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Abstract

Aging is an intricate process modulated by different molecular and cellular events, such as genome instability, epigenetic
and transcriptional changes, molecular damage, cell death and senescence, inflammation, and metabolic dysfunction.
Particularly, protein quality control (chaperone systems) tends to be negatively affected by aging, thus leading to cellular
senescence in metabolic tissues and, as a consequence, to the increasing dissemination of inflammation throughout the
body. The heat shock (HS) response and its associated expression of the 70 kDa family of heat shock proteins (HSP70),
which are anti-inflammatory molecular chaperones, are found to be markedly decreased during muscle inactivity and
aging, while evidence supports the loss of HSP70 as a key mechanism which may drive muscle atrophy, contractile
dysfunction, and reduced regenerative capacity. In addition, abnormal stress response is linked with higher incidence of
neurodegenerative diseases as well as low-grade inflammatory diseases that are associated with physical inactivity and
obesity. Therefore, strategies to increase or, at least, to maintain the levels of HSP70, and its accompanying HS response to
stress, are key to reduce biological cell dysfunctions that occur in aging. In this sense, physical exercise is of note as it is
the most powerful inducer of the HS response, comparable only to heat stress and fever-like conditions. On the other
hand, the amino acid L-glutamine, whose production within the skeletal muscle and liberation into the blood
stream is dependent on muscle activity, is a potentializer of HSP70 expression and HS response, particularly via its
entering in hexosamine biosynthetic pathway (HBP). Herein, we discuss the collaborative role of glutamine (and
its donors/precursors) and physical exercise (mostly responsible for glutamine release into the circulation) as
potential tools to increase HSP70 expression and the HS response in the elderly.

Keywords: Aging, Heat shock response, HSP70, Stress response, Inflammation, Exercise, Glutamine, Age-related
condition, Hexosamine biosynthetic pathway (HBP)
Background
With the worldwide increase in longevity, the incidence
of a series of chronic degenerative diseases has been rising
at the same pace. Particularly in developing countries,
where public health systems cannot cope with the desired
preventive actions, the situation is dramatic. The concept
of healthy aging has been expanding with the rapid
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growth of the elderly population in developing countries
[1]. As a consequence, the economic burden associated
with possible loss of independence in elderly people has
brought attention to nutritional and exercise interventions
as an effective way of delaying the negative effects of aging
over cognitive function, fitness status, and metabolic and
cardiovascular parameters [1, 2].
In a panoramic view, aging comprises a set of inter-

connected processes which are modulated by different
molecular and cellular events, such as genome instability,
epigenetic and transcriptional changes, molecular damage,
cell death and senescence, inflammation, and metabolic
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dysfunction [3]. As life expectancy continues to rise,
healthspan is not keeping pace because current disease
treatment often decreases mortality without preventing
or reversing the decline in overall health. Elderly people
are sick longer, often coping with multiple chronic diseases
simultaneously. Therefore, it is imperative to better under-
stand healthy aging necessary to extend healthspan [4].
During the entire process of aging that may commence

during the second decade of life in humans, there is an
overall decline of biological functions, which includes de-
terioration of the cardiovascular, gastrointestinal, urinary,
respiratory, endocrine, skeletal muscle, and nervous func-
tions, paralleled by unfavorable changes in body compos-
ition (e.g., visceral obesity) that predispose the individual
to chronic inflammatory diseases of low grade [5, 6]. Spe-
cifically, adipose tissue expansion is linked to a state of
chronic unresolved inflammation [7] that, when associated
with aging, is often called “inflammaging”. This term has
been coined to highlight the increased levels of circulating
pro-inflammatory molecules that is observed in older
people [8] and is a common feature not only in aging but
also in obesity and diabetes [9, 10].
Inflammaging is a highly significant risk factor for both

morbidity and mortality among elderly people, as most
if not all age-related diseases share an inflammatory
pathogenesis [11]. Some of highly pro-inflammatory cy-
tokines, such as tumor necrosis factor alpha (TNFα)
and interleukin-1β (IL-1β), create an intracellular state
of oxidative stress, alongside they induce, per se, the in-
activation of the insulin receptor and associated down-
stream molecules in metabolic tissues, especially in the
muscle and adipose tissue [12]. The consequence of chronic
receptor inactivation in aging is insulin resistance (IR) [13]
and skeletal muscle atrophy, leading to loss of muscle func-
tion and, finally, to sarcopenia in many cases [10].
Aging is still an inevitable process observed all around

the animal kingdom that involves the accumulation of
increased DNA repair malfunctions and enhanced expos-
ure to environmental noxious substances that lead to tis-
sue oxidative stress and cellular dysfunctions. Particularly,
in humans, this is aggravated by changes in lifestyle,
mainly low physical exercise in coexistence with positive
energy balance which determine (avoidable) epigenetic al-
terations that can transmit age-related metabolic diseases
transgenerationally [14]. Such a scenario slowly evolves
to accumulated tissue dysfunctions that finally become
chronic degenerative diseases. As age-related chronic
degenerative diseases are characterized by the progres-
sive loss of protein quality control that leads to chronic
inflammation, we shall focus on the gradual decline of
the heat shock (HS) response that is observed in such
conditions because HS response is crucial to ensure
against protein denaturation at the same time it is anti-
inflammatory.
Age-related inflammatory diseases of high prevalence
For the purpose of the present work, we shall discuss the
most prevalent and emblematic examples of age-related
diseases that share in common the establishment of a
chronic state of unresolved inflammation. As the in-
flammatory stimuli are not withdrawn, such conditions
eventually evolve to neurodegenerative diseases, metabolic
diseases (e.g., obesities and diabetes mellitus) that com-
plicate into cardiovascular diseases (CVD, including
atherosclerosis- and hypertension-based ones), as well
as neuromuscular degeneration (e.g., sarcopenia) and sys-
temic inflammatory diseases, such as rheumatoid arthritis
(RA) and inflammatory bowel disease (IBD). Additionally,
an increasing body of evidence suggests that some of
the 116 million US adults who suffer from chronic pain
(fibromyalgia, i.e., an intractable widespread pain disorder
that is most frequently diagnosed in women [15]) are also
at an increased risk for developing age-related diseases
prematurely, suffering earlier cognitive and physical de-
cline and experiencing earlier mortality [16].
Neurodegenerative diseases disproportionately affect

older individuals and, therefore, disease-related morbidity
has increased along with the general increase in longevity
[17]. Among these age-related diseases, Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), Huntington’s disease
(HD), polyglutamine diseases, amyotrophic lateral scler-
osis (ALS), and cerebrovascular disease have drawn a lot
of attention due to their irreversibility, lack of effective
treatment, and accompanied social and economical bur-
dens [17, 18]. Unfortunately, however, currently available
therapies for adult onset neurodegenerative diseases
provide symptomatic relief but do not modify disease
progression. In common, all the above illnesses have a
progressive disturb of protein quality control leading to
the accumulation of unfolded proteins and protein ag-
gregates that trigger inflammation in brain tissues [19].
Also mainly due to increasing life expectancy, the

population of elderly individuals with rheumatoid arthritis
(RA) is expanding [20]. This is noteworthy because people
with RA die at a younger age than people without the dis-
ease, whereas age exerts an exponentially increasing effect
on CVD risk in RA patients [21]. RA is characterized
by a sequence of age-dependent degenerative conditions
that usually starts with an acute inflammatory reaction,
followed by a continuous pro-inflammatory overburden
that induces endocrinosenescence, neurosenescence, and
senescence of the muscular system [7, 22]. Age-related
premature atherosclerosis has also been recognized as an
important factor in the morbidity and mortality of patients
with systemic lupus erythematosus (SLE), this being at-
tributed to vasculitis and corticosteroid use by these pa-
tients [22]. SLE is an autoimmune multi-system disease
frequently accompanied by arthritis, fever, serositis,
Raynaud’s syndrome, lung disease, and neuropsychiatric
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symptoms that are very common among elderly pa-
tients [23]. SLE, in turn, is frequently observed in aged
patients along with psoriasis, another form of immu-
noimbalance that many times is followed by a rheuma-
toid component, the psoriasis arthropathy [24].
Contributing significantly to decreased physical activ-

ity in the elderly is a debilitating and progressive loss of
skeletal muscle function and mass known as sarcopenia
[25]. Although its underlying mechanisms are far from
being completely settled, studies in model organisms in-
dicate that sarcopenia is driven by a combination of
muscle tissue extrinsic and intrinsic factors and that it
fundamentally differs from the rapid atrophy of muscles
observed following disuse and fasting [25]. Furthermore,
decreased ability of muscles to respond to anabolic stim-
uli is part of the causal mechanisms for muscle loss with
aging [26]. Sarcopenia has also origins in intestinal ab-
sorption of dietary protein amino acids. Aging per se
does not inevitably reduce the anabolic response to a
high-quality protein meal, as ingestion of approximately
25–30 g of protein per meal has been found to stimulate
muscle protein synthesis in both young and older indi-
viduals. However, muscle protein synthesis is blunted in
elderly when protein and carbohydrate are co-ingested
or when the quantity of protein is less than approximately
20 g per meal [27]. Moreover, although there is a
recognizably increased splanchnic first-pass extraction
of amino acids in the elderly, muscle protein anabolism
has proven to be stimulated by oral amino acids in the
elderly as well as in the young [28]. Independent of dir-
ectly causal factors, the establishment of sarcopenia is
closely related to inflammatory processes and is aggravated
by the concomitant age-related changes in cytoprotective
mechanisms (particularly those involving protein quality
control) [29]. In any way, all the above conditions sur-
rounding sarcopenia tend to limit physical activity which,
in turn, predisposes the elderly to chronic inflammatory
diseases, including obesities and type 2 diabetes mellitus
(T2DM) [13, 30].
Chronic inflammatory bowel disease (IBD), in its own,

is associated with unresolved inflammation at the level
of gut mucosa, being commonly found in the elderly
[31]. Dysbiosis and dysregulation of the immune system
have been found to play a major role in IBD, leading to
enhanced permeability to bacterial components and loss
of physiological transport systems. IBD includes Crohn’s
disease, ulcerative colitis, and the consequent intolerance
to certain components of diet (e.g., gluten and lactose). If,
on the one hand, protein quality control is not, at present,
definitely ascribed as causal or result of chronic IBD, both
physiological and pharmacological maneuvers leading to
the overexpression of protein chaperones, which avoid
the formation of protein aggregates and consequent
chronic inflammation, have been found to prevent the
development of inflammatory process in the large intes-
tinal mucosa provoked by various damaging factors [32].
In this regard, diet is an extremely important factor, since
gut microbiota strongly influences the physiology of the
gastrointestinal tract, being dramatically affected by what
one chronically eats [33]. Despite multiple effective
medical and surgical treatment strategies for adults with
Crohn’s disease and ulcerative colitis, efficacy studies typ-
ically have excluded older subjects. A rapidly aging popu-
lation and increasing rates of Crohn’s and ulcerative colitis
make the paucity of data in older adults with IBD an in-
creasingly important clinical issue [31].
In total, aging is associated with impaired resolution of

inflammation that perpetuates a series of degenerative
diseases in many organs and physiological systems. Such
inflammatory diseases have underlying basis on chronic
overburden of protein quality control, which leads to the
formation of protein aggregates that triggers more inflam-
matory signals; this eternalizes inflammation that spreads
throughout the body [7]. Hence, understanding of intra-
cellular protein quality control system (the chaperone ma-
chinery and the HS response) is crucial for adequately
treating age-related chronic degenerative diseases.

Anti-misfolding protein quality control systems
Aging is associated with increased cellular dysfunctions.
Nonetheless, nature evolved a variety of cell defensive
strategies aimed to combat these imbalances. Among such
cell defenses is the expression of heat shock proteins
(HSPs), which are a principal focus of the present article.
HSPs have attracted significant attention due to its ver-
satility and range of functions in and out of the cells
[34]. The genes encoding HSPs are highly conserved
and many of them, as well as their protein products, can
be assigned to families on the basis of typical molecular
weight [35]. In eukaryotes, different HSP families com-
prise multiple members that differ in inducibility, intracel-
lular localization, and function [36]. In the context of the
present discussion, a review of the diverse HSP types, lo-
cation, function, and sensitivity to exercise is highly rec-
ommended [35, 37, 38]. In the present paper, the 70 kDa
family of HSPs (HSP70) will be contemplated.
HSP70 is a cytoprotective and anti-inflammatory mo-

lecular chaperone primarily devoted to avoid protein mis-
folding and to correct unfolded proteins, thus allowing for
the proteins homeostasis (i.e., proteostasis) within the cel-
lular compartments [7, 34]. Since proteostasis-threatening
situations rapidly evoke a strong expression of HSP70,
intracellularly located HSP70 (iHSP70) is, as a conse-
quence, a universal marker of stress. As further discussed,
iHSP70 expression is induced by different cell stressors
and signals of imminent dangerous situations, such as
heat, metabolite deprivation, redox imbalances and,
particularly, during (and after) physical exercise, due to
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sympathetic nervous system activation, intracellular
calcium mobilization, and exercise-induced changes in
intracellular pH; all of the nominated situations being
powerful inducers of iHSP70 gene expression.
The activation of iHSP70 is critical for the promotion

of tissue repair, since the expression of this chaperone,
by virtue of avoiding misfolded protein aggregates, con-
fers cytoprotection and also exerts anti-inflammatory ef-
fects [39]. Hence, since aging is associated with chronic
low-grade inflammation and impaired skeletal muscle
repair, the activation of HSP70 expression and its effect-
ive response against cellular stress play a key role against
cell dysfunction observed in aging. Consequently, any
tiny impairment in the ability of cells to respond to
stress via iHSP70 expression (i.e., the HS response) may
have profound consequences to cell viability, tissue repair
and, as a corollary, to organism longevity. Unfortunately,
however, aging and age-related chronic inflammatory
diseases are marked up by a conspicuous depression of
stress-elicited HS response [7]. Additionally, iHSP70
expression is decreased during muscle inactivity and
aging, and evidence supports the loss of iHSP70 as a key
mechanism which may drive muscle atrophy, contractile
dysfunction, and reduced regenerative capacity associated
with these conditions. Conversely, several interventions
have shown that normal and overexpression of HSP70 are
associated with improvements in skeletal muscle atrophic
conditions [40]. In fact, upregulation of HSP70 contributes
to the maintenance of muscle fiber integrity and facilitates
muscle regeneration and recovery [40].
In addition to the HS response, cells further evolved

autophagy, which is a cellular strategy to sequester and
deliver for degradation to lysosomes, large protein aggre-
gates and whole damaged organelles inaccessible to
smaller proteolytic systems in the cell. Therefore, the HS
response and macroautophagy represent two ends of the
spectrum of cellular protein quality control, with the
former being ubiquitous in all living organisms, whereas
the latter is restricted to eukaryotic cells [41]. During stress,
increased levels of autophagy permit cells to adapt to chan-
ging nutritional and energy demands through protein ca-
tabolism [42]. Such a self-digestion not only provides
nutrients to maintain vital cellular functions during fasting
but also can make the cell free of superfluous or damaged
organelles, misfolded proteins, and invading microorgan-
isms [43]. Autophagy, a process that is potently triggered
by fasting, is now emerging as a central biological pathway
that functions to promote health and longevity [43]. More-
over, in animal models, autophagy protects against diseases
such as cancer, neurodegenerative disorders, infections, in-
flammatory diseases, insulin resistance, and aging [43–45].
As a whole, strategies to increase or, at least, to main-

tain “appropriate” levels of iHSP70 and its accompanying
HS response (and autophagy) to stress are key to reduce
the biological cell dysfunctions that occur in aging.
Following that, physical exercise, which is the most
powerful physiological inducer of iHSP70 expression,
compared only to heat stress and fever-related condi-
tions [34, 46–48], is considered, at the same time, the
best solution to unfasten this perceived Gordian knot
(an intractable problem that may be solved by “thinking
outside the box”) of senescence-associated chronic inflam-
matory diseases, as recently suggested [7]. In addition to
that, several studies have reported that the amino acid
L-glutamine (thereafter referred to as glutamine) strongly
enhances the HS response by acting as a potentializer of
iHSP70 expression [49, 50], mainly via the hexosamine
biosynthetic pathway (HBP) [51–56]. Glutamine is im-
portant for protein quality control also by stimulating au-
tophagy, so also avoiding the formation of undesirable
protein aggregates [57]. Inasmuch as glutamine is liber-
ated into the blood by active skeletal muscle, it follows
that physical exercise may warrant a healthy HS response
also via glutamine metabolism. Ergo, we shall discuss
herein the possible collaborative role of glutamine (and its
donors/precursors) and physical exercise as potential tools
to increase HSP70 expression in the elderly, thus reverting
age-associated degenerative diseases of inflammatory
nature.

Heat shock proteins and the heat shock response
Mammalians developed a range of adaptations to survive
in the presence of acutely and chronically non-lethal
stressful situations [58]. Among these adaptations, the
HS response (a type of stress response) is striking be-
cause it is probably the most highly conserved genetic
system ever known, existing in every organism in which
it has been sought, from archaebacteria to eubacteria,
from plants to animals [59, 60]. The HS response evolved
to adapt organisms appropriately against several stressful
insults, whether from heat, cold, oxidation, free radicals,
toxins, hypoxia, or metabolic stress [61]. And, however
impressive as it may seem, the HS response is also re-
cruited from other branches of metabolism very far from
proteostasis, at least a priori. This is the case of inflam-
mation, energy preservation, and immune responses [7].
Impaired HS response, however, is a common feature
in several age-related conditions associated with in-
flammation, such as T1DM and T2DM, aging, and
obesity [61–64].
Members of the 70 kDa family of heat shock proteins

(HSP70) mediate cytoprotective stress responses [63].
Within the HSP70 family, the constitutive heat shock
cognate, HSC70 (or HSP73, encoded by the HSPA8 gene
in humans), and its inducible form (HSP72, encoded by
HSPA1A) have received more attention for their ubiquity
and high level of expression. Although iHSP70 had been
serendipitously discovered in heat-shocked Drosophila



Fig. 1 General heat shock protein functions. Heat shock proteins
(HSPs), particularly those from the 70 kDa family (HSP70) are molecular
chaperones whose principal function is to assist in protein folding and
to correct misfolded proteins to avoid intracellular inflammatory signals
elicited by protein aggregates. As chaperones, HSP70s attach to and
help in protein transport from intracellular compartments to others,
which is also observed when HSP70s facilitate antigen processing and
presentation by antigen-presenting cells. On the other hand, HSP70s
“protect” also the inhibitor of kappaB (IκB) proteins thus preventing its
phosphorylation by IκB kinases (IKK). Consequently, HSP70s blunt
nuclear factor κB (NF-κB)-dependent inflammatory pathways, so
that the activation of HSP70 is anti-inflammatory as a corollary
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busckii cells by Prof. Ferruccio Ritossa in 1962 [65],
HSP70 expression is associated with a variety of home-
ostatically stressful situations, not only heat [66]. It is
noteworthy that the inducible expression of HSP72 is
impressively and highly conserved in nature from bac-
teria to humans: in order to manage on chaperone and
cytoprotective intracellular functions, at least 13 genes
were identified in humans that are responsible for
HSP70 family coding [35, 38]. HSP72 (HSPA1A gene) is
inducible during cell stress and represents the most
abundant of all HSPs, accounting for 1–2 % (!) of intra-
cellular proteins [37], including in skeletal muscle [67].
As a molecular chaperone, the intracellular HSP72 pro-
tein (referred thereafter simply as iHSP70) can interact
with other proteins (either unfolded, in non-native state
or in stress-denatured conformations) avoiding in-
appropriate interactions, impeding formation of protein
aggregates, and leading to the degradation of damaged
proteins, as well as helping the correct refolding of pro-
teins [67]. Other functions include protein translocation
[68], anti-apoptosis, [69] and anti-inflammatory responses,
the latter via HS response-dependent blockade of NF-κB
transcription factor downstream pathways [7, 70]. More
recently, HSP roles have been expanded to include control
of cell signaling [71], modulation of immune responses
[72–74], in chronic diseases such as diabetes, obesity, and
insulin resistance [12, 63]. Figure 1 depicts the principal
known functions of HSP70.
The synthesis of iHSP70 in mammalian cells is mainly

controlled by the heat shock transcription factor-1 (HSF1),
while the activation of HSF1, necessary for full cytoprotec-
tive HS response, involves a multistep mechanism that
comprises its phosphorylation, trimerization, nuclear
translocation, and DNA binding to the heat shock ele-
ments (HSE) located at the promoter regions of targeted
heat shock genes [63, 74, 75]. At rest, HSF1 is inactive in a
monomeric state bound to iHSP70 molecules, located in
the cytosol. Under stress conditions (i.e., upon any shift
from cellular homeostasis), particularly in the presence of
denatured proteins or protein threatening conditions
(e.g., heat, heavy metals), iHSP70 releases HSF1 and
subsequently binds to denatured proteins, acting as a
molecular chaperone (aiding protein refolding), eventually
releasing HSF which is then able to trigger the synthesis
of more iHSP70 molecules. Serine-phosphorylation and
trimerization of HSF1 induces enhanced HSF1 DNA-
binding affinity for the cis-acting regulatory domains
(the HSE described above) in target genes, inducing the
expression of more iHSP70 (HSP72, indeed) molecules
which, in turn, enhances cellular stress responses, and
defense capacity [37]. As HSF1 is the primary regulator
of the anti-inflammatory HS response, low expression
of HSF1 is associated with a number of human patholo-
gies of inflammatory nature, including T2DM [47],
obesity-related fatty liver disease [76], and neurodegen-
erative diseases [63].

The heat shock response in inflammation and its
resolution
Age-related chronic inflammatory diseases, such as sys-
temic inflammatory diseases (e.g., RA, IBD), obesities and
their associated co-morbidities, T2DM, and CVD, as well
as neurodegenerative and neuromuscular diseases, share in
common a state of unresolved inflammation throughout
body tissues. This points to the question as to why inflam-
matory responses do not achieve an expected physiological
resolution phase in aging and/or in age-related degenera-
tive diseases. However, inflammation evolved to be an
acute response, as physiological mechanisms to cope with
ad infinitum inflammatory responses were not predicted
(naturally selected).

Anti-inflammatory role of intracellular HSP70
During the activation of an inflammatory response, the
production of pro-inflammatory arachidonic acid-derived
prostaglandins (PGs), as well as other lipid mediators and
vasoactive compounds, take place. This increases vascular
permeability, allowing the arrival and activation of in-
flammatory cells and tissue repair [77]. In fact, maximal
cyclooxygenase-2 (COX-2)-dependent prostaglandin E2
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(PGE2) production occurs at 2 h after challenge, whereas
COX-2 expression is much higher at 48 h, but pro-
inflammatory PGE2 production is much lower [78]. This
strongly suggests the existence of some metabolic deviation
of arachidonic acid metabolites toward another mediator.
Additionally, and perhaps unexpectedly, both selective
COX-2 inhibitors (COXIBs) and dual COX-1/COX-2
(classic NSAID) blockers inhibit early phase but, at the
same time, remarkably exacerbate inflammation at mono-
nuclear late stage (48 h), which prevents the resolution
phase of inflammation [78]. Therefore, the so-called “bad
COX”, responsible for the production of pro-inflammatory
eicosanoids and cytokines, is not that “bad” since it is
crucial for the resolution of inflammation [79].
During the entire inflammatory response (including its

resolution phase), there is a finely orchestrated expression
of inducible proteins centered at nuclear transcription fac-
tors from the kappa light chain enhancer of activated B
cells (κB) family (NF-κB), [80], which propel inflammation
during the challenging phase but, simultaneously, pre-
pares its resolution. At the beginning of an inflammatory
response and under the control of activated NF-κB tran-
scription factors, inducible enzymes (including COX-2)
drive the synthesis of PGE2, which induces fever by
changing bodily thermoneutral range upwardly. As a con-
sequence of elevation in core temperature, the highly evo-
lutionarily conserved HS response initiates the activation
of a transcriptional program based on the activation of the
heat shock transcription factor HSF1 [81]. The chief im-
pact of HSF1 activation is the elevated production of HSPs
whose major representative is HSP70. Small heat shock
proteins induced by fever, such as HSP27, also contribute
to cytoprotection [82, 83].
Since heat stress faced during fever episodes stimulates

HSF1-induced HSP70 expression, cells become protected
against proteotoxic stress that could emerge from heat-
induced protein denaturation. Therefore, HS response
supports proteostasis (protein homeostasis) and cyto-
protection [75]. Additionally, hyperthermia enhances
toll-like receptor-4 (TLR4) expression and downstream
signaling in vivo [84], whereas activation of TLR2, TLR3,
and TLR4 acts synergistically with fever-associated hyper-
thermia to induce HSP70 expression and release to the
extracellular space both in vivo and in vitro [85]. This
means that, under microbial pathogenous attack, fever is
even more protective because bacterial lipopolysaccha-
rides (LPS) may signal to phagocytes via TLRs more effi-
ciently, thus enhancing their microbicidal capacity.
Aside being a molecular chaperone which works to re-

duce the formation of protein aggregates and reverse
protein denaturation, iHSP70 is able to associate with the
complex formed by NF-κB with its inhibitor (IκB) thus
impeding NF-κB translocation to the nucleus [86]. There-
fore, the HS response is anti-inflammatory in its very
nature. Moreover, PGE2 and other PGs produced during
the onset of inflammation may be converted into their
respective electrophilic dehydration products, such as
PGA2 and J-family PGs, which are α,β-unsaturated
cyclopentenone prostaglandins (cyPGs) possessing strong
anti-inflammatory activities in vitro as well as in vivo [87].
As demonstrated in the classic studies by Prof. M. Gab-
riella Santoro’s group in Italy, this is partially dependent
on cyPG-dependent inhibition of NF-κB activation, be-
cause cyPGs are the strongest physiological inducers of
HSP70 comparable only to HS itself and exercise. In
other words, cyPG anti-inflammatory action is maximal
only if HSP70 expression is elevated [88]. Finally, HS-
activated HSF1 directly controls COX-2 transcription,
thus allowing for high-throughput PGE2 production dur-
ing inflammation [89], whether to exacerbate (PGE2 itself )
or resolve inflammation (PGE2 conversion into PGA2, a
cyPG).
Inasmuch as cyPGs are strong electrophiles, they

promptly conjugate with reactive thiols present in cyst-
eine moieties of proteins and peptides (e.g., glutathione,
GSH) via Michael addition reactions [90]. Because of
this, cyPGs are inflammation-derived anti-inflammatory
compounds by virtue of directly inhibiting, at Cys179,
IκB kinase-β (IKKβ), which, in turn, phosphorylates IκB
leading to NF-κB activation during inflammation [91].
These eicosanoids block NF-κB activity also directly
after Michael addition reaction at Cys62 of p50 and
Cys38 of p65 subunits of NF-κB [87]. At the same time,
the increase in cyPG intracellular contents during inflam-
mation momentarily creates a state of redox imbalance
because cyPGs briefly reduce intracellular GSH contents
in every cell type and tissue so far tested [92–95] and react
with Nrf2-transcription factor repressor Keap1 [96], thus
triggering the expression of a number of redox-protective
genes, such as γ-glutamylcysteine synthetase (γ-GCS),
glutathione S-transferases (GST), glutathione disulfide
(GSSG) reductase, glutamine synthetase, glucose-6-phosphate
dehydrogenase (G6PDH), and superoxide dismutase
[87, 97, 98]. Therefore, besides inducing HSP70 expres-
sion, cyPG, at physiological concentrations, are cytoprotec-
tive by activating redox-sensitive gene expression. Please,
see Fig. 2, which summarizes HS response during inflam-
mation and its physiological resolution.
HSP70 blocks NF-κB activation at different levels. For

instance, HSP70 impedes the phosphorylation of IκBs,
while heat-induced HSP70 protein molecules are able to
directly bind to IκB kinase gamma (IKKγ) thus inhibit-
ing TNFα-induced apoptosis [99]. The perception that
HSP70 might act intracellularly as a suppressor of NF-κB
pathways has been raised after a number of seminal dis-
coveries in which HSP70 was intentionally induced,
such as the inhibition of TNFα-induced activation of
phospholipase A2 in murine fibrosarcoma cells [100],



Fig. 2 Physiology of the heat shock response during inflammation and its resolution. Injury- and pathogen-initiated acute inflammatory processes
trigger a variety of signals that lead to the activation of the nuclear factor NF-κB, the master regulator of inducible production of cytokines and
inflammatory enzymes, such as cyclooxygenase-2 (COX-2). At the same time, such noxious signals stimulate the liberation of arachidonic acid
from cellular stores toward the cytosol where it is converted into inflammatory prostaglandins (PGs), among them is PGE2, which induces hyper-
thermia. Fever, in turn, activates heat shock factor-1 (HSF1), leading to the expression of anti-inflammatory and cytoprotective 70 kDa heat shock pro-
teins (HSP70) that turn off NF-κB downstream pathways. At the same time, fever-activated HSF1 induces the expression of more COX-2 molecules,
which in turn exacerbate PGE2 production. As the inflammation progresses over 24 to 48 h, PGE2 and other prostanoids may be converted into cyclo-
pentenone PGs (cyPGs), such as PGA2. CyPGs are the strongest inducers of HSF1 activation along with heat shock, so that inflammation can be
resolved within its own. Arrows indicate stimulation of the indicated pathways while broken lines represent inhibition. This illustration was rede-
signed and adapted from [7]
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the suppression of astroglial inducible nitric oxide syn-
thase (iNOS, encoded by the NF-κB-inducible NOS2
gene) expression, paralleled by decreased NF-κB activa-
tion [101], and the protection of rat hepatocytes from
TNFα-induced apoptosis by treating cells with the ni-
tric oxide (NO)-donor SNAP, which reacts with intra-
cellular GSH molecules generating S-nitrosoglutathione
(SNOG) that induces HSP70, and, consequently, HSP70
expression [102]. iHSP70 confers also protection against
sepsis-related circulatory fatality via the inhibition of iNOS
(NOS2) gene expression in the rostral ventrolateral medulla
through the prevention of NF-κB activation, inhibition of
IκB kinase activation and consequent inhibition of IκB
degradation [103]. This is corroborated by the finding
that iHSP70 assembles with liver NF-κB/IκB complex
in the cytosol thus impeding further transcription of
NF-κB-depending TNFα and NOS-2 genes that worsen
sepsis in rats [86]. This may also be unequivocally demon-
strated by treating cells or tissues with HSP70 antisense
oligonucleotides that completely reverses the benefi-
cial NF-κB-inhibiting effect of heat shock and indu-
cible HSP70 expression (see, for instance, ref. [102, 103]).
Hence, HSP70 is anti-inflammatory per se, when intracel-
lularly located.
Another striking effect of HSP70 is the inhibition of

apoptosis. Caspases form an apoptotic cascade by an intrin-
sic pathway characterized by the release of mitochondrial
pro-apoptotic factors into the cytosol, while stimulation of
cell surface receptors triggers the extrinsic pathway by
external signaling factors that may induce the apoptotic
process. The inhibitory potential of iHSP70 over apoptosis
occurs via many intracellular downstream pathways (e.g.,
JNK, NF-κB, and Akt), which are both directly and indir-
ectly blocked by iHSP70 either, besides the inhibition of
Bcl-2 release from mitochondria. Together, these mecha-
nisms are responsible for iHSP70 anti-apoptotic function in
cells under stress conditions [104]. Therefore, iHSP is both
cytoprotective and anti-inflammatory by avoiding protein
denaturation and excessive NF-κB activation which may be
damaging to the cells [105]. Figure 3 highlights the steps
where HS response obliterates NF-κB-elicited downstream
inflammatory signals.
Finally, it is noteworthy that HSP70 expression and

regulation of the HS response are both modulated by an-
other key player, the nicotinamide adenine dinucleotide
(NAD+)-dependent protein deacetylase of class III family
sirtuin-1 (SIRT1). Multiple studies that have imputed a
role for SIRT1 to the activation of HSF1 and, consequently,
the enhanced synthesis of molecular chaperones, including
iHSP70, in order to regulate the stability and function of
intracellular proteins. It has been shown that activation of
SIRT1 prolongs HSF1 binding to the promoter (HSE)
regions of heat shock genes by maintaining HSF1 in a
deacetylated and DNA-binding competent state [106],
so enhancing the transcription of molecular chaperones
such as HSP72 and HSP25 [106, 107]. The importance
of SIRT1 for the chaperone machinery is clearly demon-
strated by SIRT1 knockdown, which attenuates heat shock



Fig. 3 Anti-inflammatory profile of the heat shock response. If, on the
one hand, inflammatory signals and their consequent (and sometime
causal) formation of reactive oxygen and nitrogen species (ROS/RNS)
activate NF-κB downstream inflammatory pathways, on the other
hand, heat shock (HS) response inducers (e.g., fever, hyperthermia,
exercise) block inflammation. Accordingly, the above inflammatory
signals activate IKKβ which phosphorylate IκB proteins leading to
NF-κB-dependent production of inflammatory cytokines and related
proteins. However, HS response can completely revert NF-κB-elicited
pathways, as heat shock factor-1 (HSF1) impedes transcription of
NF-κB-dependent genes whereas HSP70 may block IKKβ activity
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response [108]. Conversely, it has recently been demon-
strated that whole-body heat shock treatment of high-fat
diet (HFD)-fed rats reverses insulin resistance-induced vas-
cular defects while increasing SIRT1 expression/activity in
parallel [109]. Additionally and strikingly, SIRT1 physically
interacts with the RelA/p65 subunit of NF‐κB and inhibits
transcription of inflammatory genes by deacetylating RelA/
p65 at Lys310 [110], whereas SIRT1 has recently found to
directly inhibit NLRP3 inflammasome activation [111].

Extracellular HSP70 and the role of HSP70 balance
between intra- and extracellular space in inflammation
After both acute and chronic stressful situations, HSPs
can also be found in the extracellular milieu (eHSP70).
This happens following a finely concerted secretion, mainly
from lymphocytes and tissues from the hepatosplanchnic
territories [34, 112]. In general, eHSP70 acts as an alert
signal to physiological systems for the presence of homeos-
tatically threatening situations [105]. eHSP70 is associated
with the activation of the immune system and inflamma-
tion [113]. For example, eHSP70 has been reported to
stimulate neutrophil microbicidal capacity [114] and
chemotaxis [115] and recruitment of natural killer (NK)
cells [116], as well as cytokine production by immune
cells [73, 117]. In addition, eHSP70 has been recently
hypothesized to be involved in motor neuron cell protec-
tion under stress conditions and neurodegenerative dis-
eases [63, 118]. However, contrarily to that which occurs
when HSP70 is within the intracellular space (iHSP70),
when exported to the extracellular space (eHSP70), it
functions as a stress signaling and pro-inflammatory
molecule possibly by acting via TLR2 and TLR4 (see,
for instance, ref. [85]). eHSP70 has been reported to be
negatively correlated with intramuscular HSP70 content
in obesity and diabetes [47]. Indeed, elevated levels of
eHSP70 are positively associated with insulin resistance in
elderly volunteers and induce TLR-dependent β cell failure
[62]. Because of this, detection of plasma eHSP70 when
not linked to any acute stress (e.g., exercise, α-adrenergic
stimulation) is reputed as a marker of inflammation-
associated chronic stress [34, 47, 112].
Secretion of eHSP70 by non-canonical mechanisms

(exosomes) has been documented in lymphocytes, mac-
rophages, epithelial cells, dendritic cells, neuronal cells,
and hepatocytes [119]. Once secreted, eHSP70 can bind
to TLR2 and TLR4 in a variety of cells, leading to the ac-
tivation of pro-inflammatory pathways via MyD88 and
TIRAP that signal downstream to NF-κB via IRAK4,
TRAF6, and IKK, and inducing JNK activation via
MEKK4/7 [120, 121]. High-affinity binding of eHSP70
to other surface receptors, including LRP/CD91, CD40,
scavenger receptors, and c-type lectins, has also been
described [72].
The signal triggered by eHSP70 promotes typical im-

munoinflammatory responses directed to the combat of
infections and bacterial infiltration through the production
and release of nitric oxide (NO) and pro-inflammatory
cytokines, such as TNFα and IL-1β [24]. Furthermore,
eHSP70 responses are positively associated with classical
inflammatory parameters such as C-reactive protein (CRP),
fibrinogen, and monocyte counts [122], being commonly
found in clinical situations in which danger signaling to
immune system must be required [119]. Indeed, increased
serum eHSP70 has been reported in chronic and age-
related diseases [123–125]. In addition, serum eHSP70
levels were found to be higher in long-term (>5 years)
T2DM patients as compared to newly diagnosed ones
[126]. Interestingly, during conditions in which individ-
uals are chronically exposed to elevated eHSP70 levels
(e.g., obesity, T2DM), a marked reduction in HSF1 and
iHSP70 contents in skeletal muscle and adipose tissue
is observed [12, 47, 76, 127, 128].
Ser307 phosphorylation of insulin receptor substrate-1

(IRS-1) is a physiological feedback mechanism to block
insulin/IGF1 signaling pathways [128] that can be triggered
by inflammatory cytokines via IKKs. This process is
inhibitable by cyPGs [129], which, as discussed above,
are powerful anti-inflammatory autacoids possessing
iHSP70-inducing capacity [87, 91]. eHSP70-elicited TLR4
expression and signaling is increased in obese and T2DM
subjects, an effect that may explain the high basal rate of
MAPK phosphorylation and NF-κB activation found in
these patients [130–133]. On the other hand, the above
findings also help to explain why inhibition (or absence)
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of TLR4 confers protection against insulin resistance in
skeletal muscle [134], adipose tissue, and liver [135, 136].
Moreover, eHSP70 is positively correlated with insulin
resistance and inflammation in elderly people, being as-
cribed as a key player in the impairment of insulin sig-
naling in the skeletal muscle that occurs with advanced
age and in T2DM [62]. In addition, chronic exposure of
β cells and islets to increased concentrations of eHSP70
results in β cell death and altered cell bioenergetics, a
phenomenon that, apparently, is mediated through TLR-2
and 4 activation [62]. Since, in T1DM, there is a dramatic
increase in plasma eHSP70 and, in T2DM and aging, there
is a slow chronic increase in the concentration of this pro-
tein in the plasma, we have deduced that chronic exposure
of pancreatic β cells to eHSP70 may lead to β cell failure
and loss of functional integrity in vivo [34].
Based on the above discussion, it is sensible to state

that, while iHSP70 is clearly protective, anti-apoptotic,
anti-inflammatory, and associated with normal insulin
sensitivity, eHSP70 is related to a pro-inflammatory re-
sponse, decreased expression of the anti-inflammatory
iHSP70, and reduced insulin sensitivity. Because of this,
we have suggested that the ratio of compartmental dis-
tributions of HSP70 between extra and intracellular loca-
tions may determine the outcome of inflammation in
chronic degenerative diseases. In a recent study, our group
observed that the ratio between plasma eHSP70 and cellu-
lar iHSP70 in lymphocytes from rats submitted to differ-
ent loads of acute exercise (an acute stressful situation)
can indicate the inflammatory status [34]. Indeed, extra-
cellular to intracellular HSP70 ratio index (H-index) mea-
sured in peripheral blood mononuclear cells (PBMC) in
relation to serum values has been recently assumed as
novel and overall index of immunoinflammatory status of
an individual [34, 39, 105, 112]. The rationale for this is
that the higher eHSP70 amounts, the more inflammatory
signals are coming into play because eHSP70 is pro-
inflammatory in nature. On the other hand, for any spe-
cific situation, the more the cells are able to respond to
stressful stimuli by enhancing iHSP70, the more such cells
are in a state of anti-inflammation and cytoprotection.
Therefore, if one takes Rc = [eHSP70]c/[iHSP70]c as the
HSP70 ratio in a control situation, whatever the tech-
niques used to assess each eHSP70 and iHSP70, then
H-index can be calculated as the quotient of any Rj =
[eHSP70]j/[iHSP70]j by Rc, which will be therefore consid-
ered as the unity (Rc = 1), normalizing all the remaining
results in this situation “j”. Hence, H-index = Rj/Rc may
allow for the comparisons between any stressful situation
“j” and the situation assumed as the control one.
H-index can be applied to estimate immunoinflamma-

tory status in many different situations, such as immune
responses, CVD, neurodegenerative diseases, diabetes,
and immunological impacts of exercise. For example, as
previously argued [34], assuming H-index for the controls
(resting, unstimulated) as the unity, exercise produces a
shift in H-indices to up to ca. 5, which is paralleled by an
elevation in inflammatory markers and stimulation of
cell proliferation. H values higher than 5 denote an exacer-
bated pro-inflammatory response. Conversely, H-indices be-
tween 0 and 1 indicate a predominantly anti-inflammatory
status. Thus, changes in H-index emerge as a poten-
tially new biomarker for inflammation and as a very
sensitive indicator of inflammatory status.

Suppression of the heat shock response in age-
related degenerative conditions associated with
chronic inflammation
Several studies have shown that HSP synthesis and the
HS response may be negatively affected by aging [137, 138].
This can be clinically assessed with ease by examining
HSP70 expression in heat-treated PBMC after an appropri-
ate time [34]. For example, Njemini and colleagues have
demonstrated, in human monocytes and lymphocytes, that
basal (37 °C) and heat-induced (42 °C) HSP70 expression is
reduced with advanced age [137], a behavior that is in-
versely correlated with higher pro-inflammatory cyto-
kine levels. Later, the same group has demonstrated the
age-related increase in basal (unstimulated) levels of
iHSP70, iHSP32, and iHSP90 in PBMC from healthy
human subjects [138]. In addition, low-grade inflamed
patients have higher basal levels of iHSP70, iHSP32,
and iHSP90 in PBMC that positively correlate with serum
concentrations of inflammatory mediators (CRP and IL-6)
[138]. However, while basal levels of iHSP70 may increase
due to the effects of pro-inflammatory cytokines and the
associated oxidative stress, the essential machinery which
should rapidly respond to cellular stress inducing HSP70
expression (i.e., an adequate HS response) is reduced, and
the stress response become compromised.
Apparently, basal levels of iHSP70 in metabolic tissues

(e.g., skeletal muscle) do not reduce with aging as long as
insulin sensitivity is normal; however, if aging is associated
with long-term insulin resistance, then basal iHSP70 levels
in the muscle tend to reduce [139]. This is supposed to be
related to the fact that insulin resistance, per se, is a con-
sequence of decreased HS response [7]. In any way, com-
promised HS response is observed in tissues of aged
subjects, thus allowing for the establishment of an unre-
solved inflammatory state. In addition, during aging, cellu-
lar ROS levels can increase due to a limited capacity of
antioxidant systems and repair mechanisms. Then, exces-
sive ROS generation associated with impaired resistance
to cell stress has been proposed to play an important role
in accelerating aging process [140]. However, it is difficult
to determine whether ROS-induced oxidative stress is the
cause or just a consequence of aging. Moreover, it is im-
portant to highlight that in neutrophils, for example, ROS
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are essential for pathogen destruction through phagocyt-
osis and for robust inflammatory responses [141]. Interest-
ingly, in the elderly (60–89 years), a positive correlation
has been found between iHSP70 and spontaneous ROS
production by neutrophils, but the same correlation has
not been confirmed in nonagenarians (>90 years) [142].
The lack of a positive correlation between neutrophil
HSP70 levels and ROS in the latter group might be associ-
ated with the longer lifespan of these specific people. In
general, however, strong evidence suggests that higher
iHSP70 contents represent a more protective profile
against ROS effects in aging [143].
It is a unanimity, among the studies on the underlying

mechanisms of age-related chronic inflammation, that
HS response capacity (not necessarily iHSP70 basal levels)
is seriously defective in metabolic tissues of individuals
bearing age-related chronic diseases, especially when asso-
ciated with obesity and physical inactivity. This scenario
leads to a myriad of inflammatory disorders associated
with aging. As stated above, age-associated RA is charac-
terized by a sequence of age-dependent degenerative con-
ditions which starts with an acute inflammatory reaction
that is perpetuated into endocrinosenescence, neurosenes-
cence, and senescence of the muscular system [22]. Beside
of this, age exponentially increases CVD risk in RA pa-
tients [21]. On the other hand, HSF1 and iHSP70 play a
role in protecting against both irritant-induced gastric le-
sions and IBD-related colitis. This is corroborated by the
fact that irritant-induced gastric lesions is aggravated in
HSF1-null mice due to their inability to up-regulate
HSP70, i.e., to arm a healthy and sufficient HS response.
Conversely, the protective role of iHSP70 against colitis is
associated to its suppressive effect on the expression of
pro-inflammatory cytokines [144]. In addition, overex-
pression of HSP70 was found to prevent the development
of inflammatory processes in the large intestinal mucosa
provoked by various damaging factors [32].
As preliminarily stated above, sarcopenia is a geriatric

syndrome in which there is a decrease of muscle mass
and strength with aging and constitute a fundamental
cause of frailty, functional decline, and disability. Although
its etiology is not completely understood, sarcopenia is
also closely related to inflammatory processes and aggra-
vated by the concomitant age-related changes in cytopro-
tective mechanisms, particularly those involving protein
quality control and HS response [29]. In line with an
inflammatory nature of sarcopenic disturbs is the ob-
servation that aging contributes to enhanced extracellu-
lar eHSP70 [123], which, as discussed above, works as a
pro-inflammatory cytokine worsening the picture. Hence,
elevated plasma eHSP70 is linked to sarcopenia being a
potential biomarker and predictor of the illness [123].
Known primary causes of sarcopenia include also a sed-
entary lifestyle and malnutrition [145]. While resistance
training could be a promising intervention [145], elderly
individuals normally fail to adequately respond to exercise
stimuli. The decrement in regenerative capacity may also
be due to a dramatic reduction in postprandial anabolism
as well as an increase in generation (or decrease in re-
moval) of reactive oxygen species (ROS) [146]. Indeed,
ROS production by normal metabolism and its overpro-
duction in inflamed states are direct causes of aging and
many aging-related degenerative complications [147]. This
may be because levels of ROS during aging can increase
due to a limited capacity of antioxidant systems and repair
mechanisms [148]. Thus, excessive ROS production and
the impaired resistance against oxidative stress, as well
as a defective HS response capacity (which could alleviate
ROS consequences) have been proposed to play a major role
to accelerate aging process [140]. In aged (20–24 months
old) female C57BL/6 mice chronically (8 weeks) treated with
either geranylgeranylacetone (100 mg.kg−1 day−1, a pharma-
cological inducer of iHSP70) or heat therapy (twice a week)
was found to increase muscular endurance, although muscle
power, contractile force, capillary perfusion, and innervation
were not different [149]. Both treatments resulted in
the expected improvement in peripheral insulin re-
sponse and glycemic status. Moreover, mitochondrial
protein carbonylation (an indicative of oxidative stress)
increases moderately with age, whereas this increase
may impact upon skeletal muscle function, though it is
not a hallmark of sarcopenia per se [150]. In these stud-
ies, HSP70 basal expression is not altered in sarcopenia,
but nothing is known about the capability of HS response
in such condition.
Skeletal muscle is a key reservoir of amino acids that

sustain protein synthesis in other tissues, and limited
muscle mass often associates with impaired responses to
both stress and critical illness [151]. Nevertheless, loss of
muscle mass is not that simple. In both sarcopenia and
cancer cachexia (another muscle degenerative condition
frequently observed in the elderly), type IIb (glycolytic,
fast twitch) muscle fibers are smaller and are preferen-
tially lost, while loss of oxidative type I (low twitch) fi-
bers is a common feature observed in obese individuals.
Myofiber loss can be accompanied by inflammation, the
infiltration of adipose tissue, fibrosis, and decreased capil-
larization [25]. Although both muscle mass and strength
are needed for optimal performance, loss of muscle
strength is a better predictor of mortality (related to any
cause) during aging [152], suggesting that muscle function
is a more important health parameter than muscle mass
per se [25]. Extrinsic changes in innervation, stem cell func-
tion, and endocrine regulation of muscle homeostasis con-
tribute to muscle aging. In addition, organelle dysfunction
and compromised protein homeostasis are among the pri-
mary intrinsic causes. Some of these age-related changes
can, in turn, contribute to the induction of compensatory
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stress responses that have a protective role during muscle
aging [25]. Progression of sarcopenia depends also on the
intestinal absorption of dietary protein amino acids. How-
ever, it has been shown that muscle protein synthesis is
blunted in elderly when protein and carbohydrate are co-
ingested or when the quantity of protein is less than
approximately 20 g per meal [27]. However, despite directly
causal factors, the establishment of sarcopenia is closely
related to inflammatory processes and aggravated by the
concomitant age-related changes in cytoprotective mecha-
nisms (particularly those involving protein quality control)
[29]. In any way, all the above conditions surrounding
sarcopenia tend to limit physical activity which, in turn,
predisposes the elderly to chronic inflammatory
diseases, including obesities and T2DM [13, 148].
Another crucial issue in aging is the development of

neurodegenerative diseases [143]. Aging and age-related
neurodegenerative disorders are tightly associated with
chronic oxidative stress and impaired protein quality con-
trol systems (HS response and autophagy), which are the
primary pathogenic mechanisms contributing to neuronal
dysfunction, degeneration, death, and cognitive decline in
both humans and experimental animals [153]. Aging leads
to an accumulation of disabilities and diseases that limit
normal body functions and is a major risk factor for neu-
rodegenerative diseases [143]. In fact, recent evidence has
shown that HSPs are critically involved in the progression
of neurodegeneration [154, 155]. Reduced expression of
many iHSPs has been observed in the brain tissue of aged
humans and animal models of aging, as well as in tis-
sues from elderly patients with neurodegeneration. This
strongly suggests their involvement in the pathophysi-
ology of age-related neurodegenerative disorders [153].
Additionally, as observed in relation to sarcopenia,
plasma levels of the pro-inflammatory eHSP70 are cor-
related with neurodegeneration [154].
The bulk of currently available information converges

upon the observation that chaperone-directed protein
quality control and HS response are markedly hindered
in neurodegenerative diseases in general. The totality of
major neurodegenerative illnesses is associated with the
accumulation of unfolded proteins and the formation of
toxic protein aggregates. This is the case of the aggregates
of polyglutamine androgen receptor in spinal and bulbar
muscular atrophy, huntingtin in Huntington’s disease
(HD), α-synuclein in Parkinson’s disease (PD), and tau
protein in Alzheimer’s disease (AD). All of them are client
proteins of iHSP90, and their turnover is regulated by the
protein quality control function of the iHSP90/iHSP70-
based chaperone machinery [19]. Interestingly, iHSP90
and iHSP70 have opposing effects on client protein sta-
bility in protein quality control: iHSP90 stabilizes the cli-
ents and inhibits their ubiquitination, whereas iHSP70
promotes ubiquitination-dependent and proteasomal
degradation [19]. iHSP70, working as a chaperone over
the above client proteins, protects neurons from protein ag-
gregation and its consequent cytotoxicity in PD, AD, poly-
glutamine diseases, and amyotrophic lateral sclerosis (ALS),
thus avoiding the establishment of an inflammatory status
resulting from chronically non-removed protein aggregates
[17]. Inasmuch as protein aggregates are not withdrawn
from the brain tissue, a state of endoplasmic reticulum (ER)
stress is achieved that, becoming chronic, triggers inflam-
mation invariably [7]. As a consequence, neurodegenerative
diseases are characterized by an out-of-control situation of
oxidative stress and inflammatory markers. An example is
the pro-inflammatory eHSP70, whose plasma concentra-
tions are correlated with cognitive decline in language and
executive functions in elderly people [154, 156].
It has long been recognized that all aggregative neuro-

degenerative disorders have in their very heart an altered
capacity of cells to produce molecular chaperones (par-
ticularly HSP70) at levels compatible with protein synthesis
demands [157]. AD is the most common neurodegenera-
tive disease causing dementia and having no treatment or
cure as yet [158]. Although the exact physiopathology of
AD is still unsettled, it is clear that brain dysfunctions and
atrophy (due to neuronal loss) that accompany AD are cor-
related with the accumulation of unfolded proteins that
tend to form neurotoxic protein aggregates, such as extra-
cellular deposition of amyloid plaques, accumulation of
intracellular neurofibrillary tangles (NFTs), inflammation,
and oxidative stress [159–161]. Abundant extraneuronal
deposits of amyloid-beta (Aβ) are the major pathological
hallmark of AD and play an early pathologic role in the de-
velopment of the disease [162]. Aβ is a 40 or 42 amino acid
polypeptide derived from amyloid precursor protein (APP)
after its sequential cleavage by β- and γ-secretases. Its
physiological role is likely related to the modulation of
synaptic activity, although still controversial. In AD, Aβ
accumulates forming intermediate soluble oligomers
that are synaptotoxic as well as insoluble β-sheet pleated
amyloid fibrils that are the main constituents of dense-
core plaques (mainly Aβ42) and cerebral amyloid angiopa-
thy (primarily Aβ40) [159]. In fact, Aβ protein dimers are
directly associated with impairment of synaptic plasticity
and memory [162].
If depressed HSP70 may be at the core of AD, in vitro

and in vivo studies have shown that rising iHSP70
contents is able to prevent protein aggregates and the
formation of Aβ in brain cells, thus suppressing AD
conditions [163, 164]. In primary neuron cultures,
adenovirus-induced HSP70 has been shown to be neu-
roprotective against intracellular Aβ accumulation and
Aβ-mediated cytotoxicity in AD [163]. Furthermore,
transgenic mice expressing HSP70 also displayed lower
levels of Aβ, Aβ plaque deposition, and neuronal and
synaptic loss than control mice [164].
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Another type of misfolded polypeptides found in AD
are the neurofibrillary tangles (NFT), which are composed
by aggregates of hyperphosphorylated forms of the tau
protein that become extraneuronal (“ghost” tangles) when
tangle-bearing neurons die. NFTs have a stereotypical spa-
tiotemporal progression that correlates with the severity
of the cognitive decline, while topographic staging of
NFTs (from stages I to VI) is used for the pathological
diagnosis of AD [161]. Under physiological conditions,
tau is a soluble microtubule-associated protein located
to the axon, where it physiologically facilitates the axonal
transport by binding and stabilizing the microtubules
[159, 165]. However, in AD, tau translocates to the soma-
todendritic compartment and dissociates from microtu-
bules undergoing hyperphosphorylation, misfolding, and
aggregation due to self-associations to form both fibrillar
and prefibrillar oligomeric clumps [166]. These aggregates
give rise to NFT and neuropil threads [159]. Not sur-
prisingly, therefore, iHSPs inhibits tau aggregation by a
mechanism that seems to involve preferential associa-
tions with soluble, monomeric, and prefibrillar oligomeric
tau species [158].
Stimulation of the HS response has conspicuously

shown to block progression of virtually all neurodegen-
erative diseases studied [167]. iHSP70 prevents protein
aggregation by binding to the exposed hydrophobic res-
idues of tau [168]. Thence, at least in vitro, iHSP70
interaction with soluble tau is supposed to inhibit self-
association of tau into aggregates. In addition, iHSP70
has also been found to interact with pre-existing tau
aggregates, having a preferential selectivity for oligomeric
versus filamentous tau tangles. Fibromyalgia, which is a
disseminated pain disorder mainly diagnosed in middle-
aged women, has traditionally been classified as either a
musculoskeletal disease or a psychological disorder. How-
ever, accumulating evidence now suggests that fibromyal-
gia may be associated with CNS dysfunction with loss of
gray matter [15], similarly to that described for classical
neurodegenerative diseases of aggregative nature. It is of
note, indeed, that fibromyalgia is associated with abnormal
protein ubiquitination and HS response pathways [169], at
the same time, fibromyalgia predisposes the patient to
an increased risk for developing age-related diseases
prematurely, suffering earlier cognitive and physical de-
cline and experiencing earlier mortality [16]. On the other
hand, long-term intranasal administration of recombinant
HSP70 (in order for HSP70 to reach different cerebral
structures intracellularly, so to enhance iHSP70) to
middle-aged and old mice has convincingly demonstrated
that iHSP70 enhances animal lifespan, improves learn,
memory, and locomotor and exploratory activities in old
mice [118]. This suggests that pharmacological admin-
istration of tissue-directed iHSP70 may be of value in
reverting aging-associated disorders in humans. Therefore,
HSPs may be envisaged as potential therapeutic tools to
prevent neurodegeneration by avoiding protein aggre-
gation processes, thus reducing the toxicity of such
oligomers [170]. However, more studies are required to
identify the specific signaling pathways and routes of
administration of HSP70 to avoid possible harmful
effects because, if HSP70 is not accurately introduced
inside brain cells, it could remain within the extracellu-
lar space, where eHSP70s is a pro-inflammatory by
virtue of what the binding to TLR2 and TLR4, at least
in other cells, may exert [62, 112]. Still in support of a
major role of HS response for normal brain function,
numerous studies have shown that the plant polyphenol
resveratrol (3,5,4′-trihydroxystilbene) may extend the
lifespan of several species, preventing age-related
diseases beside possessing anti-inflammatory action.
The beneficial effects of resveratrol are believed to be
associated with the activation of SIRT1 [18], which, as
discussed above, enhances the HS response. Unfortu-
nately, however, the accumulation of protein aggregates
in many elderly people was found to surpass the ability of
neuronal tissue to cope with appropriate HS response so
that the end of story is a consequent chronic inflammatory
response and tissue degeneration.
Although not completely understood, the exact mecha-

nisms by which inflammation is chronically attained in neu-
rodegenerative as well as in other prevalent age-associated
diseases, cellular senescence in metabolic tissues may shed
light on the whys of persistent unresolved inflammation
that lead to tissue dysfunctions. In aged mammals, it seems
that while insulin resistance is not chronically sustained or
not so severe, cells are still able to compensate increasing
their HSP70 levels [139, 171]. After long-term insulin
resistance, notwithstanding, stress response (i.e., HSP70
machinery) is blunted by the senescent effect of obesity
[7, 30] and the levels of HSP70 fall [139]. Whether this
scenario is also attained in other age-related chronic
degenerative diseases is a matter of current dispute.

Cellular senescence as the underlying mechanism
of chronically depressed HS response and the
consequent unresolved inflammation in age-related
conditions
As discussed above, elders are sick longer, often coping
with multiple chronic diseases simultaneously [4]. Senes-
cent cells accumulate in many tissues during aging and
start to present a unique senescence-associated secretory
profile (SASP) that includes many pro-inflammatory cyto-
kines [4, 7]. On the other hand, HS response, which is crit-
ical to promote the resolution of inflammation, is severely
impaired in metabolic tissues during chronic inflamma-
tion. For instance, with respect to insulin resistance and
T2DM, it has been found that the expression of messen-
ger RNA (mRNA) coding for the inducible form of HSP70
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(HSPA1A gene) was dramatically reduced (90 % decrease)
in skeletal muscle biopsies of T2DM patients as compared
to healthy volunteers [127]. Similar observations have
been reported in obese and non-obese T2DM patients,
in which a marked reduction in the protein expression
of HSP70 has been noticed in comparison with obese
controls [47]. Moreover, T2DM patients show decreased
intramuscular expression of both HSP70 and heme-
oxygenase [172], so that HS response-associated anti-
inflammatory and antioxidant defenses are impaired
leading to an inflammatory state, high NOS2-dependent
NO production and impaired insulin receptor down-
stream signaling pathways function by S-nitrosation
[173]. We have recently observed that HSF1-HSP70
axis is progressively suppressed in adipose tissue and
liver of insulin resistant obese patients, as nonalcoholic
fatty liver disease (NAFLD) evolves from steatosis, toward
more inflammatory forms of the disease, e.g., steatohepati-
tis accompanied by fibrosis [76]. Moreover, such suppres-
sion was found to be strongly correlated with the degree
of enhancement of JNK1 and JNK2 expression in adipose
tissue, which was followed by similar rises in the amounts
of Thr183/Tyr185-diphosphorylated activated p-JNK1
and p-JNK2 in the same tissue. Hence, adipose tissue of
insulin-resistant patients is embraced in a suppressed
HS response, as observed in the age-related chronic de-
generative diseases discussed in the previous section.
This is a complex situation because stress-induced
iHSP70 should inhibit JNK-dependent signal transduc-
tion [174, 175] under physiological conditions.
The association between NF-κB-centered unresolved

inflammation and chronic diseases involves the unfolded
protein response (UPR) (a cellular reaction to overnutri-
tion) and ER stress, as observed in obesity, atheroscler-
osis, insulin resistance, and T2DM [176–181]. In all
these cases, unremitted low-grade inflammation, which
follows chronic ER stress, is a consequence of impaired
resolution of inflammation [182]. Age-related chronic
inflammation and HS response pathways also intercross
at gene regulatory level. Accordingly, the promoter re-
gion of TNFα gene contains an HSF1 binding site that
represses TNFα transcription, and thus loss of this re-
pressor results in sustained expression of TNFα [183],
which possibly explains why HSF1 knockout is associated
with a chronic increase in TNFα levels and increased
susceptibility to endotoxin challenge [174, 184, 185].
Regulation of this network in the opposite direction
also occurs: TNFα may transiently repress HSF1 activa-
tion [186]. Moreover, JNK1 phosphorylates HSF1 in its
regulatory domain causing suppression of HSF1 transcrib-
ing activity [187] while iHSP70 prevents apoptosis by inhi-
biting the JNK/Bim pathway [185, 188]. However, if
inflammation evolved to present both an initiation and
a resolution phase (Fig. 2), why does inflammation not
resolve in age-related diseases? The answer to this
question is linked to cellular senescence and SASP.
Cellular senescence and its associated SASP is an alter-

native mechanism to UPR, in order for the cell to avoid
apoptotic death, which would be an expected result after
an inoperative anti-inflammatory HS response. In fact, a
senescent-like state can emerge in fat cells from obese in-
dividuals (even young obese subjects), this being an adap-
tation to fat cell overutilization which resembles cellular
aging [189]. High-fat diet (HFD)-induced obesity also
leads to vascular senescence in a process involving long-
term activation of Akt1 and mTOR [190]. On the other
hand, fibroblasts from adult segmental progerioid Werner
syndrome, in which the cells undergo premature senes-
cence, are associated with a strong positive feedback sys-
tem in which over-activation of the p38-NF-κB pathway
leads to SASP that then attenuates the expression of the
mRNA-binding protein HuR, a critical factor for full activ-
ity of the NAD+-dependent protein deacetylase SIRT1
[191–193]. HuR enhances the stability of several target
mRNAs, including that encoding for SIRT1, via HuR asso-
ciation to the 3′-untranslated region of SIRT1 mRNA
which promotes its stability and thus a rise in SIRT1 pro-
tein expression levels [191]. Conversely, H2O2-induced
oxidative stress disrupts HuR-SIRT1 mRNA interaction
lowering cell survival in a cycle checkpoint kinase-2
(Chk2)-dependent manner [191]. SIRT1, in turn, enhances
HSF1 expression [192] and prolongs HSF1 binding to the
promoters of HS genes by maintaining HSF1 in a deacety-
lated, DNA-binding competent state [106], while HS itself
increases cellular NAD+/NADH ratio and augments the
recruitment of SIRT1 to the HSP70 promoter [194].
SIRT1 knockdown, on the other hand, attenuates HS
response [108] whereas SIRT1 modulators were found
to also modulate HSF1 activity and HS response in
HeLa cells [194].
Following a cellular insult (e.g., genotoxic stress), HuR

associates with SIRT1 mRNA, triggering an anti-apoptotic
and pro-survival gene expression program [195]. However,
HuR participation in cellular homeostasis goes beyond
that, as HuR is involved in the differentiation of pre-
adipocytes, including translation and stability of glucose
transporter GLUT1 mRNA. Therefore, experimental data
support a role for HuR in muscle and adipose tissue differ-
entiation processes [196]. Contrarily, reduced HuR levels
are associated with enhanced cellular senescence and be-
cause of these observations, HuR is considered a factor
implicated in the maintenance of a “young cell” [197].
Interestingly, HS and calorie restriction (which enhances
SIRT1 deacetylase activity) seem to act synergistically with
respect to the HS response [198]. SIRT1 attenuates sat-
urated fatty acid-induced ER stress and insulin resistance
in hepatocyte-like cells [199]. Moreover, resveratrol, an
inducer of SIRT1 metabolic action, increases insulin
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sensitivity, 5′-AMP-activated protein kinase (AMPK), and
peroxisome proliferator-activated receptor-γ (PPARγ)
coactivator-1α (PGC-1α), leading to increased mito-
chondrial number and oxidative metabolism [200]. AMPK,
in turn, inhibits glycogen synthase kinase-3β (GSK-3β), an
enzyme that constitutively inhibits HSF1 activity [55], so
that energy sensing (AMPK) is linked to anti-inflammation
(HSP70) via AMPK and SIRT1-dependent AMPK activity
(Fig. 4).
Alongside other metabolic effects, SIRT1 activates

PGC-1α by deacetylation [201], while PGC-1α stimu-
lates the production and secretion of a novel myokine
(IRISIN) which acts in white adipose cells, both in vitro
and in vivo, driving a brown-fat-like phenotype via stimu-
lation of uncoupling protein-1 (UCP1) expression [202].
This links calorie restriction and physical exercise to pro-
tective energy-consuming oxidative metabolism. As could
be inferred from the above statements, since HuR-SIRT1
duet controls the expression and transcribing activity of
HSF1, any decrease in the flux through HuR-SIRT1 path-
ways, suppress the HS response. Unfortunately, however,
this is exactly what happens during the establishment of
age-associated chronic inflammatory diseases.
SASP-related production of inflammatory cytokines

(e.g., IL-1β, IL-6, IL-8, IL-18) is connected to persistent
DNA damage-like response. During caspase-mediated
apoptosis, HuR switches its function from pro-survival
to pro-apoptotic [203]. Caspases can mediate cleavage
of HuR under different situations [204]. In parallel is
the observation that HFD induces, in white adipose tissue,
the cleavage of SIRT1 by caspase-1 which is, in turn,
activated by the diet-induced inflammatory response in
adipocytes [205]. Moreover, HFD feeding or systemic
inflammation leads to the activation NLRP3 inflamma-
some, which is actually the key event that will lead to
production and activation of caspase-1 [205]. Inflamma-
somes are large multimeric danger-sensing platforms that
promote autocatalytic activation of caspase-1 and mediate
the cleavage of inactive pro-interleukins, among other
proteins, into their active forms. Inflammasomes of
NLR [nucleotide-binding oligomerization domain (NOD)-
leucine-rich repeat and pyrin-domain (LRP) containing
protein] family are the best studied; particularly the
NLRP3 inflammasome that mediates a series of metabolic
diseases, including atherosclerosis and insulin resistance
in adipocytes [206]. Remarkably, injuring stimuli that
cause senescence, such as UVB irradiation, also induce
NLRP3 activation while inflammasome activation seems
to work as a “danger sensor,” as observed in the metabolic
stress induced by high extracellular glucose that activates
NLRP3 inflammasome [207].
Although not exclusive of aging, obesity and adipose

tissue disturbances are highly prevalent among elderly
people. Present-day human beings were metabolically
selected during the last glaciation (ca. 19,000-10,000 years
ago) for possessing high energy saving capacity in times of
famine. Therefore, our present life style in a genetic back-
ground favoring energy conservation led us to the obesity
epidemic [7]. This scenario is aggravated because chan-
ging feeding habits from a paleolithic diet (lean meat,
fruits, vegetables and nuts, but not cereal grains, dairy or
legumes) to the “fast food” style, dramatically affected gut
microbiota, favoring the harboring of bacteria that stimu-
late inflammatory responses at gut mucosa that spread
out toward other tissues [33]. Metabolic overutilization of
adipose tissue, in the face of energy surplus, overwhelms
adipocyte endoplasmic reticulum leading to ER stress and
unfolded protein response (UPR). As the positive energy
balance is not reversed, UPR becomes inflammatory
leading to chronic activation of NLRP3 inflammasome.
Therefore, genome instability, excess energy imbalance
and epigenomic alterations observed in aging lead to the
persistent activation of NLRP3 inflammasomes in meta-
bolic tissues so that an uninterrupted supply of ILs
and other inflammatory cytokines (SASP) disseminate
inflammation throughout the body. At the same time,
NLRP3-dependent caspase-1 cleaves HuR, leading to
depression of HSF1 expression, thus resulting in a marked
failure to resolve inflammation via the HS response, as il-
lustrated in Fig. 4.

Glutamine metabolism and its importance for the
heat shock response
Glutamine is recognized as a crucial amino acid for cell
survival and growth, playing an important role in inter-
mediate metabolism (for more information on the his-
torical aspects of glutamine research and general view of
metabolic regulation in metabolism, please, consult [208]).
Compared with all other amino acids in the body, glutam-
ine is present at the highest extracellular concentration
being the most abundant free amino acid in the blood. Be-
cause the organism can synthesize and release glutamine
from many tissues, the amino acid is classified as nutri-
tionally non-essential. However, in some catabolic condi-
tions, such as sepsis, recovery from burns or surgery, as
well as after high-intensity exercise, glutamine stores
(particularly in the skeletal muscle and liver) may fall
sharply [208–211]. This effect is due to increased bodily
requirement for glutamine under such conditions, espe-
cially by the muscle itself (in the case of high-intensity
exercise) and the rapidly dividing cells of the immune
system (in the remaining above cases) [50, 212]. More-
over, glutamine is released in significant quantities from
skeletal muscle stores following stress and injury [213].
Glutamine can be used as fuel for the essential pro-

duction of ATP, NADPH, and CO2 and donates 2 amide
nitrogen atoms during the synthesis of macromolecules,
including purines, pyrimidines, and amino sugars [214].



Fig. 4 Heat shock response failure in chronic inflammatory diseases: role of cellular senescence. Under normal nutrient supply (i.e., equivalent to
energy expenditure, physical activity), glucose and fatty acids are utilized in adipose tissue upon physiological amounts of insulin. Any excess of
demand is counteracted by enhanced heat shock (HS) response in order supply the correct furnishing of chaperones thus avoiding or correcting
endoplasmic reticulum (ER) stress and the resulting unfolded protein response (UPR). When circulating glucose and fatty acids (especially saturated)
overcome energy expenditure and high amounts of surplus energetic metabolites should be stored in adipose tissue under a higher insulin
command, ER stress develops. Should energy expenditure be still and chronically lower than energy intake, ER stress is followed by the UPR, a
cellular strategy evolved in order to evaluate the capacity of the cell to arrange a physiological HS response (which conveys cells to protein/
metabolite homeostasis). In the case of irremediable HS response, cells may undergo apoptosis and irreversible cell death. On the other hand,
if proteostasis is not attained but cells still have conditions to avoid apoptosis, an alternative metabolic pathway may be taken in which cells
do not dye but activate senescence, assuming a senescence-associated secretory phenotype (SASP). This is accomplished because adipocytes
chronically challenged by excess fatty acids, cholesterol, high-fat diet, and hyperglycemia prepare an inflammatory response, which becomes
chronic. Under the persistence of risk factors, the cells develop an UPR that is diverted to the inflammatory branch since continuous inflammatory
stimuli do not cease to activate NLRP3 inflammasome, leading to the activation of caspase-1. Activated caspase-1 determines, in adipocytes, a state of
frank cellular senescence which culminates in SASP that can spread out to other tissues and cell types, including adipose tissue infiltrating macrophages,
skeletal muscle cells, pancreatic β cells, hepatocytes, vascular cells, and brain structures. In all these cell types, including adipocytes, SASP leads to cleavage
of HuR, an mRNA-binding protein responsible for enhancing SIRT1 expression. As a consequence, HSF1 expression and transcribing activity
becomes depressed, because SIRT1 enhances both. Therefore, HS response is hindered accordingly and a state of enhanced inflammation is
noted because HS response is of crucial importance for the resolution of inflammation. As a healthy HS response cannot resume, resolution of
inflammation is more and more impaired thus impeding autophagy and an efficient resolution of UPR via HS response. Beside of this, several
studies indicate that senescent cells are resistant to undergo apoptosis (which should be an alternative to break this vicious cycle), so that
chronically inflamed cells are likely to persist in tissues. This illustration was redesigned and adapted from [7]
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In rapidly proliferating cells (e.g., lymphocytes, enterocytes,
tumor cells), glutamine plays a unique role in intermediary
metabolism that differs in much from that of other amino
acids. Glutamine acts as a precursor of lipids after running
through the left-hand side of the Krebs cycle until the for-
mation of citrate. Accordingly, due to the high demand for
lipid synthesis in quickly dividing cells, glutamine-derived
citrate is exported toward the cytosol (pyruvate/malate
shuttle) being converted into cytosolic acetyl-CoA and,
eventually into lipids, thus assisting in membrane and
lipid mediator synthesis during cell proliferation. Glutam-
ine also influences the expression of a number of genes
related to cell protection and survival [215]. Importantly,
glutamine is the immediate precursor of the glutamate
moiety for glutathione (GSH = γ-glutamyl-cysteinyl-
glycine), the main soluble antioxidant species within the
cell, this being demonstrated in a number of cell types and
tissues [208, 212–219]. Inasmuch as redox imbalances are
characteristic of degenerative disorders [140, 148] and ag-
gregative diseases [141–143, 153, 154], glutamine status
becomes of importance in dictating a healthy condition.
At the same time, glutamine is cytoprotective by pro-

moting redox protection (GSH), it has anti-inflammatory
effects by preventing the activation of NF-κB and stress
kinase pathways (p38/MAPK, ERK, and MKP-1), leading
to attenuation of inflammatory cytokine release and
prevention of acute respiratory distress syndrome (ARDS)
following sepsis [220]. In ARDS, glutamine-elicited sup-
pression of NF-κB blocks NOS2 expression and, therefore,
excess NO production [220]. These protective effects of
glutamine, however, have long been recognized to be asso-
ciated with glutamine-mediated potentiation of the HS re-
sponse. In fact, glutamine attenuates endotoxin-induced
lung metabolic dysfunction [221] and reduces lung in-
jury after sepsis, thus improving survival, by enhancing
HSP70 expression [222, 223]. Moreover, glutamine pro-
tects against renal ischemia-reperfusion injury [224].
This is because glutamine protects against cellular injury
by increasing HSF1 function [225]. Glutamine not only
enhances transactivation of HSF1 over heat shock genes
through increased HSF1 trimerization (both spontaneous
and heat-induced) but also induces HSF1 expression by
activating its transcription in a CCAAT enhancer-binding
protein-β (C/EBPβ)-dependent manner [56]. This was
also confirmed in in vivo studies with trained rats [49].
Glutamine increases HSF1 nuclear localization and DNA
binding, which is accompanied by augmented relative
abundance of activating phosphorylation at Ser230 of
HSF1 [56]. Apart from its role in facilitating HSF1 trimeri-
zation (a necessary step for its nuclear migration and ac-
tivity), glutamine induces HSP expression via N-acetyl-O-
glycosylation (O-GlcNAcylation) and phosphorylation of
HSF1 and Sp1 transcription factors [53]. In turn, glu-
cosamine 6-phosphate needed for O-GlcNAc-dependent
post-translational modifications is furnished by a special
and nutrient-sensing pathway, the hexosamine biosyn-
thetic pathway (HBP), which is a metabolic shunt from
glycolysis, normally representing 1–3 % of incoming
glucose in cells [226].
HBP is a metabolic pathway that leads to the eventual

synthesis of uridine diphosphate (UDP)-N-acetylglucosa-
mine and (UDP)-N-acetylgalactosamine (UDP-GlcNAc
and UDP-GalNAc, respectively) after processing through
glutamine:fructose-6-phosphate amidotransferase (GFAT,
the first and rate-limiting step of HBP). UDP-GlcNAc and
UDP-GalNAc, in turn, may be attached to serine or
threonine hydroxyl moieties in nuclear and cytoplasmic
proteins by the enzymic action of O-linked-N-acetylglu-
cosaminyl (O-GlcNAc) transferase (a.k.a. OGT) [227].
The main donors for UDP-GlcNAc are glucose, glutam-
ine and uridine triphosphate (UTP) from the HBP.
Similar to the widespread cascades of phosphorylation
that work as switchers and/or fine-tuners of intermedi-
ate metabolism, the O-GlcNAcylation occurs in many
post-translational modifications in response to internal
or environmental changes [228]. O-GlcNAcylation is
often competitive with phosphorylation at the same sites
(or at proximal sites) on proteins. Indeed, O-GlcNAc sig-
naling and its crosstalk with phosphorylation reactions af-
fects the post-translational state of hundreds of proteins
in response to nutrients and stress, and is also altered in
several metabolic diseases and inflammatory processes
[229]. For instance, glutamine stimulates the expression of
the argininosuccinate synthetase (ASS) gene (involved in
the regulation of NO production via NOS in many cells
[230]) via O-GlcNAcylation of Sp1 [54, 231], a key tran-
scription factor required for full HS response [54, 105,
231]. Glutamine availability has also been identified as a
limiting step for the activation of the mammalian target of
rapamycin (mTOR) [232]. This is of note because many
initiation transcription factor complexes (e.g., eIF2, eIF4F),
which are assembled from multiple subunits, are sensi-
tive to the activation by the mTOR cascade [233], thus
resulting in coordinated protein synthesis and degrad-
ation [148]. Key intracellular proteins and transcrip-
tional factors, such as Sp1 [54, 231], are known to be
O-GlcNAcylated via HBP during stress, injury, or ill-
ness, while phosphorylation of the eIF2 promotes the
activation of HSF1 [41], leading to the expression of
HSPs under stress conditions [56].
Increasing evidence suggest that glutamine may also

act on HBP via p38/MAPK, which participates in its
downstream actions [234]. Indeed, p38/MAP kinase, but
not phosphoinositol-3 kinase (PI3K), signals downstream
of glutamine-mediated fibronectin-integrin pathway after
intestinal injury, and this dramatically enhances HS re-
sponse [235]. In this case, glutamine has been shown
to play a cytoprotective role by dephosphorylating p38/
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MAPK downstream of glutamine-mediated fibronectin-
integrin osmosignaling after HS [235]. In rat kidney
proximal tubular cells, high glucose stimulates angiotensi-
nogen gene expression and cell hypertrophy via activation
of HBP, in a process partially mediated by p38/MAPK
[236]. This is similar to that found in neutrophils obtained
from exercised rats, in which glutamine supplementation
prevents exercise-induced neutrophil apoptosis in parallel
with a reduction in p38/MAPK and JNK phosphorylation
besides p53 and caspase 3 expression [237].
There is another important point where glutamine me-

tabolism intercepts HS response via HBP. Accordingly,
OGT-mediated UDP-GlcNAc addition reaction regulates
HS response by blocking GSK-3β, an enzyme that con-
stitutively inhibits HSF1 activation by phosphorylating
the transcription factor at Ser303 [55]. Thence, glutamine-
mediated increased fluxes through HBP may, on the one
hand, block GSK-3β, thus liberating glycogen synthesis by
glycogen synthase and, on the other, may liberate HSF1
thus allowing enhanced expression of HSP70 [55, 238].
HBP is a nutrient-sensing pathway [226] that presents
multiple connections with energy metabolism, not only
with glycogen synthesis [219]. AMPK, which occupies a
central position in metabolic regulation in order to
avoid inflammatory dysregulation, phosphorylates and
inhibits GFAT1, the flux-generating step of HBP, thus
allowing for the downregulation of such a shunt from
the glycolysis under low glucose situations [239]. Con-
versely, chronic hexosamine flux stimulates fatty acid oxi-
dation by activating AMPK [240]. The metabolic flux
through HBP is dependent on glucose availability [51].
Therefore, in high-glucose states, HBP may act adversely
as GFAT1 gene expression is enhanced by hyperglycemia
contributing to an exaggerated flux through HBP that can
be deleterious [52]. Indeed, exacerbated HBP activity does
contribute to insulin resistance rather than being cytopro-
tective [219]. In fact, overenhanced flux through HBP is
an inducer of ER stress, while being associated with insu-
lin resistance [52, 241], obesity [242], and abnormal glu-
cose disposal rate in T1DM [243] and T2DM itself [241].
Physiologically, glutamine-elicited increase in the flux

through HBP leads to a momentary redox imbalance by
depleting pentose phosphate shunt (cf. Fig. 5a, b). There-
fore, at the same time that glutamine is cytoprotective
by enhancing HS response, it may induce a small redox
imbalance that suffices to increase the expression of
redox-protecting genes, including those involved in GSH
biosynthesis [244]. De novo GSH synthesis is primarily
induced by transcriptional regulation [245–247], via a
cascade of signaling events leading to nuclear factor-
erythroid 2 p45-related factor 2 (Nrf2) binding to pro-
moter regions of antioxidant response elements (ARE)
in the nucleus [247–250]. Similarly to that observed for
NF-κB, under basal conditions, cytoplasmic Nrf2 is
bound to the Kelch-like ECH-associated protein 1 (Keap1).
However, when cells are exposed to oxidative stress, the
oxidation of critical cysteines present in Keap1 protein
liberates Nrf2 to dissociate and traverse to the nucleus
(see, for instance, ref. [87]), triggering the expression of
a number of redox-protective genes, such as γ-GCS,
glutathione S-transferases (GST), GSSG reductase, glu-
tamine synthetase (GS), glucose-6-phosphate dehydro-
genase (G6PDH), and superoxide dismutase [97, 98].
The same is observed when cells are treated with anti-
inflammatory and HS response inducers cyPGs, which
are able to undergo Michael addition reactions directed
to Keap1 [87]. This passingly redox challenge is believed
to be produced by glutamine-evoked depletion of glucose-
6-phosphate (G-6P), which is necessary for the synthesis
of NADPH. In turn, NADPH is used to regenerate GSH
from GSSG via a GSSG reductase-catalyzed reaction [49].
Therefore, we believe that glutamine diverts G-6P from
the hexose-monophosphate shunt toward glucose-6-
phosphate isomerase to form fructose-6-phosphate (F-6P)
which can be further metabolized through the HBP. As
depicted in Fig. 5, glutamine may divert muscle glycoly-
sis and glycogenesis favoring the formation of UDP-N-
acetylglucosamine, the end-product of HBP [55, 239].
When performing a flux balance analysis, based on me-
tabolite concentrations of the rat muscle [49], it is pre-
dicted that the flux through G6PDH should be around
700 μmol min−1 g tissue−1 (corresponding to 3.3 % of
incoming glucose after hexokinase reaction), whereas
the flux through GFAT, 80 μmol/min/g tissue, responds
to 4.3 % of fructose-6-phsophate utilized by the muscle
(or 0.9 % of total incoming glucose). Under a high-
glutamine environment, however, the flux through GFAT
may enhance up to approx 450 μmol min−1 g tissue−1,
which corresponds to 20 % of incoming fructose-6-
phoshate (or 4.3 % of total incoming glucose through
hexokinase), substantially reducing (by roughly 50 %)
the amount of G-6P available to enter pentose phosphate
shunt, via G6PDH. Hence, high intracellular glutamine
concentrations are expected to reduce the formation of
NADPH leading to a transient decrease in GSH which
rapidly triggers the transcription of Nrf2-dependent genes,
such as G6PDH, γ-GCS, and GS (Fig. 5b). Beside of this,
N-acetylglucosamine produced by the HBP regulates the
activity of HSF1 and GSK-3β, leading to increased HS re-
sponse [55]. In fact, chronic glutamine supplementation
to trained rats has shown to increase muscle GSH con-
tents and GS at the same time that it has enhanced HS
response [49]. Corroborating this assumption is the fact
that the activation of GFAT depletes intracellular glucose
stores [239]. Oppositely, GSH depletion, per se, increases
OGT gene expression leading to O-GlcNAcylation of dif-
ferent regulatory proteins [251], thus strongly suggesting
that HBP has a short-loop positive feedback system
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Fig. 5 (See legend on next page.)
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Fig. 5 Heat shock response interplay with glutamine metabolism via hexosamine biosynthetic pathway (HBP). Depicted are the major routes of
glucose utilization after its entry in cells. Soon after passing hexokinase (HK) bottleneck, phosphorylated glucose may be diverted to glycolysis,
glycogen synthesis, or pentose phosphate shunt (hexose-monophosphate shunt), in a proportion that depends on the cell type and physiological
conditions. The present artwork is a graphic illustration of experimental values obtained from soleus and gastrocnemius muscles of 8-week trained
(treadmill) rats treated or not with L-glutamine supplementations during the last 21 days [49]. Hence, this is an example of a very metabolically
active skeletal muscle. Thicknesses of arrows indicate the approximate proportion of each metabolite entering each given sub-pathway. It is
noteworthy that, under normal conditions, the muscle preferentially (~75.5 %) utilizes massive amounts of G6P to build up glycogen, at the
same time one fifth of entering G6P flows toward glycolysis. In this case, only a minor proportion (~3.3 %) is diverted to hexose-monophosphate shunt
in order to feed NADPH generation and redox protection (please, confront a and b). Under L-glutamine supplementations, excess intramuscular
L-glutamine supply enforces fructose 6-phosphate (F6P) to divert from glycolysis and enter hexosamine biosynthetic pathway (HBP, shaded
box in the center) after its conversion to glucosamine 6-phosphate by glutamine 6-phosphate amidotransferase (GFAT, a.k.a. glutamine-
fructose-6-phosphate transaminase). UDP-N-acetylglucosamine (UDP-GlcNAc), the final HBP metabolite, operates to enhance the heat shock
response by acting at two different points: (1) by blocking glycogen synthase kinase-3β (which phosphorylates and inactivates HSF1, under
basal conditions) and (2) by covalent modification of HSF1, which becomes O-linked-N-acetylglucosaminylated, having more DNA-binding and
transcribing activities onto heat shock genes. Moreover, at the estimated L-glutamine concentrations for the soleus (17–18 mM, [49]) and
gastrocnemius (ca. 8.5 mM, [49]) muscles, a possibility does exist in that substrate flux through glutamine 6-phosphate amidotransferase
(GFAT), whose basal capacity is low in comparison with those of the main concurrent pathway (PFK, a), should be conspicuously faster toward
the formation of UDP-GlcNAc than in the direction of glycolysis, hexose-monophosphate shunt, or glycogenesis, causing enhanced generation
of glucosamine 6-phosphate at the expense of much more glucose 6-phosphate (b). This empties hexose-monophosphate shunt leading to
momentary deficit of NADPH which triggers Nrf2 transcription factor-dependent gene transcription that accounts for the enhanced expression
glutamine synthetase (EC 6.3.1.2 a.k.a. glutamate-ammonia ligase), γ-glutamylcysteine synthetase (EC 6.3.2.2, a.k.a. glutamate-cysteine ligase)
and more G6PDH in order to counteract this redox imbalance. HSF1, whose activity must be enhanced following high-intensity exercise
training, is potentiated by O-linked N-acetylglucosamine modification [55] thus increasing cytoprotection through the production of more
HSP72 protein chaperone molecules needed during the recovery phase. The fluxes through the biochemical pathways showed here were
calculated by using Michaelis-Menten function, intracellular muscle L-glutamine, and L-glutamate estimated from [49] and the following data
for the rat muscle: hexokinase (HK, EC 2.7.1.1, Km = 0.035 mM for D-glucose, Vmax = 20 μmol min−1 mg protein−1; [342]) and glucose-6-phosphate
dehydrogenase (G6PDH, EC 1.1.1.49, Km = 0.002–0.070 mM for glucose-6-phosphate, Vmax = 54 μmol min−1 mg protein−1 [343, 344]); glucose-6-
phosphate isomerase (G6PI, a.k.a. phosphoglucoisomerase, EC 5.3.1.9, Km= 0.25 mM for glucose-6-phosphate, Vmax = 520 μmol min−1 mg protein−1 [345],
assumed to be a near-equilibrium step; 6-phosphofructokinase (PFK, EC 2.7.1.11; Km= 0.086 for fructose-6-phosphate, Vmax = 265 μmol min−1 mg protein−1

[346, 347]); phosphoglucomutase (PGmutase, EC 5.4.2.2, Km≅ 0.07 mM for glucose-6-P and glucose-1-P, Vmax ≅ 1300 μmol min−1 mg protein−1 [348];
glutamine 6-phosphate amidotransferase (GFAT, EC 2.6.1.16, Km ≅ 0.4 mM for fructose-6-phosphate and Km = 0.8–1.6 mM for L-glutamine;
Vmax ≅ 35 μmol min−1 mg protein−1 [349–351])
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devoted to assist in cytoprotection via HS response soon
as some redox threatening situation is ongoing.
Finally, it is import to distinguish that glutamine re-

markably enhances HS response but glutamine is not a
HS inducer itself. Although glutamine is able to slightly
increase HSF1 trimerization in non-stressful situations
[49, 56], glutamine acts physiologically as an enhancer of
the HS response, which means that a pre-existent (e.g.,
exercise, heat stress, elevated sympathetic nervous system
tonus) stress-induced HSF1 activation must be present for
glutamine to fully enhance HSF1 activation and transcrib-
ing activity. In addition, iHSP70 per se participates in
glutamine-induced HS response [252].
As a whole, glutamine synthesis and availability is indis-

pensable for full and accurate cytoprotective stress re-
sponses. Therefore, conditions likely to induce glutamine
depletion in the blood stream, reducing its availability to
other cells, may result in cellular dysfunction.

Glutamine depletion states impair the heat shock
response
In response to several forms of stress, cells can rapidly
increase uptake and utilization of glucose and glutamine,
mainly for the maintenance of basal metabolism and cell
defense response purposes [212–214, 216, 218, 253]. Con-
sequently, glutamine depletion does impair cellular stress
response in human leucocytes [254]. In fact, it has long
been recognized that the HS response of eukaryotic cells
depends on glutamine and/or some glutamine metabolite
[255]. Now, it is clear that, besides its classic metabolic
roles, glutamine is key for survival and cytoprotection via
HBP. Studies suggest that inhibition of both glycolysis
and HBP results in decreased cell survival [256]. Due to
its crucial position in regulating the HS response, HBP-
emanated O-GlcNAc post-translational modifications
mediate cell function and survival in the cardiovascular
[257–259] and neuromuscular [260] systems, while its
defective function is associated with cancer [261]. There-
fore, it is not surprising that in vitro attenuation of HBP
remarkably reduce maximal HS response [54], whereas
genetic mutations in GFAT gene, in which HBP activity is
reduced, lead to impairment of neuromuscular junction
development and function [260].
Reductions of bodily glutamine concentration may

contribute to cell death due to a reduced stress re-
sponse capacity [209, 262]. Interestingly, upon depletion
of intracellular glutamine, the uptake of some amino
acids, such as leucine, declines and mTORC1 becomes
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inactivated. However, mTORC1-S6K1 signal is critical
for the regulation of cell cycle progression, cell size, and
cell survival [232, 263], so that reduction in intracellular
glutamine stores may hamper cell survival. Recent studies
have demonstrated that glutamine-assisted HS response
may modulate autophagy, by regulating mTOR/Akt path-
way and by blocking signaling pathways associated with
protein degradation [41]. In cell culture, glutamine in-
duces autophagy under basal and stressed conditions and
prevents apoptosis under heat stress through its regulation
of the mTOR and p38/MAP kinase pathways [57]. This is
of note because, besides chaperone-based, eukaryotes lay
hold on autophagy as a part of protein quality control, as
discussed in previous sections. Hence, by facilitating
autophagy via modulation of the HS response, glutam-
ine becomes of importance in chronic degenerative dis-
eases of aggregative nature. Indeed, as glutamine may
enhance HS response over an initiating proteostasis de-
fect, glutamine can even avoid the triggering of autoph-
agy in some circumstances, such as acute exercise
(which is capable of inducing toxic imbalances that lead
to autophagy) [264, 265].
Glutamine deprivation reduces proliferation of lympho-

cytes, influences expression of surface activation markers
on lymphocytes and monocytes, affects the production of
cytokines, and stimulates apoptosis. Moreover, glutamine
administration seems to have a positive effect on glucose
metabolism in the state of insulin resistance [266]. This
protective effect of glutamine is related to glutamine-
induced stabilization of mRNA encoding HSP70 [266],
possibly via HBP.
As discussed above, fever is a protective acute-phase

response to infection. However, in critically ill patients,
the harmful effects of fever seem to be predominant.
Critical illness is frequently (but not necessarily) associ-
ated with reduced plasma glutamine levels, which contrib-
ute to the immune suppression in these patients due to
impaired monocyte function [267]. In vitro studies with
glutamine-depleted monocytes (obtained from PBMC
of health human donors) have shown that glutamine
deprivation dramatically reduces PBMC thermoresis-
tance and suggests that elevated body temperature may
damage monocytes in critically ill patients with reduced
plasma glutamine levels, possibly via inhibition of the
cytoprotective HS response [267]. Age-related intestinal
dysfunctions may also contribute to deficient passage of
amino acids to the circulation, as inflamed gut mucosa
utilizes glutamine in large quantities [213]. Studies in
animal models of inflammatory bowel disease (IBD)
suggest that supplementation of total parenteral nutrition
with glutamine may increase glutamine plasma concentra-
tions, reducing intestinal damage, improving nitrogen
balance and the course of the disease. However, human
data supporting this assumption are either missing or
contradictory [268]. Nevertheless, glutamine supplemen-
tation has convincingly been demonstrated to prevent
exercise-induced intestinal permeability, possibly through
HSF1 activation [269, 270].
In conclusion, it is evident that the overall metabolism

of glutamine in aging and age-associated degenerative
diseases of inflammatory nature may be partially compro-
mised and this may negatively impact the HS response in
the elderly. Diminished bodily synthetic capacity that
occur in aging due to muscular disuse (and/or sarcopenia)
and defects in glutamine absorption by the intestine
and/or in their utilization by the gut may also be at the
center of glutamine depletion observed in some age-related
conditions. Hence, interventions devoted to improve glu-
tamine turnover and metabolism are predicted to be of
value in assisting the improvement of the HS response in
the elderly.

Physical exercise, glutamine, and HS response in
aging
Physical exercise is one of the most powerful physiological
inducers of the HS response, comparable only to fever
and anti-inflammatory cyPGs. Since exercise is a homeos-
tatically threatening situation that evoke a series of physio-
logical adjustments, it has long been thought that exercise
should mandatorily induce the HS response. Some of the
conditions known to elicit cellular stress response are
similar to those experienced by cells in response to
physical exercise. They include hyperthermia, transient
ischemia, exercise-elicited generation of ROS/RNS and
oxidative stress, cytokine production, muscular stretch-
stress, intramuscular glucose and glycogen reduction,
and alterations in intracellular calcium and pH values.
All of them are potent inducers of HSP expression in
different cell types and tissues [271, 272].
Locke and co-workers [273] were the first to demon-

strate that vigorous physical activity is associated with the
induction of HSP70 in rodents. Subsequently, increased
expression of HSPs in humans following exercise was
confirmed [274]. Now, it is peaceful that HSPs, such as
HSP72 (iHSP70), are induced or activated upon acute
exercise bouts and after chronic exercise training regi-
mens, whereas HSP induction and HS response are key
components of exercise adaptation that could contrib-
ute to improvements in athletic performance [275].
Although exercise has been being increasingly pre-

scribed to elderly people in order to combat chronic in-
flammatory diseases [276, 277], only a few studies have
addressed exercise impacts on HS response in aging
[278–280]. Exercise-induced transient increases of iHSP70
inhibit the generation of inflammatory mediators and vas-
cular inflammation, metabolic disorders (e.g., obesity and
T2DM), and atherosclerotic CVD. In all these conditions,
benefits of exercise on inflammation and metabolism
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depend on the type, intensity, and duration of physical
activity [274]. Exercise has also been shown to produce
favorable effects against neurodegenerative diseases, by
both preventing and avoiding the progress of age-related
AD and PD [281]. This is linked to the fact that exercise
enhances hippocampal neurogenesis, thus improving
learning and memory in aged people [282].
The expression pattern of HSPs in skeletal muscles

has been demonstrated to decrease in old rats compared
with young ones. Interestingly, however, exercise training
significantly increases HSPs in aged rats [283]. Hence, if
acute exercise-induced HS response is severely blunted in
the muscle of elderly individuals [284], exercise training
regimens are emerging as more appropriate approaches
for the elderly. Although there are some discrepancies in
relation to HSP70 expression in response to exercise train-
ing in young people [285], expression of HSPs in skeletal
muscles of aged individuals depends on the frequency and
duration of exercise training [283]. Exercise induces au-
tophagy in multiple organs involved in metabolic regu-
lation, such as skeletal muscle, liver, pancreatic β cells,
adipose tissue, and brain [41, 264, 265], so that exercise
influences protein quality control via HS response per
se and through HS response-dependent autophagy. In-
deed, exercise stress and molecular control of proteostasis
provides evidence that the HS response and autophagy co-
ordinate and undergo sequential activation and downregu-
lation and that this is essential for proper proteostasis in
eukaryotic systems [41]. A systematic analysis carried out
by Dokladny and colleagues [41] on the association be-
tween exercise-induced HS response (assessed by iHSP70
expression) and autophagy in humans (231 humans; 22
studies, including data from their own group) supports
the notion that autophagy is upregulated during the early
degradation phase of exercise while iHSP70 expression
tends to increase during the later building and protein
synthesis phase. Hence, HSP70 expression appears to be
the main controller of protein synthesis and degradation,
whereas autophagy remains under inhibitory control of
the HS response. Therefore, exercise-induced autophagy
represents, up to a certain point, a desirable response to
avoid the formation of misfolded protein aggregates and
defective organelles, provided not in excess.
Pharmaceuticals that activate HSPs and produce a

“training-like” HS response are now under clinical trials.
This is the case of hydroxylamine derivatives, such as
the compound BGP-15, a small molecule that has been
demonstrated to activate HSP70 in skeletal muscle, inhi-
biting the early-phase acetylation of HSF1 and prolong-
ing the duration of its binding to HSEs [275]. In mouse
models of muscular dystrophy, the HS response poten-
tializer BGP-15 decreases kyphosis, improves the dys-
trophic pathophysiology in limb and diaphragm muscles,
and extends lifespan [286]. It has been demonstrated
that iHSP70 interacts with sarcoplasmic/endoplasmic
reticulum Ca2+-ATPase (SERCA) to preserve its function
under conditions of stress, ultimately contributing to the
decreased muscle degeneration observed after HSP70
upregulation [286]. The HS response inducer BGP-15
has proven to efficiently reverse the noxious effects of
HFD-induced obesity in the muscle and adipose tissue,
by increasing the HS response [12]. BGP-15 improves
cardiac function and reduces arrhythmic episodes in dif-
ferent mouse models that progressively develop heart
failure and atrial fibrillation and can provide cytoprotec-
tion and normalization of cell signaling, which are often
defective in the aged and diseased heart [287]. Therefore,
if BGP-15 was developed to simulate the beneficial ef-
fects of exercise, it is plausible to suppose that exercise
itself should present better (or the best) accomplishment.
As a powerful exercise-related enhancer of the HS re-

sponse, glutamine is a potential target for intervention
in age-related conditions. Several studies with different
cell types, including muscle, intestinal mucosa, immune
cells, specific neurons of the central nervous system, he-
patocytes, and pancreatic β cells, just to cite a few exam-
ples, have irrefragably demonstrated that glutamine is
required in incubation/culture media for normal growth
and function [214, 216, 218, 288]. In catabolic (e.g., sep-
sis, recovery from burns and surgery, exhaustive exercise)
and inflammation-related (age-associated chronic diseases)
situations, glutamine requirements increase dramatically.
However, at the same time that the body increases its de-
mand for glutamine, several organs reduce their ability to
produce the amino acid (e.g., liver, kidneys), which leads to
an overall deficit of glutamine in the body. Therefore, cata-
bolic processes, which increase amino acid utilization in
order to generate other necessary compounds (including
glucose and acute phase proteins), contribute to the
diminution of glutamine stores, a situation that is ag-
gravated in high-throughput inflammatory and oxida-
tive stress responses, as activated immune cells dramatically
increment their glutamine utilization [208, 214, 216, 218,
289]. Although there is no single explanation for the glu-
tamine deficit found in the above situations [210, 211], this
effect is clearly observed in both humans [290] and experi-
mental animal models [291]. Hence, under various con-
ditions, glutamine can become a conditionally essential
amino acid [292].
Exercise is a homeostasis-challenging situation that

tends to induce, at the beginning of the session, an ac-
celerated glutamine and alanine release from activated
skeletal muscles, thus enhancing plasma concentrations
of both amino acids [208]. This transient increase is due
to the high production of NH4

+ following muscle trans-
aminations that occur upon the increased energy demand
for ATP during muscle contraction. Additionally, alanine
released by the working muscle is taken up by the liver in
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order to furnish glucose to the circulation (glucose-
alanine cycle) via gluconeogenesis. Still in the liver, NH4

+

produced during transaminations must be diverted to urea
(a bicarbonate-consuming reaction) or glutamine (a
bicarbonate-saving pathway). Since excess intracellular
NH4

+ could not be poured into the circulation because
NH4

+ is cytotoxic (and, particularly neurotoxic) when at
high concentrations, glutamine was settled during the
evolution of metabolism as a safe circulating “carrier”
of NH4

+ moieties [208]. Moreover, sparing bicarbonate
(the main physiological alkaline defense of the body) is
of extreme importance during exercise, in view of acid-
base imbalances imposed by the contracting skeletal
muscle and exercise-related metabolic adjustments that
tend to increase acid production.
In different catabolic conditions, including overtrain-

ing, the overall glutamine stores may be threatened. The
availability of glutamine is thought to be a major factor
during critical illnesses, such as sepsis, extensive burns,
pancreatitis, trauma, and surgery [209, 293, 294]. More-
over, the concentration of glutamine in patients diagnosed
with T2DM has shown a significant reduction (20 %),
when compared with healthy individuals [295]. In colonic
cancer patients undergoing surgery, plasma glutamine
levels drop by 30 %, independently of the previous glutam-
ine depletion [296]. In severe pancreatitis [297] and
trauma patients [298], plasma glutamine levels decrease to
less than 50 % of its basal levels as compared to control
values. Similar effects have also been seen in experimental
animal models of sepsis, followed by severe adaptive
immune system suppression (low T and B lymphocyte
responses) [50, 209, 299]. In such conditions, plasma
glutamine depletion is an independent outcome factor
in critically ill patients [300]. But even in non-ill condi-
tions, such as during and after exhaustive exercise, glu-
tamine metabolism may be affected in tissues, thus
undoubtedly impairing the immune system, in spite of the
absence of any observed change in plasma glutamine
levels [301]. Hence, numerous studies in animal models of
catabolic and critical illness indicate that total parenteral
nutrition (TPN) supplemented with glutamine may en-
hance protein anabolism, gut-associated barrier functions,
systemic immunity, and gut mucosal repair. This is appar-
ently due to the potential of glutamine as an important
fuel substrate for the gut itself because glutamine upregu-
lates cytoprotective pathways [302]. However, in a recent
study with intensive care unit (ICU) patients, it has been
encountered that TPN supplemented with glutamine di-
peptide is safe, but does not alter clinical outcomes among
the patients [302], while clinical trials have not demon-
strated prolonged advantages, such as reductions in mor-
tality or risk of infections in adults [303]. In a recent
meta-analysis of randomized clinical trials [304], no differ-
ence has been found to allow the recommendation of
glutamine supplementation to generic population of critic-
ally ills. Therefore, the efficacy of glutamine supplementa-
tion is still under debate.
Aged people tend to present an array of intestinal dys-

functions, including those associated with gut mucosa
transport and dysbiosis [31–33]. Since glutamine is of
absolute requirement as a fuel substrate for the entero-
cyte, intestinal utilization of glutamine is important for
maintaining the integrity of the intestinal barrier, with
subsequent prevention of bacterial translocation and,
through stimulation of the gut-associated immune sys-
tem, prevention of gut barrier atrophy. It is assumed that
a derangement of the gut mucosal barrier function,
which occurs during aging and critical illnesses, results
in an amplification of the general inflammatory response
predisposing patients to multiple organ failure [305]. In
fact, chronic glutamine supplementation reduces exercise-
induced intestinal permeability while inhibiting NF-κB
pro-inflammatory pathways in human PBMC, in a mech-
anism associated with the activation of HSP70 expression
[269]. The same was confirmed in physically active sub-
jects acutely treated with oral doses of glutamine prior to
exercise [270]. Increased permeability may be a factor in
the pathogenesis of Crohn’s disease, which is a chronic in-
flammatory disease, frequently observed in the elderly,
characterized by low-HS response that perpetuates the
inflammatory state [306]. In fact, approximately 50 % of
patients with Crohn’s disease have an increased small
intestinal permeability [307], whereas oral glutamine
supplementation initiated before advanced age in rats
increases gut mass and improves the villus height of
mucosa, thereby preventing the gut atrophy encountered
in advanced age [303]. Even though, a 4-week treatment
with oral glutamine supplementations had shown no ef-
fect on impaired intestinal permeability in Crohn’s disease
patients [307].
There have been raised several theories to explain the

persistent, relapsing inflammation observed in patients
with Crohn’s disease or ulcerative colitis. However, all of
them converge to the fact that gut mucosa cannot over-
come the persistent inflammatory milieu resolving in-
flammation [308] that becomes chronic. Crohn’s disease
progression is dependent on persistent inflammatory sta-
tus based on NF-κB- and p38/MAPK-elicited signaling
[309]. In any way, induction of the HS response (employ-
ing heat treatment, for example) has been shown to pro-
tect against TNFα-induced inflammatory shock and this is
associated with HSP70 expression in many organs, includ-
ing small and large intestines [310]. Additionally, intestinal
malabsorption of glutamine has been referred to as causal
to the ineffectiveness of oral glutamine treatment of obese
insulin-resistant mice [311]. If, on the one hand, HSP70
expression is not definitely ascribed as causal or result of
chronic inflammatory bowel diseases, overexpression of
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HSP70 was found to prevent the development of inflam-
matory process in the large intestinal mucosa provoked by
various damaging factors [32]. Corroborating this view-
point is the finding that combined glutamine and arginine
administration is able to decrease pro-inflammatory cyto-
kine production by biopsies from Crohn’s patients, this
being associated with suppression of NF-κB- and p38/
MAPK-based inflammatory pathways [312]. Although in-
testinal obstruction is not exactly a chronic inflammatory
disease, glutamine supplementation decreases intestinal
permeability and preserves gut mucosa integrity in experi-
mental mouse model of intestinal obstruction [313].
As stated in the “Background” section, aging process

may affect the HS response leading to conformational
neurodegenerative diseases of inflammatory nature, this
being affected by bodily glutamine status. In fact, the
association with aging is one of the most distinctive
characteristics of protein conformational diseases. This
connection is particularly striking in neurodegeneration
associated with deficient protein quality control (e.g., HS
response, autophagy) where, for each specific disease, age
is the strongest predictor of disease onset, even for the fa-
milial variants. On the other hand, age appears to have a
modifying, rather than causative, influence on disease on-
set, as each disease has its characteristic age of onset, with
AD and PD being late onset, ALS occurring most fre-
quently in early to mid-life, and HD exhibiting a strong
positive correlation between age of onset and polygluta-
mine length polymorphism [167]. In vitro studies suggest
that healthy neuronal cells require both intracellular and
extracellular glutamine and that the neuroprotective ef-
fects of glutamine supplementation may prove beneficial
in the treatment of AD. In fact, glutamine acts as a neuro-
protectant against DNA damage and Aβ- and H2O2-
induced stress [314]. However, no clinical trial is currently
being carried out as to assess the possible beneficial effects
of glutamine supplementation, or combined glutamine
plus exercise schedules, over HS response in neurodegen-
erative diseases in aging.
Although clinical studies with aged people remain scarce,

experimental studies reported that glutamine supplementa-
tions may protect cells, tissues, and whole organisms from
stress and injury by blocking NF-κB downstream inflam-
matory signals, thus promoting a balance between pro-
and anti-inflammatory cytokines, by improving intes-
tinal integrity and immune cell function, and, finally, by
enhancing HS response, so that parenteral glutamine (>
0.50 g kg−1 day−1) may be of potential benefit to elderly
individuals [305]. When (and preferably) orally given,
glutamine may be administered as free amino acid or in
its dipeptide forms. However, even though a priori safe,
caution should be taken in supplementing middle-aged
and elderly individuals with glutamine at the above dos-
age, as increases in serum urea and creatinine, paralleled
by decreased in estimated glomerular filtration rate, have
been reported in this specific population after glutamine
supplementations [315]. Alternatively, glutamine can be
administered as a part of TPN (0.3–0.5 g/kg body weight)
and, as such, can reduce the dramatic decrease in glutami-
nemia and tissue glutamine in glutamine depletion
states [294]. Glutamine, typically furnished to the pa-
tient as the dipeptide L-alanyl-L-glutamine, can be com-
mercially found at a concentration of 200 g/L sterile
solution, with an osmolality <900 mOsm/kg H2O. These
parenteral solutions are more effective than oral or enteral
solutions, when the maintenance of glutamine concentra-
tion in the body is desired [294]. Nevertheless, TPN is very
invasive and may expose the patient to increased risk of
infections, so that, as far as possible, enteral alternatives
should be chosen. Moreover, enteral routes are much
more physiological and provide the physiological gener-
ation of other amino acid derivatives (e.g., citrulline and
arginine), which can only be accounted for if glutamine is
given enterally [64, 230].
Since intestinal dysfunctions are commonly found in

the elderly that hamper the ability of aged people to
maintain a good nutritional state [31–33], more efficient
ways to deliver glutamine into the circulation have been
permanently being investigated. In this regard, the excel-
lent effects of glutamine dipeptides on glutamine avail-
ability have been attributed to the fact that enterocytes
have a more efficient transport mechanism for the absorp-
tion of dipeptides and tripeptides than for the absorption
of free amino acids [316]. The glycopeptide transport pro-
tein (PepT-1), which is located in the luminal membrane
of the jejunum and the ileum, has a broad substrate speci-
ficity and actively transports dipeptides and tripeptides
from diet into the enterocytes of humans and animals
[317, 318]. Research utilizing radioactively labeled glutam-
ine dipeptides has shown that nearly 90 % of the radio-
activity accumulates intact in the cytosol. Through this
route, it can be avoided intracellular hydrolysis of glu-
tamine and its subsequent metabolism by enterocytes,
proceeding directly into systemic circulation [291, 319].
Intestinal glutamine uptake is regulated by the high-
affinity glutamine transporter solute carrier family 1
member 5 (SLC1A5) and its inhibition blocks glutamine
entry in enterocytes leading to the inhibition of mTORC1
signaling and consequent dysregulation of autophagy
[208]. In addition, glutamine can be carried by SLC7A5,
which is a bidirectional transporter that regulates the sim-
ultaneous efflux of glutamine out of cells and the transport
of other amino acids into cells. This directional control al-
lows for excess glutamine to signal into cell growth pro-
moting pathways, while suppressing catabolism in different
tissues and cells [232, 320].
Studies in experimental animal models with acute oral

glutamine supplementation, in its free form or as a
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dipeptide, have demonstrated an increase in plasma
glutamine concentrations between 30 to 120 min after
supplementation [321]. Nevertheless, the concentration
and the area under the curve of the dipeptide acutely
supplemented group has been 26 % superior to that of
free L-glutamine supplemented group, 30 min after the
supplementation [321]. In another study, animals submit-
ted to exhausting physical exercise and chronic supple-
mentation with L-alanyl-L-glutamine have demonstrated
that the nutritional intervention may attenuate the re-
duction of glutamine concentration in the soleus and
gastrocnemius muscles immediately and 1 h after the
exercise session [319]. Combined exercise training and
glutamine supplementation has also been shown to in-
crease hepatic and muscular concentrations of glutam-
ine and glutamate [291, 322].
HSP70 expression is decreased during muscle inactiv-

ity and aging, and evidence supports the loss of HSP70
and its accompanying HS response as a key mechanism
that may drive muscle atrophy, contractile dysfunction,
and reduced regenerative capacity associated with these
conditions [40]. Besides neurodegenerative diseases dis-
cussed above, aging also predisposes individuals to a
progressive loss of muscle mass and function (sarcopenia).
Primary causes of sarcopenia include a sedentary lifestyle
and malnutrition. And, although the causes for this loss in
skeletal muscle mass are multifactorial, sarcopenia is
known to be associated with a state of chronic low-grade
inflammation, being correlated with insulin resistance that
culminates in an imbalance between protein synthesis and
degradation rates. Considering that the skeletal muscle is
an essential producer of glutamine, reducing muscle mass
may limit the availability of glutamine for the rest of cells
(e.g., immune cells) [323, 324]. In addition, aging generally
increases protein and amino acid needs above those re-
quired by younger adults [325]. However, glutamine sup-
plementation seems not to be able to combat the muscle
wasting associated with disease or age-related sarcopenia
[303]. In any case, a combination of resistance exercise
plus nutritional interventions has been raised as promising
in treating sarcopenia [26, 148]. This is reinforced by the
fact that whey protein hydrolysate (WPH), a notable
source of glutamine dipeptide, was found to enhance
exercise-induced HSP70 response in rats [326].
While resistance training appears to be the most ad-

equate intervention [26], older individuals fail to adequately
respond to exercise stimuli. Decrement in regenerative cap-
acity may also be due to a dramatic reduction in postpran-
dial anabolism as well as an increase in generation (or
decrease in removal) of ROS. On the other hand, recent
work has suggested that increasing HSP expression through
the manipulation of duration and frequency of exercise
can lead to protection and training-induced adaptation
against aging-induced structural weakness in skeletal
muscles. Accordingly, at least in aged (20 months old)
male Sprague-Dawley rats, muscular HSP70 expression
(alongside HSP27, HSP60, and HSP90) has recently found
to be seriously reduced, as compared to young animals
[238]. This is particularly true for oxidative slow twitch
fibers (soleus). And, as observed in other models, differ-
ent schedules of exercise and exercise training were
able to revert this profile to near-young patterns, which
was followed by enhanced antioxidant enzyme (SOD)
expression and decreased pro-inflammatory (p38/JNK)
pathways. In total, it is reasonable to believe that the
restoration of glutamine availability in aging (i.e., by
supplementation, particularly p.o.) may lead to improved
mTOR downstream pathway activation/sensitivity that
would allow for normal HSF1/HSP70 activation (HS re-
sponse), thus improving muscle integrity, regeneration,
and recovery. Interestingly, lower plasma glutamine avail-
ability and reduced basal and induced levels of HSP70 are
also characteristics of obese, insulin-resistant, and T2DM
people. Similarly to the elderly, these people also present
reduced muscle mass (sarcopenic obesity) [327] and low-
grade inflammation [7, 112].
Besides its influence on intestinal absorptive capacity

and inflammatory status, gut microbiota may modulate
aging-related changes in innate immunity, sarcopenia, and
cognitive function, all of which are elements of frailty
[328]; strikingly, gut microbiota may be shaped by exer-
cise, as discussed below. Changes occurring in the micro-
biota during aging can have an unfavorable impact on
host health, particularly due to microbiota-induced intes-
tinal inflammation and impaired absorption of vital nutri-
ents. The most noticeable feature in the microbiota of
elderly individuals is an alteration in the relative propor-
tions of the Firmicutes and the Bacteroidetes phyla, with
the elderly having a higher proportion of Bacteroidetes
while young adults have higher proportions of Firmicutes
[329]. A polemic paper published in Diabetes in 2007
[330] was the very first work approaching the influence of
gut microbiota ecosystem on low-grade inflammation and
its associated chronic inflammatory diseases [33]. Accord-
ingly, bacterial lipopolysaccharide (LPS) was identified as
a triggering factor for such diseases, whereas mice feeding
on a high-fat diet (HFD) were found to increase the pro-
portion of LPS-containing microbiota in their intestines.
These observations were further confirmed in many other
subsequent studies [331–333]. In fact, a huge body of evi-
dence indicates that gut microbiota participates in whole-
body metabolism by affecting energy balance, glucose me-
tabolism, and low-grade inflammation associated with
obesity and related metabolic disorders, particularly be-
cause gut microbiota controls gut barrier function and the
onset of metabolic endotoxemia [331]. Many studies that
have examined changes in the gut microbiota in obesity
almost unanimously demonstrate that obese individuals
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have altered levels of certain bacterial groups with a loss
of biodiversity (with the predominance of Firmicutes gen-
era) being the consistent outcome [334]. However, only a
few studies addressed microbiota in aging [328, 329], thus
suggesting that a lot of further efforts must be endeavored
to shed light on novel perspectives for therapeutics and
changes in our lifestyle [33].
That exercise is definitely the best and cheapest way of

reverting chronic inflammatory diseases of whatever
underlying nature is peaceful. What is novel is that exer-
cise influences host-gut microbiota axis [335]. In fact,
low-calorie and increased physical activity program dur-
ing 10 weeks has shown a positive impact on gut micro-
biota composition, decreasing the amount of Firmicutes
genera and increasing Bacterioidetes ones [335]. Fairly
more recently, the triad diet-metabolism-exercise has be-
come neat, particularly after carefully controlled studies
on elite athletes (see, for instance, ref. [336] for review).
In this regard, whey protein (WP) supplementations oc-
cupy a highlighted place. WP and whey protein hydroly-
sates (WPH), which are considerable sources of glutamine
dipeptide and known for their postexercise recovery ef-
fects and muscle hypertrophy results, may contribute to
gut microbiota composition and potentially to lipid me-
tabolism, as judged by metagenomic analysis in samples
from these subjects [336]. Furthermore, WPH are now re-
ferred to as novel antidiabetic agents that affect glycemia
in animals and humans. WPH has proven to ameliorate
blood glucose clearance, reducing hyperinsulinemia and
restoring pancreatic islet capacity to secrete insulin in re-
sponse to glucose in ob/ob mice [337]. Therefore, besides
its well-known effects on cardiovascular and endocrine
systems, exercise alone can also influence gut microbiota
composition, although the impact of exercise on gut
motility and transit time must also be considered in
further studies [334].
Unequivocally, exercise improves health gains in diabetes,

CVD, cellular senescence, and age-related degenerative dis-
eases [13, 148]. The question is: what type and frequency
should be prescribed to elderly subjects? Although there is
as yet no clinical study on the joint contribution of glutam-
ine supplementations and exercise to improve the HS re-
sponse in the elderly, resistance training emerges as the
best intervention in sarcopenia [26], whereas resistance ex-
ercise plus nutritional interventions (glutamine dipeptide)
have also been raised as promising in combating sarcopenia
in aging [148]. Physical inactivity or a decreased physical
activity level is a part of the underlying mechanisms of sar-
copenia and, therefore, physical activity can be seen as an
important factor to reverse or modify the development of
this condition. Exercise represents the most important ap-
proach to prevent and treat sarcopenia. Moreover, exercis-
ing before protein intake allows a greater use of dietary
protein-derived amino acids for the de novo muscle protein
synthesis in elderly men [338]. Although some clinical trials
of exercise interventions demonstrate positive effects of
exercise on cognitive performance, other trials show
minimal to no effect. Physical exercise interventions
aimed at improving brain health through neuroprotec-
tive mechanisms show promise for preserving cognitive
performance. Exercise programs that are structured, in-
dividualized, higher intensity, longer duration, and mul-
ticomponent show potential for preserving cognitive
performance in older adults [339]. Increased risk for
cognitive impairment has been linked to CVD risk fac-
tors such as hypertension, dyslipidemia, metabolic syn-
drome, uncontrolled diabetes, hyperinsulinemia, and high
levels of inflammatory markers, all of which are modifiable
by increasing exercise levels [340]. Besides compelling evi-
dence from animal models, people who are more active in
mid-life and late life have lower risk for global cognitive
decline and incident dementia. Aerobic exercise ran-
domized controlled trials in older adults have demon-
strated positive effects on cognitive performance in
conjunction with changes in regional brain volume, neu-
rotrophin levels, and brain activation patterns. Addition-
ally, although few studies have examined the effects of
resistance training on cognitive function, there is some
evidence that resistance-only training has a positive effect
[339]. Aerobic exercise has long been linked to improve-
ments in cardiorespiratory fitness and avoidance/reversion
of chronic inflammatory diseases, but progressive resist-
ance exercise is also of value, particularly in preventing
sarcopenia and other age-related degenerative diseases. In
summary, four categories of specific exercises are recom-
mended for elderly people: aerobic exercise, progressive
resistance exercise, flexibility, and balance [341].
Inducers of the HS response, such as physical exercise,

heat treatment itself (e.g., hot tub, sauna), and calorie re-
striction may efficiently interrupt the vicious cycle of
age-related chronic degenerative diseases of inflammatory
nature in elderly, being envisaged as the best and most
economical treatments for such chronic diseases [7, 39].
Extracellular to intracellular HSP70 ratio index (H-index),
measured in PCMC in relation to serum values, has also
been recently described as novel and overall index of im-
munoinflammatory status of an individual and could be
invaluable in estimating immunoinflammatory status in as
many different situations as immune responses, obesities,
T2DM, CVD, and immunological impacts of exercise in
aging [34].
Although, to the best of our knowledge, there is as yet

no one published work, a question emerges as to whether
exercise combined with glutamine supplementation would
be able to maintain HSP levels and an adequate HS re-
sponse in the elderly. Since exercise increases both glu-
tamine production and HS response in the muscle,
alongside the fact that glutamine is a potentializer of
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the HS response, it is not unreasonable that an association
between exercise training and glutamine supplementation
should be invaluable in preventing age-related chronic de-
generative diseases of inflammatory nature. Equally, how
exercise and glutamine interact with gut microbiota,
under the viewpoint of local and systemic HS response, is
another interrogation. These testable possibilities need to
be urgently addressed.

Conclusions
Glutamine is essential for the maintenance of normal
neuronal physiology and skeletal muscle size and func-
tion due to its capability of controlling the HS response.
Changes in physiological systems (e.g., cardiovascular,
endocrine, muscular, nervous) that occurs with aging,
along with simultaneous unfavorable changes in body
composition (i.e., sarcopenia and visceral/abdominal obes-
ity) may lead to, respectively, lower availability of glutam-
ine and chronic low-grade inflammation. Under these
conditions, bodily levels of glutamine may reduce, thus af-
fecting its physiological roles. As glutamine is essential for
normal HSF1/HSP70 axis activation, the stress response is
likely to be reduced in many elderly people. Exercise is a
powerful and low-cost physiological inducer of the HS re-
sponse, being capable of reverting age-associated low-HS
response states. Therefore, exercise training associated
with glutamine supplementation and heat treatment itself
are envisaged as important therapeutic tools able to re-
store the stress response in the elderly, allowing normal
HSP70 synthesis and the maintenance of muscle integrity,
size, regeneration, and rapid recovery from injury. In
addition, the re-establishment of the HS response by
glutamine supplements, under specific and controlled
conditions, may also reduce the incidence of neurodegen-
erative diseases thus increasing longevity with health.

“Quæ medicamenta non sanat, æ ferrum sanat. Quæ
ferrum non sanat, æ ignis sanat. Quæ vero ignis non
sanat, æ insanabilia existimare oportet.
That which drugs fail to cure, the scalpel can cure.
That which the scalpel fails to cure, heat can cure. If
heat cannot cure, it must be determined to be incurable.”
(Aphorisms of Hippocrates, by Elias Marks, from the
Latin version of Verhoofd, Collins & Co., New York,
1817)
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