], even it is more discussed in stabilizing the sources of RR in some particular

backgrounds [51] relating to Wess-Zumino-Witten model, Adsm × Sn, fuzzy gravitons in

some space-time [52, 53] or in terms of their gravity duals [54].

Given these applications, we are going to explore all new couplings between one closed

string Ramond-Ramond field (C) and some SYM vertex operators, namely three open

strings (basically two scalars and one gauge field) in the IIB(A) super string theories. This

< VCVAVφVφ > was introduced in [55] and in that paper making use of hyper geometric

function the authors just were able to find the first simple pole of the amplitude, however,

the complete form of the amplitude is unknown which we are going to find it out. Apart

from that the authors in [55] have produced just the first scalar t-channel and the first

gauge (s+ t+ u)-channel pole.

Using new techniques for five point amplitudes ( see appendix B of [31]) and making

use of Wick-like formula we find the complete form of the amplitude of < VCVAVφVφ >.

In addition to obtaining several new couplings to all orders of α′ which we will address in

detail, we are going to show that the amplitude not only has gauge u-channel pole but also

it has infinite u-channel poles which have been overlooked in [55] and could not be derived

there because of not having the complete form of the amplitude.

Also, making use of the all order two gauge two scalar couplings that appeared in the

very recent paper [29], we will find out the infinite gauge (t + s + u)-channel poles and

infinite scalar (t, s)-channel poles as well.

Then we go on further and discover several new couplings for p + 2 = n case. In

particular by applying direct S-matrix computations and discovering the complete and

closed form of the correlators of < VCVAVφVφ > we derive all new interactions to all orders

in α′ for p− 2 = n, p = n cases as well.
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2 Complete form of the CAφφ amplitude to all orders of α′

Here we are going to explore the S-matrix elements of another physically 4-point and

technically 5-point function. Namely we do want to investigate in detail the amplitude of

3 BPS branes (2 scalar and one gauge fields) and one closed string RR field. Motivation

for computing such a long computation is indeed checking all infinite couplings two gauge

and two scalar fields which are recently discovered [29] and also trying to figure out how

one can reproduce all infinite massless gauge and scalar fields for different values of p and

n.To compute a S-matrix element, one should clarify the picture of the vertex operators

in an appropriate way. It would be nice to refer to some new works on BPS branes [29,

30] and [56].

Note that since we are looking for < VCVAVφVφ > some parts of the calculations

are shared with [15, 29, 55] but definitely all of the contact terms at all orders are new

results and different from the previous results. It is important to highlight the following

point. Due to C-field, it is not possible to obtain all contact terms of this paper from

< VCVAVAVφ > by applying T-duality transformation, because we will observe here that

all the terms involving pi, pj are not present in < VCVAVAVφ >.

We must use the vertex operators according to the fact that for the disk level ampli-

tudes (which we are dealing with) total charge has to be -2.

Taking into account super ghost charges, we may write down the amplitude of one

gauge, two open scalar fields and one closed string RR in terms of some kinds of spe-

cial correlators

ACAφφ ∼

∫

dx1dx2dx3dzdz̄ 〈V
(0)
A (x1)V

(0)
φ (x2)V

(0)
φ (x3)V

(− 3

2
,− 1

2
)

RR (z, z̄)〉, (2.1)

Since we are performing disk level amplitudes, all open strings must be put on the

boundary of disk rather, RR has to be replaced in the middle of disk.

Depending on the various picture of the strings, One should pick up the following

vertex operators. The vertex operators are known as1

V
(0)
φ (x) = ξi

(

∂Xi(x) + α′iq·ψψi(x)
)

eα
′iq.X(x),

V
(0)
A (x) = ξa

(

∂Xa(x) + α′ik·ψψa(x)
)

eα
′ik.X(x),

V
(−2)
A (x) = e−2φ(x)V

(0)
A (x),

V
(−1)
A (y) = ξaψ

a(y)e−φ(y)eα
′ik·X(y),

V
(− 1

2
,− 1

2
)

RR (z, z̄) = (P−H/ (n)Mp)
αβe−φ(z)/2Sα(z)e

iα
′

2
p·X(z)e−φ(z̄)/2Sβ(z̄)e

iα
′

2
p·D·X(z̄),

V
(− 3

2
,− 1

2
)

RR (z, z̄) = (P−C/ (n)Mp)
αβe−3φ(z)/2Sα(z)e

iα
′

2
p·X(z)e−φ(z̄)/2Sβ(z̄)e

iα
′

2
p·D·X(z̄), (2.2)

q, k are scalar field and gauge field ’s momenta which do satisfy the following conditions

k2 = q2 = 0 and ki.ξj = 0. The definitions of projector and field strength of RR are

H/ (n) =
an
n!
Hµ1...µn

γµ1 . . . γµn , P− =
1

2
(1− γ11)

1In string calculations, we used to set α′ = 2.
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n is odd/even number for type IIB/IIA theory. To see more notation [15] is recommended.

The simplest way to do this computation is as follows

ACAφφ ∼

∫

dx1dx2dx3dzdz̄ 〈V
(−1)
A (x1)V

(0)
φ (x2)V

(0)
φ (x3)V

(− 1

2
,− 1

2
)

RR (z, z̄)〉, (2.3)

Making use of the standard correlators for Xµ, ψµ, φ as follows

〈Xµ(z)Xν(w)〉 = −
α′

2
ηµν log(z − w),

〈ψµ(z)ψν(w)〉 = −
α′

2
ηµν(z − w)−1 ,

〈φ(z)φ(w)〉 = − log(z − w) . (2.4)

also introducing x4 ≡ z = x + iy , x5 ≡ z̄ = x − iy, the final form of the amplitude with

just taking Tr (λ1λ2λ3) ordering and with the closed form of the correlators reaches to

ACAφφ ∼

∫

dx1dx2dx3dx4dx5 (P−H/ (n)Mp)
αβξ1aξ2iξ3jx

−1/4
45 (x14x15)

−1/2

×(I1 + I2 + I3 + I4)Tr (λ1λ2λ3), (2.5)

where xij = xi − xj . Having taken Wick theorem, one gets the correlators as

I1 = <: eα
′ik1.X(x1) : ∂Xi(x2)e

α′ik2.X(x2) : ∂Xj(x3)e
α′ik3.X(x3) : ei

α
′

2
p·X(x4) :ei

α
′

2
p·D·X(x5) :>

×<: Sα(x4) : Sβ(x5) : ψ
a(x1) :>,

I2 = <: eα
′ik1.X(x1) : eα

′ik2.X(x2) : ∂Xj(x3)e
α′ik3.X(x3) : ei

α
′

2
p·X(x4) : ei

α
′

2
p·D·X(x5) :>

×<: Sα(x4) : Sβ(x5) :: ψ
a(x1) : α

′ik2.ψψ
i(x2) >,

I3 = <: eα
′ik1.X(x1) : ∂Xi(x2)e

α′ik2.X(x2) : eα
′ik3.X(x3) : ei

α
′

2
p·X(x4) : ei

α
′

2
p·D·X(x5) :>

×<: Sα(x4) : Sβ(x5) :: ψ
a(x1) : α

′ik3.ψψ
j(x3) >,

I4 = <: eα
′ik1.X(x1) : eα

′ik2.X(x2) : eα
′ik3.X(x3) : ei

α
′

2
p·X(x4) : ei

α
′

2
p·D·X(x5) :>

×<: Sα(x4) : Sβ(x5) : ψ
a(x1) : α

′ik2·ψψ
i(x2) : α

′ik3·ψψ
j(x3) :>. (2.6)

Needless to remind that the following correlation has been achieved by working out the

generalized form of Wick-like [15]

Iiba5 = <: Sα(x4) : Sβ(x5) : ψ
a(x1) : ψ

bψi(x2) :>

=

{

(ΓibaC−1)αβ +
α′Re[x14x25]

x12x45

(

− ηab(γiC−1)αβ

)

}

×2−3/2x
1/4
45 (x24x25)

−1(x14x15)
−1/2. (2.7)
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Having used the arguments mentioned in [15], the following correlator can be easily gained:

Ijciba6 = <: Sα(x4) : Sβ(x5) :: ψ
a(x1) : ψ

bψi(x2) : ψ
cψj(x3) >

=

{

(ΓjcibaC−1)αβ + α′r1
Re[x14x25]

x12x45
+ α′r2

Re[x14x35]

x13x45
+ α′r3

Re[x24x35]

x23x45

+(α′2)r4

(

Re[x24x35]

x23x45

)2

+ (α′2)r5

(

Re[x14x25]

x12x45
×
Re[x24x35]

x23x45

)

(2.8)

+(α′2)r6

(

Re[x14x35]

x13x45

Re[x24x35]

x23x45

)}

2−5/2x
5/4
45 (x24x25x34x35)

−1(x14x15)
−1/2,

where

r1 =
(

− ηab(ΓjciC−1)αβ

)

,

r2 =
(

− ηac(ΓjibC−1)αβ

)

,

r3 =
(

ηbc(ΓjiaC−1)αβ + ηij(ΓcbaC−1)αβ

)

,

r4 =
(

(−ηbcηij)(γaC−1)αβ

)

,

r5 =
(

(−ηabηij)(γcC−1)αβ

)

,

r6 =
(

(ηacηij)(γbC−1)αβ

)

. (2.9)

Having regarded all those correlators in our amplitude, we find the closed form of these

S-matrix elements as:

ACAφφ∼

∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβIξ1aξ2iξ3jx

−1/4
45 (x14x15)

−1/2 (2.10)

×
(

Ia7 (−η
ijx−2

23 + aj1a
i
2) + aj1a

ia
3 + ai2a

ja
4 − α′2k2bk3cI

jciba
6

)

Tr (λ1λ2λ3),

where Ijciba6 is given in (2.8) and

I = |x12|
α′2k1.k2 |x13|

α′2k1.k3 |x14x15|
α
′2

2
k1.p|x23|

α′2k2.k3 ×

×|x24x25|
α
′2

2
k2.p|x34x35|

α
′2

2
k3.p|x45|

α
′2

4
p.D.p,

aj1 = ipj
x54

x34x35
,

ai2 = ipi
x54

x24x25
,

aia3 = α′ik2bI
iba
5 ,

aja4 = α′ik3c2
−3/2x

1/4
45 (x34x35)

−1(x14x15)
−1/2

×

{

(ΓjcaC−1)αβ +
α′Re[x14x35]

x13x45

(

− ηac(γjC−1)αβ

)

}

,

Ia7 = <: Sα(x4) : Sβ(x5) : ψ
a(x1) :>= 2−1/2x

−3/4
45 (x14x15)

−1/2(γaC−1)αβ . (2.11)
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Now we are ready to show that the amplitude is written such that SL(2, R) transforma-

tion holds.

We apply a special gauge fixing which is different from the ones that appeared in [55],

that is why we can find out the general form of the amplitude. Basically we just fixed the

positions of all three massless open strings in (0, 1,∞) and carry out all integrations by

making use of the integrals obtained in [31]. The other fact which has been widely used is

indeed introducing the following Mandelstam variables

s = −
α′

2
(k1 + k3)

2, t = −
α′

2
(k1 + k2)

2, u = −
α′

2
(k2 + k3)

2.

Eventually we try to find out the final form of the amplitude (2.10) as

ACAφφ = A1 +A2 +A3 +A4 +A5 +A6 +A7 +A8 +A9 +A10 (2.12)

where

A1 ∼ −2−1/2ξ1aξ2iξ3j

[

k3ck2bTr (P−H/ (n)MpΓ
jciba)− k2bp

jTr (P−H/ (n)MpΓ
iba)

−k3cp
iTr (P−H/ (n)MpΓ

jca) + pipjTr (P−H/ (n)Mpγ
a)
]

L1,

A2 ∼ 2−1/2
{

− 2ξ1.k2k3cξ3jξ2iTr (P−H/ (n)MpΓ
jci)
}

L2

A3 ∼ 2−1/2
{

ξ1aξ2iξ3jTr (P−H/ (n)MpΓ
jia)
}

L22

A4 ∼ 2−1/2
{

2k3.ξ1k2bξ3jξ2iTr (P−H/ (n)MpΓ
jib)
}

L3

A5 ∼ 2−1/2
{

2ξ3.ξ2k2bk3cξ1aTr (P−H/ (n)MpΓ
cba)
}

L5

A6 ∼ 21/2L2

{

pjξ1.k2ξ2iξ3jTr (P−H/ (n)Mpγ
i)
}

A7 ∼ −2−1/2L3

{

2k3.ξ1p
iξ3jξ2iTr (P−H/ (n)Mpγ

j)
}

A8 ∼ 21/2L6

{

2k2.ξ1k3cTr (P−H/ (n)Mpγ
c)(−sξ2.ξ3)

}

.

A9 ∼ 21/2L6

{

2k3.ξ1k2bTr (P−H/ (n)Mpγ
b)(−tξ2.ξ3)

}

A10 ∼ 21/2L6

{

ξ1aTr (P−H/ (n)Mpγ
a)(tsξ3.ξ2)

}

(2.13)

where the functions L1, L2, L22, L3, L5, L6 are appeared in the following

L1 = (2)−2(t+s+u)+1π
Γ(−u+ 1

2)Γ(−s+
1
2)Γ(−t+

1
2)Γ(−t− s− u+ 1)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
,

L2 = (2)−2(t+s+u)π
Γ(−u+ 1)Γ(−s+ 1)Γ(−t)Γ(−t− s− u+ 1

2)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)

L22 = (2)−2(t+s+u)π
Γ(−u+ 1)Γ(−s+ 1)Γ(−t+ 1)Γ(−t− s− u+ 1

2)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)

L3 = (2)−2(t+s+u)π
Γ(−u+ 1)Γ(−s)Γ(−t+ 1)Γ(−t− s− u+ 1

2)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
,

– 7 –
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L5 = (2)−2(t+s+u)π
Γ(−u)Γ(−s+ 1)Γ(−t+ 1)Γ(−t− s− u+ 1

2)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
,

L6 = (2)−2(t+s+u)−1π
Γ(−u+ 1

2)Γ(−s+
1
2)Γ(−t+

1
2)Γ(−t− s− u)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
, (2.14)

We could actually simplify the final result more as follows:

ACAφφ = A1 +A2 +A3 +A4, (2.15)

where

A1 ∼ 2−1/24ξ1aξ2iξ3j(t+s+u)L
′

1

[

k3ck2bTr (P−H/ (n)MpΓ
jciba)−k2bp

jTr (P−H/ (n)MpΓ
iba)

−k3cp
iTr (P−H/ (n)MpΓ

jca) + pipjTr (P−H/ (n)Mpγ
a)
]

A2 ∼ 2−1/2L′

2

{

− 2usξ1.k2ξ2ik3cξ3jTr (P−H/ (n)MpΓ
jci)− ustξ1aξ2iξ3jTr (P−H/ (n)MpΓ

jia)

+2utk3.ξ1k2bξ3jξ2iTr (P−H/ (n)MpΓ
jib) + 2usξ2ip

jξ1.k2ξ3jTr (P−H/ (n)Mpγ
i)

−2utξ3jp
iξ1.k3ξ2iTr (P−H/ (n)Mpγ

j)
}

A3 ∼ 21/2Tr (P−H/ (n)Mpγ
a)ξ3.ξ2L

′

1

[

tsξ1a − 2tk3.ξ1k2a − 2sk2.ξ1k3a

]

A4 ∼ 2−1/2L′

2

{

2stξ3.ξ2k2bk3cξ1aTr (P−H/ (n)MpΓ
cba)
}

. (2.16)

where the functions L′

1, L
′

2 now defined as

L′

1 = (2)−2(t+s+u)−1π
Γ(−u+ 1

2)Γ(−s+
1
2)Γ(−t+

1
2)Γ(−t− s− u)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
,

L′

2 = (2)−2(t+s+u)π
Γ(−u)Γ(−s)Γ(−t)Γ(−t− s− u+ 1

2)

Γ(−u− t+ 1)Γ(−t− s+ 1)Γ(−s− u+ 1)
(2.17)

One important test of our amplitude is indeed applying Ward identity. Replacing

ξ1a → k1a, one believes that all parts of amplitude become zero. Notice that our amplitude

makes sense for n = p− 2, n = p+ 2 and p = n cases.

Given the facts that we are dealing with 5-point super string computations for all

massless strings and we are applying momentum conservation just for longitudinal direc-

tion, it is expected to get the same relation as appeared in [15, 29]. Thus the following

relation holds

s+ t+ u = −pap
a. (2.18)

As argued in [30], the expansion must be done by sending all three Mandelstam vari-

ables to zero.

It is worth taking the fact that both L′

1, L
′

2 are symmetrized in terms of (u, t, s) and

this provides some confusions to indeed derive the general form of our expansions, however

the field theory is a very useful guide in order for obtaining desired expansions. Since we

are carrying out technically 5-point function for all massless particles, the expansions and

the coefficients are the same as appeared in the amplitude of one Ramond-Ramond and
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three massless scalar fields [30], however, the terms that appeared in those amplitudes are

really different from the terms of < VCVAVφVφ > and this is one the reasons for performing

explicit computations. The corrected expansions are

L′

1 = −
π5/2

2

(

∞
∑

n=0

cn(s+ t+ u)n +

∑

∞

n,m=0 cn,m[sntm + smtn]

(t+ s+ u)

+
∞
∑

p,n,m=0

fp,n,m(s+ t+ u)p[(s+ t)n(st)m]

)

, (2.19)

suL′

2 = −π3/2
( ∞
∑

n=−1

bn

(

1

t
(u+ s)n+1

)

+
∞
∑

p,n,m=0

ep,n,mt
p(su)n(s+ u)m

)

(2.20)

Finally in order to obtain the suitable expansions for stL′

2 and tuL′

2, one must replace

t↔ u in (2.20) and t↔ s accordingly such that

tuL′

2 = −π3/2

(

∞
∑

n=−1

bn

(

1

s
(u+ t)n+1

)

+
∞
∑

p,n,m=0

ep,n,ms
p(tu)n(t+ u)m

)

(2.21)

tsL′

2 = −π3/2

(

∞
∑

n=−1

bn

(

1

u
(s+ t)n+1

)

+
∞
∑

p,n,m=0

ep,n,mu
p(ts)n(t+ s)m

)

(2.22)

In order to produce all massless poles for different values of p and n one has to know

some of the coefficients in those expansions:

b−1 = 1, b0 = 0, b1 =
1

6
π2, b2 = 2ζ(3),

c0 = 0, c1 =
π2

6
, e0,0,1 =

1

3
π2, (2.23)

e2,0,0 = e0,1,0 = 2ζ(3), e1,0,0 =
1

6
π2, e1,0,2 =

19

60
π4, e1,0,1 = e0,0,2 = 6ζ(3),

c2 = −2ζ(3), c1,1 =
π2

6
, c0,0 =

1

2
,

c3,1 = c1,3 =
2

15
π4, c2,2 =

1

5
π4, f0,1,0 = −

1

3
π2

c1,0 = c0,1 = 0, c3,0 = c0,3 = 0 , c2,0 = c0,2 =
π2

6
,

c1,2 = c2,1 = −4ζ(3), c4,0 = c0,4 =
1

15
π4,

The important point here is that, L′

1 for our amplitude < VCVAVφVφ > must have in-

finite massless gauge but not scalar poles in the (t + s + u)-channel and this is unlike

< VCVAVAVφ >, which had infinite massless scalar poles. The other point which must

be mentioned before carrying out field theory computations is that, L′

2 must have either

infinite massless scalar poles in t,s channels or infinite massless gauge poles in u-channels

which we take care of them in a closed form in the next sections.
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2.1 Infinite massless gauge poles for p − 2 = n case

In this section, we are going to explore all infinite u-channel gauge poles with new Wess-

Zumino couplings. These poles have been overlooked in [55]. By applying stL′

2 expansion

into A4 amplitude in (2.15) one should have got all massless gauge poles in string ampli-

tude as

− π2µp(2ξ3.ξ2k2bk3cξ1a)
16

(p− 2)!
ǫa0···ap−3cbaHa0···ap−3

∞
∑

n=−1

bn

(

1

u
(t+ s)n+1

)

Tr (λ1λ2λ3)

(2.24)

where trace has been taken and we just kept all poles in the expansion of stL′

2. Note that

we normalized the amplitude by multiplying a coefficient of 21/2π1/2µp.

The important point should be highlighted is that, (2.24) has been anti symmetrized in

terms of both scalars and this leads to the conclusion that amplitude must be non-vanished

just for non Abelian gauge group.

One test of this part of amplitude is, taking into account Ward identity for the gauge

field. Thus by replacing ξ1a → k1a, making use of momentum conservation and applying

physical state condition for RR (paǫa0···ap−3cba = 0), we observe that (2.24) does vanish.

The related Feynman rule in field theory side for p− 2 = n case is

A = V a
α (Cp−3, A1, A)G

ab
αβ(A)V

b
β (A, φ2, φ3), (2.25)

The needed vertex V a
α (Cp−3, A1, A) in field theory must be obtained by taking this

Chern-Simons coupling

S1 = iλ2µp

∫

dp+1σ Tr (C(p−3) ∧ F ∧ F ) (2.26)

Note that in the above action Fab = ∂aAb−∂bAa− i[Aa, Ab] and λ = 2πα′, however all

commutators must be neglected as we are looking for the coupling between one RR-(p− 3)

form and two gaue fields. Integration by parts are also taken such that

V a
α (Cp−3, A1, A) = λ2µp

1

(p− 2)!
ǫa0···ap−1aHa0···ap−3

ξ1ap−2
kap−1

As it becomes clear from (2.24) the amplitude has infinite poles. The vertex of

V b
β (A, φ2, φ3) should be derived from the kinetic term of scalar fields in DBI action

[λ
2

2 Tr (DaφiDaφi)] as follows

V b
β (A, φ2, φ3) = iλ2Tpξ2.ξ3(k2 − k3)

bTr (λ2λ3λβ)

Gab
αβ(φ) =

−i

λ2Tp

δabδαβ
k2

, (2.27)

Consider k2 = −(k2 + k3)
2 = u in the above propagator.

Kinetic term of scalar field indeed has been fixed so definitely there is no correction to

all kinetic terms such as kinetic term of scalars. Also notice that massless poles here are

simple massless poles thus neither do they get corrected. In addition to that, by considering

(2.26) we could produce just the first simple gauge pole out of infinite poles.
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Having got this remarkable fact, we come to the point that, in order to

produce all infinite gauge poles one has to find out all related corrections to

iλ2µp
∫

dp+1σC(p−3) ∧ F ∧ F as

S2 = iλ2µp

∫

dp+1σ
∞
∑

n=−1

bn(α
′)n+1 C(p−3) ∧Da0···anF ∧Da0···anF (2.28)

for more explanations see [15]. By setting these corrections, we are indeed able to produce

all massless gauge poles to all orders of α′. Let us write down the corrected form of the

needed vertex to all orders as

V a
α (Cp−3, A1, A) =

λ2µp
(p− 2)!

(ǫ)a0···ap−1a(H(p−2))a0···ap−3
ξ1ap−2

kap−1

×Tr (λ1λα)
∞
∑

n=−1

bn(α
′k1.k)

n+1 (2.29)

Having replaced (2.29),(2.27) into (2.25) we may write down the result as

A = µp(2πα
′)2

1

(p− 2)!u
Tr (λ1λ2λ3)ǫ

a0···ap−1aHa0···ap−3
ξ1ap−2

×

×
∞
∑

n=−1

bn

(

α′

2

)n+1

(s+ t)n+1
[

2k2ak3ap−1
ξ2.ξ3

]

(2.30)

Thus (2.30) can exactly produce all ifinite massless gauge poles which we were looking for

in (2.24). Indeed we have precisely produced all u-channel poles in this section. This is

the other new result of this paper.

3 New couplings for BPS-branes for n = p − 2 case

In this section, by comparing direct result of string amplitude, we are going to discover

new Wess-Zumino couplings for n = p − 2 case at leading order and generalize them to

actually construct all their higher order corrections as well.

To start, we rewrite the explicit form of string amplitude for this case as

A4 = 2π1/2µpstξ3.ξ2k2bk3cξ1aTr (P−H/ (n)MpΓ
cba)L′

2

Extracting the trace and applying stL′

2 expansion we get

A4 = −2ξ3.ξ2k2bk3cξ1aπ
2µp

16

(p− 2)!
ǫa0···ap−3cbaHa0···ap−3

×

(

∞
∑

n=−1

bn

(

1

u
(t+ s)n+1

)

+
∞
∑

p,n,m=0

ep,n,mu
p(st)n(s+ t)m

)

(3.1)

In the last section, and in particular in (2.30), comparing with string theory amplitude,

we have produced all infinite u-channel poles in field theory. Now in order for gaining new
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couplings with exact coefficients, what we have to take into account is indeed the second

term in (3.1), that is,

ACAφφ
4 = −2ξ3.ξ2k2bk3cξ1aπ

2µp
16

(p− 2)!
ǫa0···ap−3cbaHa0···ap−3

×

(

∞
∑

p,n,m=0

ep,n,mu
p(st)n(s+ t)m

)

(3.2)

Note that (3.2) by itself does satisfy Ward identity, namely if we replace ξ1a to k1a and

apply the momentum conservation along the world volume and in particular consider the

physical state condition for the RR paǫa0···ap−1a = 0, we come to the fact that this part of

the amplitude should be written just in terms of a new Wess-Zumino coupling which must

have the following structure

∫

∑
p+1

dp+1σ Tr (Cp−3 ∧ F ∧Dφi ∧Dφi) (3.3)

It is written such that, it covers the world volume space and also satisfies anti-

symmetrization with respect to the interchange of scalar field’s momenta. Let us apply

e1,0,0 = π2

6 and e0,0,1 = π2

3 to (3.3) and produce the first non-zero couplings as S3 and S4
then generalize all orders in α′ higher derivative corrections:

S3 =
λ3µpπ

12

∫

dp+1σ
1

(p− 3)!
(εv)a0···ap

(

α′

2

)

×C
(p−3)
a0···ap−4

Tr
(

Fap−3ap−2
(DaDa)

[

Dap−1
φiDapφi

])

(3.4)

and

S4 =
λ3µpπ

6

∫

dp+1σ
(

α′
)

Tr
(

Cp−3 ∧D
b1F ∧Db1

[

Dφi ∧Dφi

])

(3.5)

It is not difficult to investigate that, in order to produce (3.2), the closed form of higher

derivative corrections to all orders of α′ must be taken as follows

S5 =
λ3µp
2π

∫

dp+1σ
∞
∑

p,n,m=0

ep,n,m
(

α′
)2n+m

(

α′

2

)p

×

×Tr
(

Cp−3 ∧D
b1 · · ·DbmDa1 · · ·Da2nF ∧ (3.6)

(DaDa)
pDb1 · · ·Dbm

[

Da1 · · ·DanDφ
i ∧Dan+1

· · ·Da2nDφi

])

4 Infinite massless gauge poles for p = n case

The goal for this section is to show that pure super Yang-Mills (SYM) couplings (infinite

two gauge and two scalar couplings in [29]) will give rise the same infinite gauge poles

in < VCVAVφVφ > as well. Extracting the trace and considring L′

1 expansion inside of
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the third part of the amplitude (A3), we rewrite all infinite massless gauge poles of the

amplitude for p = n case as the following:

A3 = π3µpξ3.ξ2
16

p!
ǫa0···ap−1aH

(p)
a0···ap−1

[

tsξ1a − 2tk3.ξ1k2a − 2sk2.ξ1k3a

]

×

(

∑

∞

n,m=0 cn,m[sntm + smtn]

(t+ s+ u)

)

(4.1)

with 21/2π1/2µp becomes normalisation factor to match with field theory side. The following

Feynman rule must be taken into account for this case.

A = V a
α (Cp−1, A)G

ab
αβ(A)V

b
β (A,A1, φ2, φ3), (4.2)

First of all let us talk about the chern -simons coupling, namely we want to gain

V a
α (Cp−1, A) by taking the known coupling

2πα′µp

∫

dp+1σTr (Cp−1 ∧ F ) (4.3)

such that

V a
α (Cp−1, A) = i(2πα′)µp

1

(p)!
ǫa0···ap−1aH

(p)
a0···ap−1

Tr (λα)

Gab
αβ(A) =

iδαβδ
ab

Tp(2πα′)2k2
=

iδαβδ
ab

Tp(2πα′)2(t+ s+ u)
. (4.4)

In order to produce all infinite gauge poles for this particular case one has to know

SYM couplings between one off-shell gauge and one on-shell gauge and two on-shell scalar

fields at leading order

−
Tp(2πα

′)4

2
STr

(

Daφ
iDbφiF

acFbc −
1

4
(Daφ

iDaφiF
bcFbc)

)

. (4.5)

and in particular, we need to make use of their higher derivative corrections to all orders

of α′ which are recently discovered in [29]:

(2πα′)4
1

2π2
Tp
(

α′
)n+m

∞
∑

m,n=0

(Lnm
1 + Lnm

2 + Lnm
3 ), (4.6)

Lnm
1 = −Tr

(

an,mDnm[Daφ
iDbφiF

acFbc] + bn,mD′

nm[Daφ
iF acDbφiFbc] + h.c.

)

,

Lnm
2 = −Tr

(

an,mDnm[Daφ
iDbφiFbcF

ac] + bn,mD′

nm[Daφ
iFbcD

bφiF
ac] + h.c.

)

,

Lnm
3 =

1

2
Tr
(

an,mDnm[Daφ
iDaφiF

bcFbc] + bn,mD′

nm[Daφ
iFbcD

aφiF
bc] + h.c.

)

,

where the higher derivative operators Dnm and D′

nm are defined [15] as

Dnm(EFGH) ≡ Db1 · · ·DbmDa1 · · ·DanEFD
a1 · · ·DanGDb1 · · ·DbmH,

D′

nm(EFGH) ≡ Db1 · · ·DbmDa1 · · ·DanED
a1 · · ·DanFGDb1 · · ·DbmH.
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The first thing to note is that, in order to obtain the vertex of one off-shell gauge and one

gauge and two scalars on-shell, one should have taken into account two possible orderings

as below:

Tr (λ2λ3λ1λβ), Tr (λ2λ3λβλ1) (4.7)

where β has to be Abelian. As an example if we consider Tr
(

an,mDnm[Daφ
iDbφiF

acFbc]
)

the resulted vertex is

an,m(k.k2)
m(k1.k2)

nξ2.ξ3I10

+an,m(k.k2)
n(k1.k2)

mξ2.ξ3I11 (4.8)

where k becomes off-shell gauge field’s momentum and I10, I11 are

I10 = (−k1.k2k3.kξ1a + k1.k2ξ1.kk3a + ξ1.k2k3.kk1a − k2.ξ1k1.kk3a)

I11 = (−k.k2k3.k1ξ1a + k.k2ξ1.k3k1a + ξ1.kk3.k1k2a − k3.ξ1k1.kk2a) (4.9)

Now by applying the hermition conjugate of Tr
(

an,mDnm[Daφ
iDbφiF

acFbc]
)

we are lead to

an,mξ2.ξ3

(

(k.k3)
n(k1.k3)

mI10 + (k.k3)
m(k1.k3)

nI11

)

(4.10)

Therefore one must do careful computations for all the other couplings in (4.6) and

also should consider their hermition conjugate as well. The final result is

V b
β (A, φ2, φ3, A1) =

Tp
2
ξ2.ξ3

1

2π2
(α′)n+m(an,m+bn,m)

(

(k2 ·k)
m(k1 ·k2)

n+(k2 ·k)
n(k2 ·k1)

m

+(k1 ·k3)
m(k3 ·k)

n + (k ·k3)
m(k1 ·k3)

n
)

(2πα′)4 Tr (λ1λ2λ3λβ)

×
[

ξ1bts− 2tk3.ξ1k2b − 2sk2.ξ1k3b

]

, (4.11)

Having set (4.11),(4.4) into (4.2), we get the infinite massless gauge field poles of the

amplitude in field theory side:

−32πµp
ǫa0···ap−1aξ2.ξ3H

(p)
a0···ap−1

(p)!(s+ t+ u)
Tr (λ1λ2λ3)

∞
∑

n,m=0

(an,m + bn,m)[smtn + sntm]

[

ξ1ats− 2tk3.ξ1k2a − 2sk2.ξ1k3a

]

(4.12)

In order to check the field theory amplitude with string amplitude (4.1) one needs to

actually have some of the coefficients such as

a0,0 = −
π2

6
, b0,0 = −

π2

12
,

a1,0 = 2ζ(3), a0,1 = 0,

b0,1 = −ζ(3), a1,1 = a0,2 = −7π4/90,

a2,2 = (−83π6 − 7560ζ(3)2)/945, b2,2 = −(23π6 − 15120ζ(3)2)/1890,
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a1,3 = −62π6/945, a2,0 = −4π4/90,

b1,1 = −π4/180, b0,2 = −π4/45,

a0,4 = −31π6/945, a4,0 = −16π6/945,

a1,2 = a2,1 = 8ζ(5) + 4π2ζ(3)/3, a0,3 = 0,

a3,0 = 8ζ(5), b1,3 = −(12π6 − 7560ζ(3)2)/1890,

a3,1 = (−52π6 − 7560ζ(3)2)/945, b0,3 = −4ζ(5),

b1,2 = −8ζ(5) + 2π2ζ(3)/3, b0,4 = −16π6/1890. (4.13)

Notice the fact that bn,m must be symmetric and concerning T-duality transformation

these coefficients are the same as those have been appeared for one RR and 3 gauge

fields [15]. Later on we will go through all of the contact terms for p = n case, even

those terms which have been cancelled out with the resulted propagator in the above field

theory amplitude. Although the method for obtaining them with all needed details have

been explained in [29, 31].

Meanwhile the amplitude in string theory is given in (4.1). If the higher derivative

couplings of (4.6) are correct, we must be able to produce exactly all massless poles in (4.1).

To do so, first we omit similar coefficients from both string and field amplitudes and then

compare (4.12) with (4.1) order by order. In the other words, the aim is to compare

− µpπ
∞
∑

n,m=0

(

(an,m + bn,m)[smtn + sntm]
)

(4.14)

with

2−1π3µp

∞
∑

n,m=0

cn,m

(

smtn + sntm
)

(4.15)

By applying n = m = 0, at zeroth order of α′ we get

− 2π(a0,0 + b0,0) = −2π

(

−π2

6
+

−π2

12

)

=
π3

2
(2c0,0) (4.16)

At first order of α′, we find

− π(a1,0 + a0,1 + b1,0 + b0,1)(s+ t) = 0 =
π3

2
(c1,0 + c0,1)(s+ t)

At the second order of (α′), we lead to

−2π(a1,1 + b1,1)st− π(a0,2 + a2,0 + b0,2 + b2,0)[s
2 + t2]

=
π5

6
(st) +

π5

6
(s2 + t2)

=
π3

2
[c1,1(2st) + (c2,0 + c0,2)(s

2 + t2)]

At third order of α′, we gain

−π(a3,0 + a0,3 + b0,3 + b3,0)[s
3 + t3]− π(a1,2 + a2,1 + b1,2 + b2,1)[st(s+ t)]

= −4π3ξ(3)st(s+ t) =
π3

2
[(c0,3 + c3,0)[s

3 + t3] + (c2,1 + c1,2)st(s+ t)]
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In order to be sure we have obtained the correct couplings with exact coefficients, we want

to go ahead one more order so at fourth order of (α′), we find the following numerical factor

−π(a4,0 + a0,4 + b0,4 + b4,0)(s
4 + t4)

−π(a3,1 + a1,3 + b3,1 + b1,3)[st(s
2 + t2)]− 2π(a2,2 + b2,2)s

2t2

=
π7

15
(s4 + t4 + 2(s3t+ t3s) + 3s2t2)

=
π3

2
[(c4,0 + c0,4)(s

4 + t4) + (c1,3 + c3,1)(s
3t+ t3s) + 2c2,2s

2t2]

We have highly used the coefficients in (4.13). In general all checks to all orders in

α′ can be carried out to indeed see that all massless gauge poles of < VCVAVφVφ > are

produced. Therefore we come to important fact that these couplings do work out even

for the amplitude of CAφφ, and this is the other recent point that comes out from our

attempts which has been hidden in [55] for a while. Therefore not only does it confirm that

our recent higher derivative couplings are exact up to on-shell ambiguity but also it resolves

the fact that pap
a must tend to zero to get the correct expansion for all BPS branes.

4.1 Infinite massless t, s-channel scalar poles for p + 2 = n case

The goal in this section is to actually produce all infinite s-channel and t-channel scalar

poles. The first simple scalar pole in t-channel has already been produced in [55] but again

in there all infinite scalar poles have been overlooked, however we are going to come over

them as well.

Having taken our recent ideas for Super Yang-Mills [15, 29, 30], we show that the same

arguments here also hold. By applying usL′

2, tuL
′

2 expansions into all terms (except the

second term) in the A2 amplitude and extracting the traces, one can find out all massless

scalar poles in t channel for string amplitude as

−16π2µp
(p+ 1)!

{

− 2(p+ 1)ξ1.k2ξ2ik3cξ3jǫ
a0···ap−1cH ij

a0···ap−1
+ 2ξ2ip

jξ1.k2ξ3jǫ
a0···apH i

a0···ap

}

×

∞
∑

n=−1

bn

(

1

t
(u+ s)n+1

)

Tr (λ1λ2λ3) (4.17)

All s-channel poles are also written down as below

−16π2µp
(p+ 1)!

{

2(p+ 1)k3.ξ1k2bξ3jξ2iǫ
a0···ap−1bHji

a0···ap−1
− 2ξ3jp

iξ1.k3ξ2iǫ
a0···apHj

a0···ap

}

×

∞
∑

n=−1

bn

(

1

s
(u+ t)n+1

)

Tr (λ1λ2λ3) (4.18)

By interchanging scalars in the A2 amplitude, we reach to the point that the amplitude

is anti symmetric thus in order to make sense of our computations one has to consider non-

Abelian gauge group. As it is clear from (4.18) and (4.17), once we produced all massless

t-channel scalar poles, all infinite s-channel scalar poles can be easily produced by replacing
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s ↔ t and re-labeling 2 ↔ 3 in all their momenta and polarizations. Therefore let us just

produce all infinite massless scalar poles in t-channel in field theory.

The Feynman rule in field theory to produce all t-channel poles should be followed by

A = V i
α(Cp+1, φ3, φ)G

ij
αβ(φ)V

j
β (φ,A1, φ2), (4.19)

such that the vertex of V j
β (φ,A1, φ2) should be found from the scalar field’s kinetic term

like (2πα′)2

2 Tr (Daφ
iDaφi) where all possible orderings must be regarded in field theory as

well. Therefore

V j
β (φ,A1, φ2) = −2iλ2Tpk2.ξ1ξ

j
2Tr (λ1λ2λβ)

Gij
αβ(φ) =

−i

Nλ2Tp

δijδαβ
k2

, (4.20)

k2 = −(k2 + k1)
2 = t should be substituted in the propagator. As argued in the last

section scalar field ’s kinetic term has been fixed so it has no correction, the simple scalar

t-channel pole has no correction either. Therefore not only we need to find V i
α(Cp+1, φ3, φ)

but also its higher derivative corrections are also needed.

First of all let us discuss how to produce V i
α(Cp+1, φ3, φ) without taking its higher

derivative.

The first coupling between one gauge field, two scalar fields and one RR should be

included from Myers ’ terms. Namely, we may think of the coupling between a commutator

of transverse scalars and a world volume field strength of gauge field and one RR -(p+ 1)

form field as we call it S6

S6 =
i

4
(2πα′)2µp

∫

dp+1σ
1

(p− 1)!
ǫa0···ap Tr

(

Fa0a1 [Φ
j ,Φi]

)

C
(p+1)
ija2···ap

. (4.21)

For more details on Chern-Simons actions, Taylor expansion and Pull-back, one should

deal with section 5 of [31]. In addition to (4.21) we need to know two more couplings,

basically first we need to use Taylor expansion very properly for this case as

S7 =
(2πα′)2µp

2

∫

dp+1σ
1

(p+ 1)!
ǫa0···apTr

(

ΦjΦi
)

∂j∂iC
(p+1)
a0···ap

=
(2πα′)2µp

2

∫

dp+1σ
1

(p+ 1)!
ǫa0···apTr

(

ΦjΦi
)

∂jH
(p+2)
ia0···ap

(4.22)

such that Hp+2 = dCp+1, the other couplings which are vital for our case must be read

from Pull-back, namely we shall point out to the following couplings as well

S8 =
(2πα′)2µp

2

∫

dp+1σ
1

(p+ 1)!
ǫa0···ap

[

p(p+ 1)Tr
(

Da0Φ
iDa1Φ

j
)

C
(p+1)
ija2···ap

+2(p+ 1)Tr
(

ΦjDa0Φ
i
)

∂jC
(p+1)
ia1···ap

]

Having taken integration by parts and adding some of the actions we reach to

S6 + S8 =
(2πα′)2

2
µp

∫

dp+1σ
1

(p+ 1)!
ǫa0···ap

[

(p+ 1)Tr
(

Da0Φ
jΦi
)

H
(p+2)
ija1···ap

]
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In order to get several contributions, one has to extract the covariant derivative of

scalar field (Daφ
i = ∂aφ

i + i[Aa, φ
i]) such that

S6 + S8 =
(2πα′)2

2
µp

∫

dp+1σ
1

(p+ 1)!
ǫa0···ap

[

2i(p+ 1)Tr
(

Aa0Φ
jΦi
)

H
(p+2)
ija1···ap

(4.23)

+(p+ 1)Tr
(

∂a0Φ
jΦi
)

H
(p+2)
ija1···ap

]

Note that the first term in (4.23) will be employed in the next section to obtain all the

contact terms p + 2 = n case for three open strings, namely two scalars, one gauge field

and one closed string RR-p+ 1 form field.

However, in order to obtain V i
α(Cp+1, φ3, φ) for producing the first massless scalar

pole,one must add the relevant couplings together at leading order, basically by adding

some of the couplings as below

µp(2πα
′)2

2(p+ 1)!

∫

dp+1σǫa0···ap
[

Tr
(

ΦjΦi
)

∂jH
(p+2)
ia0···ap

+ (p+ 1)Tr
(

∂a0Φ
jΦi
)

H
(p+2)
ija1···ap

]

(4.24)

we can easily get the leading vertex of V i
α(Cp+1, φ3, φ) as

V i
α(Cp+1, φ3, φ) =

Nµp(2πα
′)2

(p+ 1)!
Tr (λ3λα)ǫ

a0···ap
[

pjξ3jH
i
a0···ap

+(p+ 1)H ij
a1···apk3a0ξ3j

]

(4.25)

Needless to say that N is indeed the normalisation constant to be chosen for all U(N)

generators, such that

ξ1i = ξα1iQα, Nδαβ = Tr (QαQβ) (4.26)

Now by replacing (4.25) and (4.20) into (4.19), we are able to just produce exactly the first

simple t-channel pole in (4.17). In order to produce all infinite t-channel poles, we should

look for all higher derivative corrections of (4.24). One can apply the main ideas of [15, 29]

to indeed get the all higher derivative corrections of (4.24) as

µp(2πα
′)2

2(p+ 1)!

∫

dp+1σǫa0···ap
∞
∑

n=−1

bn(α
′)n
[

Tr
(

Da1...anΦ
jDa1...anΦi

)

∂jH
(p+2)
ia0···ap

+(p+ 1)Tr
(

∂a0Da1...anΦ
jDa1...anΦi

)

H
(p+2)
ija1···ap

]

(4.27)

The important point here is that the commutators in covariant derivative of scalar fields

do not play any role and in fact they have no contribution to above vertex so all covariant

derivatives can be replaced with their own partial derivatives.

By constructing the correct higher derivative corrections of (4.24) as (4.27), one can

write down the general form of the needed vertex as

V i
α(Cp+1, φ3, φ) =

Nµp(2πα
′)2

(p+ 1)!
Tr (λ3λα)ǫ

a0···ap

∞
∑

n=−1

bn(α
′k3.k)

n
[

pjξ3jH
i
a0···ap

+(p+ 1)H ij
a1···apk3a0ξ3j

]

(4.28)

where
∑

∞

n=−1 bn(α
′k3.k)

n =
∑

∞

n=−1 bn(s+ u)n has been used.
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Therefore by making use of this new higher vertex (to all orders of α′) (4.28) and

substituting (4.28) and (4.20) into (4.19), fortunately we were able to exactly obtain all

infinite t-channel scalar poles in (4.17) as follows

A =
−16π2µp
(p+ 1)!

{

− 2(p+ 1)ξ1.k2ξ2ik3aξ3jǫ
a0···ap−1aH ij

a0···ap−1

+2ξ2ip
jξ1.k2ξ3jǫ

a0···apH i
a0···ap

}

×
∞
∑

n=−1

bn

(

1

t
(u+ s)n+1

)

Tr (λ1λ2λ3) (4.29)

Having replaced t↔ s and 2 ↔ 3 we can also produce all infinite s-channel scalar poles

as well.

Thus up to pole levels we observe that field theory does agree with string amplitude,

however in the next sections we will see that there are some contact terms in string theory

such that their field theory is unknown. It is remarkable to note that these sort of new

interactions neither can be found by Myers’terms nor with Taylor/Pull back method. To

our knowledge pull-back should be corrected [29]. Essentially we find some new couplings

by comparing them with the exact result of string amplitude. After carrying out long

computations and producing all infinite massless scalar, gauge poles for all possible different

channels, let us go further and talk about contact interactions and new Wess-Zumino

couplings, which can be found just by direct S-Matrix computations.

5 Contact interactions for p = n case

Notice the fact that p = n does mean that we are taking into account all Cp−1 couplings

to D(p−2)-brane. By taking n = p case, the final form of our amplitude reduced to the

following interactions:

ACAφφ =
i(2πα′)3µp

2p!
ǫa0···ap−1aξ1aξ2iξ3j

(

pipjHa0···ap−1
+ p(p− 1)k3a0k2a1H

ij
a2···ap−1

−pk2a0p
jH i

a1···ap−1
− pk3a0p

iHj
a1···ap−1

)

×

(

∞
∑

n=0

cn(s+ t+ u)n+1 +
∞
∑

n,m=0

cn,m[(s)n(t)m + (s)m(t)n]

+
∞
∑

p,n,m=0

fp,n,m(s+ t+ u)p+1[(s+ t)n(st)m]

)

, (5.1)

Some of the contact terms just at the leading order for this case were known in [55]. Note

that we are just considering Tr (λ1λ2λ3) while the amplitude has the other possible ordering

which is Tr (λ1λ3λ2). In order to obtain full amplitude one has to replace s↔ u and 2 ↔ 3

in the above contact interactions and add them up with (5.1). In order to produce (5.1) we

have to consider several couplings from field theory. Let us first reconsider the couplings
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between two scalars (coming from pull-back) and one gauge field as

S9 =
(2πα′)3µp
4(p− 1)!

∫

dp+1σǫa0···ap
(

(p− 2)(p− 1)STr (Fa0a1Da2Φ
iDa3Φ

j)Cija4···ap

+2(p− 1)STr (Fa0a1Da2Φ
iΦj) ∂jCia3···ap

)

(5.2)

The important point for the above coupling is that commutator in the definition of

covariant derivative of scalars must be overlooked as we are looking for two scalars and one

gauge coupling. As a matter of fact all covariant derivative should be replaced with their

partial derivative.

The other coupling (which is essential for producing all contact terms for p = n case),

should be coming from Taylor expansions as follows

S10 =
(2πα′)3µp
4(p− 1)!

∫

dp+1σǫa0···apSTr (Fa0a1Φ
iΦj)∂i∂jCa2···ap (5.3)

Now by extracting field strength, replacing all covariant derivatives with their partial

derivatives, adding (5.3) and (5.2) (S11 = S9 + S10) and finally replacing all fields to their

polarizations and in particular changing derivatives to momenta, we can precisely produce

all contact terms at the leading order with the following couplings:

S11 =
λ3µp
2p!

∫

dp+1σǫa0···ap
(

p(p− 1)STr (Aa0∂a1Φ
i∂a2Φ

j)Hija3···ap

+2pSTr (Aa0∂a1Φ
jΦi) ∂iHja2···ap + STr (Aa0Φ

iΦj)∂i∂jHa1···ap

)

(5.4)

Note that the first term in (5.4) is derived from (5.2) where all the commutators should

be dropped, as we are looking for the couplings between two scalars and one gauge and

one RR -p− 1 form field.

Also note that, in the first term of (5.2), the partial derivative inside the field strength

can not act on scalars because the ǫ tensor is antisymmetric and the multiplication of

symmetric tensor and antisymmetrc tensor becomes zero so it can act just on RR field.

Symmetric trace does mean that, taking average on the whole possible orderings of the

fields is vital. The appearance of symmetric trace for the last term is necessary as we have

to produce the third and the last term in (5.1) very precisely.

In order to produce all infinite contact interactions in (5.1), the following higher deriva-

tive corrections should have been taken into account.

(st)mHAφφ = (α′)2mH∂a1 · · · ∂a2mAD
a1 · · ·DamφDam+1 · · ·Da2mφ,

(s+ t)nHAφφ = (α′)nH∂a1 · · · ∂anAD
a1 · · ·Dan(φφ),

(s)mtnHAφφ = (α′)n+mH∂a1 · · · ∂an∂a1 · · · ∂amAD
a1 · · ·DanφDa1 · · ·Damφ,

(s)ntmHAφφ = (α′)n+mH∂a1 · · · ∂an∂a1 · · · ∂amAD
a1 · · ·DamφDa1 · · ·Danφ,

(s+ t+ u)p+1HAφφ =

(

α′

2

)p+1

H(DaD
a)p+1(Aφφ). (5.5)
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The important point which must be highlighted is that, the connection part or the

commutator in the covariant derivative of scalars must be dropped in the above couplings.

6 New couplings for p = n case

Carrying out the trace and considering only all related contact interactions for A3, we get

the terms like

ACAφφ
3 = −

16π3µp
(p)!

ξ3.ξ2Ha0···ap−1
ǫa0···ap−1a

[

ts

2
ξ1a − 2tk3.ξ1k2a + 2 ↔ 3

]

×

(

∞
∑

n=0

cn(s+ t+ u)n +

∞
∑

p,n,m=0

fp,n,m(s+ t+ u)p(st)m(s+ t)n

)

(6.1)

These new contact terms do satisfy related Ward identity. It is really worth trying to point

out that these contact terms are sort of new couplings. In principle we should be able to

produce these new couplings by introducing new couplings in field theory.

Keep in mind that, we proceed to find out new couplings in field theory term by term

however after all, one has to add all of them together. Let us first produce the first term

in (6.1) at leading order (remember c1 = π2

6 , f0,1,0 = −π2

3 ) then we generalize its higher

order corrections to all orders in α′, namely consider

−
16π3µp
(p)!

ξ3.ξ2Ha0···ap−1
ǫa0···ap−1a

ts

2
ξ1a

(

π2

6
(s+ t+ u)−

π2

3
(s+ t)

)

(6.2)

One can exactly produce (6.2) by taking into account the fact that the sum of world

volume indices must cover all world volume indices such that the first term in (6.2) is

obtained by the new coupling as

S12 =
(2πα′)µp(π

2α′)2

3

∫

dp+1σ C(p−1) ∧

(

α′

2
(DcDc)(D

bDaFDaΦ
iDbΦi)

)

, (6.3)

Now we can generalize the above coupling (6.3) to produce all non leading couplings

for the first term in (6.2) as

S13 =
(2πα′)3µp

2

∫

dp+1σ
∞
∑

n=0

cn

(

α′

2

)n

C(p−1) ∧ (DcDc)
n(DbDaFDaΦ

iDbΦi), (6.4)

In those couplings, we have written explicit covariant derivative of the scalar fields,

however with our computations we can confirm the presence of just the partial derivatives

in covariant derivatives, thus in order to check whether or not commutators should be held,

one should perform higher point functions just like CAAφφ [57].

Pursuing the argument mentioned above, one can produce the second term in (6.2)

as follows

S14 = −
(8πα′)µp(α

′π2)2

3

∫

dp+1σ C(p−1) ∧ (DcDaDbFDc[DaΦ
iDbΦi]), (6.5)
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Making use of the steps have been mentioned in [31], we are able to get the all higher

order corrections for the second term in (6.2) as

S15 = −
(2πα′)3µp

2

∫

dp+1σ
∞
∑

p,n,m=0

fp,n,m

(

α′

2

)p

(α′)2m+nC(p−1) ∧ (DaDa)
p(Db1 · · ·Db2m

Da1 · · ·DanDbDcFDa1 · · ·Dan [D
b1 · · ·DbmDbΦ

iDbm+1 · · ·Db2mDcΦi]), (6.6)

In order to produce the rest of the terms in (6.1), namely one has to consider the

following terms

−
16π3µp
(p)!

ξ3.ξ2Ha0···ap−1
ǫa0···ap−1a[−2tk3.ξ1k2a + 2 ↔ 3]

×

(

∞
∑

n=0

cn(s+ t+ u)n +
∞
∑

p,n,m=0

fp,n,m(s+ t+ u)p(st)m(s+ t)n

)

(6.7)

To produce the first term in (6.7) at leading order, one must consider the following

coupling and adds it up to (6.3) and (6.5)

S16 =
(2πα′)3µpπ

2ǫa0···apHa0···ap−1
α′(DaD

a)

12p!

∫

dp+1σ
(

∂cAb∂apD
cΦiD

bΦi − 2 ↔ 3
)

(6.8)

Now we can generalize the above coupling to produce all non leading couplings to all

orders of α′

S17 =
(2πα′)3µp

p!
ǫa0···ap

∫

dp+1σHa0···ap−1

∞
∑

n=0

cn

(

α′

2

)n

(DaD
a)n

×
(

∂cAb∂apD
cΦiD

bΦi − 2 ↔ 3
)

(6.9)

Also notice that the second term in (6.7) at leading order can be reproduced as

S18 =
(2πα′)3µpπ

2

3p!
ǫa0···ap

∫

dp+1σHa0···ap−1

(

Dd∂cAbDd[∂apD
cΦiD

bΦi]− 2 ↔ 3
)

(6.10)

To find all higher orders in α′ one must take into account the derivatives as appeared

in (6.6) such that the final form is

S19 =
(2πα′)3µpǫ

a0···apHa0···ap−1

p!

∫

dp+1σ ×

×
∞
∑

p,n,m=0

fp,n,m

(

α′

2

)p

(α′)2m+n(DaDa)
p
(

Db1 · · ·Db2m (6.11)

×Da1 · · ·Dan∂cAbD
a1 · · ·Dan [∂apD

b1 · · ·DbmDcΦiD
bDbm+1 · · ·Db2mΦi]− 2 ↔ 3

)

Of course for our amplitude (CAφφ) we just could confirm the presence of partial

derivatives in the definitions of the covariant derivatives in the coupling (6.8) and it remains

an open question to check whether or not the commutator in the definitions of covariant

derivative of scalar fields will be kept. In order to answer this subtlety one must perform

higher point functions, namely to compute either CAAφφ or CAAAφφ. However there are
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some subtleties to answer this question and some of them have been addressed in [15, 31].

We hope to answer some of them in future [57].

Note that these couplings are consistent with string amplitude of one (p − 1)-form

closed string RR and two scalar and one gauge field and they are new in the sense that

neither do they come from Myers’ terms, Pull-back, Taylor expansion nor expanding the

exponential and suing the multiplication rule of the super matrices.

As it stands and it is known, applying the direct computations of string amplitudes is

the only consistent and a quite reasonable method to actually find out new couplings in

field theory.

Thus to conclude, in order to produce exactly the contact interactions in (6.1) at

leading order one has to consider the sum of S12, S14, S16, S18 and consider these interactions

by replacing 2 ↔ 3 as well.

Finally we get to those contact terms that have been overlooked in section 4. By

making use of some valuable formula we might write those interactions down as

16πµp
p!

ǫa0···ap−1aHa0···ap−1
ξ3.ξ2

[

ξ1ats− 2tk3.ξ1k2a − 2sk2.ξ1k3a

]

×

×

∞
∑

n,m=0

(an,m + bn,m)(−α′k2)l−1

[(

2
m
∑

l=1

(

m

l

)

(sm−ltn + tm−lsn) + 2
n
∑

l=1

(

n

l

)

(sn−ltm + tn−lsm)

)

+

n,m
∑

l=1,j=1

(

n

l

)(

m

j

)

(sn−ltm−j + tn−lsm−j)(−α′k2)j

]

Tr (λ1λ2λ3)

The important point is that we can also write these contact terms in a closed form

as follows

16πµp
p!

ǫa0···ap−1aHa0···ap−1
ξ3.ξ2

[

ξ1ats− 2tk3.ξ1k2a − 2sk2.ξ1k3a

]

×Tr (λ1λ2λ3)
∞
∑

p,n,m=0

f ′p,n,m(s+ t+ u)p(s+ t)n(st)m, (6.12)

We should have pointed out the fact that f ′p,n,m can be written in terms of an,m and

bn,m as well. The last remark is that, the last terms in the expansion of L′

1 do follow the

same structures of (6.12). Therefore we can conclude that fp,n,m just in the expansion of

L′

1 must be replaced by

fp,n,m → fp,n,m − f ′p,n,m

7 Contact terms for p + 2 = n case

Let us come to the last part of contact terms. Here all world volume spaces have been

covered and apparently there should not be any coupling between gauge field and scalars

and Ramond-Ramond. Below one might wonder how we could find a non-zero coupling
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between one closed string Ramond-Ramond (p+ 1)-form and a gauge field and two scalar

fields in the world volume of BPS branes. In order to indeed explore new couplings, first

we extract all traces and write down the general form of the non-zero amplitude(which

is A2), then we comment on new couplings which can be discovered just by direct super

string scattering amplitudes in IIB and IIA theories.

A2 = L2π
1/2µp

16

(p+ 1)!
ξ2iξ3j

{

ǫa0···ap−1cH ij
a0···ap−1

(p+ 1)
(

− 2usξ1.k2k3c + ustξ1c (7.1)

−2utk3.ξ1k2c

)

+ ǫa0···ap
(

2uspjξ1.k2H
i
a0···ap − 2utpiξ1.k3H

j
a0···ap

)}

It is extremely important to notice that, by applying momentum conservation all the

terms in the first part of (7.1) do satisfy the only related Ward identity for the gauge field

(ξ1c → k1c). However in order to see the fact that the same result holds for the other terms,

we should apply the Bianchi identity as the following:

ǫa0···ap
(

− pap(p+ 1)H ij
a0···ap−1

− pjH i
a0···ap + piHj

a0···ap

)

= dHp+2 = 0

Regarding above results and in order to have gauge invariance at leading order of α′,

we have to find out non-zero couplings for each term in the first part of (7.1) and then

add them up. This rule should be kept for the last two terms in (7.1) as well. One may

expand ustL′

2 as below

tsuL′

2 = π3/2

(

∞
∑

n=−1

bn(s+ t)n+1 +
∞
∑

p,n,m=0

ep,n,mu
p+1(ts)n(t+ s)m

)

(7.2)

However, this is not the correct expansion here. Regarding the fact that all Gamma

functions are symmetric under interchange of (s, t, u), the final expansion must hold that

symmetry as well so the modified expansion has to be taken as

tsuL′

2 =
π3/2

3

{[

∞
∑

n=−1

bn(s+ t)n+1 +
∞
∑

p,n,m=0

ep,n,mu
p+1(ts)n(t+ s)m

]

+t↔ u+ s↔ u

}

(7.3)

Remember e0,0,0 = 0, b−1 = 1. First let us try to produce at leading order of α′ the second

term of the string amplitude in (7.1), that is

π2µp
16

p!
ξ2iξ3jǫ

a0···ap−1cH ij
a0···ap−1

ξ1c (7.4)

Note that if we expand ustL′

2 at low energy limit the first term is π3/2.

One should argue that the coupling (Hp+2Aφφ) has to be derived by field theory

manipulation, basically consider the fact that both scalar fields could come from either

Myers’ terms as followed from (4.22) or both of them can be resulted in two covariant

derivatives in the Pull-back like

(2πα′)2µp
2(p− 1)!

∫

dp+1σǫa0···apTr
(

Da0Φ
iDa1Φ

j
)

Cija2···ap (7.5)
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The other possibility is that one scalar can come from pull-back and the second one

could come from Taylor expansion as follows

(2πα′)2µp
p!

∫

dp+1σǫa0···apTr
(

ΦjDa0Φ
i
)

∂jCia1···ap (7.6)

As we can clearly see the presence of scalars (which are non-Abelian) in Taylor expan-

sion [58–60] and pull-back should be inevitable as was mentioned in [61, 62] and after all

we have to extract covariant derivative of scalar to actually receive gauge, scalar and RR

couplings. Needless to say we took integrations by parts to indeed combine (7.6) and (7.5),

such that their combination is

(2πα′)2

2p!
µp

∫

dp+1σǫa0···apTr
(

Da0Φ
jΦi
)

Hija1···ap

If we would open up the covariant derivative of scalar field, we would get two terms

but the term involving partial derivative should be dropped as we need to get the non-zero

coupling of one gauge, two scalars and one RR-(p+ 1) form so that the ultimate coupling

is achieved by

i(2πα′)2

p!
µp

∫

dp+1σǫa0···apTr
(

Aa0Φ
jΦi
)

Hija1···ap (7.7)

It is indeed a very easy task to observe that (7.4) is precisely reproduced by (7.7).

Again we want to highlight the point that even we are dealing with n = p + 2 case and

all world volume spaces have been covered, however, there is a non-zero coupling between

RR-(p+ 1) form and one gauge field and two scalars field but we can no longer write that

coupling in terms of field strength of the gauge field.

The higher derivative corrections of (7.7) can be discovered as

i(2πα′)2

3p!
µpǫ

a0···apHija1···ap ×

×

(

∫

dp+1σ

[

∞
∑

n=−1

bn(α
′)n+1Tr

(

∂m0
· · · ∂mn

Aa0D
m0 · · ·Dmn [ΦjΦi]

)

+
∞
∑

p,n,m=0

ep,n,m

(

α′

2

)p+1

(α′)2n+mTr
(

∂m1
· · · ∂mm

∂n1
· · · ∂n2n

Aa0∂
m1 · · · ∂mm

×(DcD
c)p+1[Dn1 · · ·DnnΦjDnn+1 · · ·Dn2nΦi]

)

])

(7.8)

This prescription can be easily applied to actually get the terms by interchanging

t ↔ u, s ↔ u and finally we have to add them to (7.8) as well. Now let us consider the

first and third terms in (7.1) and just keep the related leading contact interactions, namely

one must employ usL′

2, utL
′

2 expansions in (2.21) and (2.22) and keep in mind that the

first non zero coefficients are e1,0,0, e0,0,1 such that the following terms are leading terms in

string amplitude

−π4µp
16

6p!
ξ2iξ3jǫ

a0···ap−1cH ij
a0···ap−1

(

−2ξ1.k2k3c(t+2s+2u)−2k3.ξ1k2c(s+2t+2u)
)

(7.9)
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In order to produce all terms in (7.9), one has to work in detail and write down some

new couplings, in the sense that they do not come from pull-back, Taylor or Myers’ terms.

Therefore the first term above can be reproduced by the following coupling:

−
4π2(2πα′)2

6p!
µp

∫

dp+1σ
(

∂bAaD
bDaΦiDcΦ

j + 2∂bAaD
aΦiDc∂

bΦj

+2AaD
a∂bΦ

iDc∂
bΦj − 2 ↔ 3

)

H
(p+2)
ija0···ap−1

ǫa0···ap−1c (7.10)

Now we get to the point which has been emphasized, namely in order to produce all

the first three terms in (7.1), one has to add (7.7) and (7.10) together, and generalizing to

all orders can be easily done with making use of (6.1).

Now let us consider the last two terms in (7.1) and just keep the related leading contact

interactions. Having set the usL′

2, utL
′

2 expansions from (2.21) and (2.22) we get

− π4µp
16

6(p+ 1)!
ξ2iξ3jǫ

a0···ap
(

2pjξ1.k2H
i
a0···ap(t+ 2s+ 2u)− 2pik3.ξ1H

j
a0···ap(s+2t+2u)

)

(7.11)

By applying the correct higher derivative corrections, it is easy to show that some new

couplings must be taken in to account, such that the first term above can be reproduced

by the following coupling:

4π2(2πα′)2

6(p+ 1)!
µp

∫

dp+1σ
(

∂bAaD
bDaΦiΦj + 2∂bAaD

aΦiDbΦj

+2AaD
bDaΦiDbΦ

j − 2 ↔ 3
)

∂jH
i
a0···apǫ

a0···ap (7.12)

Again we want to highlight the point that these new couplings do not come from pull-

back or Taylor or Myers’ terms. Having used (6.1), we can easily generalize above couplings

to actually get all contact interactions to all orders of α′.

However, it turns out that it is better to write down the closed form of contact terms

to all orders of α′ rather than producing them order by order in α′. Thus consider the

following terms in string amplitude

− π2µp
16

p!
ξ2iξ3jǫ

a0···ap−1cH ij
a0···ap−1

∞
∑

p,n,m=0

ep,n,m

(

− 2ξ1.k2k3ct
p(su)n(s+ u)m − 2 ↔ 3

)

(7.13)

Their closed form can be precisely obtained to all orders of α′ by the following coupling:

µp(2πα
′)2

p!

∞
∑

p,n,m=0

ep,n,m

(

α′

2

)p

(α′)2n+m+1

∫

dp+1σ
(

(DaD
a)pDa1 · · ·Dam [∂a1 · · · ∂anAa

×Dan+1
· · ·Da2nD

aΦi]DapD
a1 · · ·DamDa1 · · ·Da2nΦj + 2 ↔ 3

)

H ij
a0···ap−1

ǫa0···ap

(7.14)

Finally the rest of the terms in string amplitude to all orders are verified as

−π2µp
16

(p+ 1)!
ξ2iξ3jǫ

a0···ap

∞
∑

p,n,m=0

ep,n,mt
p(su)n(s+u)m

(

2pjξ1.k2H
i
a0···ap −2 ↔ 3

)

(7.15)
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Eventually by applying the same methodology as discussed in the body of the paper,

one can easily show that (7.15) would be produced by the following couplings:

µp(2πα
′)2

(p+ 1)!

∞
∑

p,n,m=0

ep,n,m

(

α′

2

)p

(α′)2n+m+1

∫

dp+1σ
(

(DaD
a)pDa1 · · ·Dam [∂a1 · · · ∂anAa

×Dan+1
· · ·Da2nD

aΦi]Da1 · · ·DamDa1 · · ·Da2nΦj − 2 ↔ 3
)

∂jHia0···apǫ
a0···ap

(7.16)

8 Conclusion

First of all by applying conformal field theory methods we discovered the complete result

of the amplitude of one Ramond-Ramond, one gauge field and two scalar fields for all kinds

of p and n in II string theory. The motivation for carrying out this long computation was

that, we must have the complete form of the amplitude to be able to proceed to explore

the closed form of new Wess-Zumino couplings to all orders in α′ for various cases. We

have also performed all SYM vertex operators to all orders in α′. Remember that due to

closed string Ramond-Ramond the general form of these new couplings with their exact

coefficients should be confirmed just by direct S-Matrix computations not any other tool

like T-duality transformation to the previous calculations. The results of this paper can not

be found for example from < VCVAVAVφ > because of the fact that C-vertex operator does

not have Winding modes in its form, which means that all the terms including pi, pj of this

paper have not been showed up in < VCVAVAVφ >. We have shown that the amplitude

of CAφφ has infinite massless poles in various channels. Namely making use of the all

order two gauge two scalar couplings [29], we were able to match all infinite massless gauge

poles in (t+ s+ u)-channel in string theory amplitude with field theory computations. We

have also produced all infinite massless scalar poles in t,s-channels in both field and string

theory sides. Apart from those things, we showed that the amplitude has again infinite

massless gauge poles in u-channel for p = n + 2 case and then we went through new WZ

couplings for this case like Tr (Cp−3 ∧ F ∧Dφi ∧Dφi) and all its infinite higher derivative

corrections have been explored in (4.1).

It has been eventually clarified that the couplings of two scalars and one gauge field

can not hold any corrections, thus all non-leading (gauge/scalar) poles have provided the

most needed information to indeed get the all order α′ higher derivative corrections to

Tr (Cp−3 ∧ F ∧ F ) and
(

Tr (φjφi)∂jHia0···ap + (p+ 1)Tr (∂a0φ
jφi)Hija1···ap

)

.

We also found further results, basically in order to produce all infinite t, s-channel scalar

poles we found (4.28). To get all infinite contact interactions for p = n case, (5.2), (6.1) are

derived. New couplings and all their infinite α′ corrections are discovered in (6.4)–(7.1). In

order to actually derive all contact terms for p+ 2 = n case, we have also obtained several

new Wess-Zumino couplings in (7.15), (7.13) with all their infinite corrections in (7.15)

and (7.16) and also (7.9) is derived to all orders. These new interactions which are nei-

ther inside Myers’terms nor within pull-back/Taylor expansion must be looked for only

by performing direct string computations. It would be nice to perform either CAAφφ or
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CAAAφφ to get some more information, remove some of the ambiguities which are ad-

dressed in this paper and finally to see whether or not covariant derivatives should be kept

inside the new couplings of this paper.
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