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Abstract 

Background: Pain intensities of patients are repeatedly measured by Visual Analog Scale (VAS) and Pain Vision (PV) 
in a clinical research. Two measurements by VAS and PV are performed at the same time. In order to evaluate within 
patient consistency, intra-individual coefficient of variations (CVs) are compared between measures assuming that the 
pain status of each patient is stable during the research period. The correlated samples and different inter-individual 
variation due to different scales of the measures should be taken into account in statistical analysis. The adjustment of 
covariates will improve the estimation of population mean values of the measures.

Methods: In this paper, statistical approach to compare the intra-individual CVs is proposed. The approach consists 
of two steps: (1) estimating population mean values and intra-individual variances of the pain intensities by measure 
in a mixed effect model framework, (2) computing intra-individual CVs and comparing them between measures. The 
mixed effect model includes measure and some variables as fixed effects and subject by measure as a random effect. 
The different inter-individual variations between measures and their covariance reflect the paired sampling in the vari-
ance component. The confidence interval of the difference of intra-individual CVs is constructed using the asymptotic 
normality and the delta method. Bootstrap method is available if sample size is small.

Results: The proposed approach is illustrated using pain research data. Measure (VAS and PV), age and sex are 
included in the model as fixed effects. The confidence intervals of the difference of intra-individual CVs between 
measures are estimated by the asymptotic theory and by bootstrap using a subgroup resampling, respectively. Both 
confidence intervals are similar.

Conclusion: The proposed approach is useful to compare two intra-individual CVs taking it into account to reflect 
the paired sampling, different inter-individual variations between measures and some covariates. Although the inclu-
sion of covariates did not improve the goodness-of-fit in the illustration, the proposed model with covariates will 
improve the accuracy and/or precision if covariates truly influence response variable. This approach can be applicable 
with small modification to various situations.
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Background
A clinical research of oxaliplatin chemotherapy was con-
ducted in colorectal cancer patients. Pain intensities of 
oxaliplatin-induced peripheral neuropathy were assessed 
by two measures of Visual Analog Scale (VAS) and Pain 
Vision PS-2100 (PV). The two pain assessments were per-
formed at the same time on the same set of patients and 
the assessments were repeated during some time inter-
val. VAS is a widely used subjective scale to measure the 
pain intensity, and patients assess their pain intensities 
along a continuous line from 0 to 100. PV is an analyti-
cal instrument that is designed to assess sense perception 
and nociception quantitatively and objectively. The pain 
intensity by PV is defined as a percentage change of two 
electrical stimulation values with and without pain. Thus 
measurements by PV are non-negative values (range of 
the actual data was 0 to about 400). The objective of the 
research was to compare these subjective and objective 
measures, and the intra-individual variation was com-
pared in order to evaluate the within patient consistency 
as the reliability index assuming that the pain status of 
each patient has been stable during the research period. 
Since the scales of two measures are different, the intra-
individual coefficient of variation (CV) is used as a varia-
tion index.

In this situation, there are two conditions to be consid-
ered in the statistical analysis:

  • correlated samples by paired sampling (assessments 
by VAS and PV were performed at the same time)

  • different inter-individual variation between measures 
(different scales: 0–100 for VAS and non-negative 
values of 0 to about 400 for PV)

Furthermore, there exists an additional requirement 
to improve the estimation of population mean values of 
measures:

•  taking covariates into account, for example sex and/or 
age

In many clinical studies, the standard deviation, the 
coefficient of variation or a composite index such as the 
mean amplitude of glycemic excursion (MAGE) in dia-
betic area are used as intra-individual variation indexes, 
and those indexes are calculated for each subject and 
sometimes compared between groups or treatments by 
two sample t test, linear regression analysis or analysis of 
variance [e.g. 1–3]. Onishi et al. [4] compared the intra-
individual CVs in pre-breakfast self-measured plasma 
glucose between treatments including some variables as 
covariates and subject as a random effect. There are many 
statistical discussions (e.g. 5, 6) relating to comparing 

intra-individual CVs. Forkman [5] gave a method to com-
pare intra-individual CVs (although “intra-individual” is 
not explicitly written). Iron [6] compared several meth-
ods to calculate intra-class correlation coefficient (ICC). 
For the paired sampling, Shoukri et  al. [7] gave several 
procedures for testing the equality of two dependent 
intra-individual CVs. They used a mixed model including 
one fixed effect and subject as a random effect and they 
gave a covariance structure reflecting the paired sampling 
to the model. Their procedures, however, did not clearly 
model the different inter-individual variation and covari-
ates were not included either. Furthermore, they assumed 
that the number of repetition of both measurements was 
the same for all subjects.

In this article, we propose an approach to compare two 
intra-individual CVs considering the two conditions (cor-
related samples by paired sampling and different inter-
individual variation between measures) and adjustment 
of the covariates. A mixed effect model will be used to 
estimate population mean values and intra-individual 
variances for measures. The mixed effect model includes 
measure and some variables as fixed effects and subject 
by measure as a random effect. Different inter-individual 
variation between measures and the paired sampling are 
taken into account in this model. The number of repeti-
tions may be varied among subjects due to missing. By 
using iterative algorithms in the mixed effect models, 
we obtain the estimates without restriction of the same 
number of repetitions. The intra-individual CVs will be 
calculated and compared using these estimates.

Methods
Statistical model
Let yijk ≥ 0 denote the kth observation of the jth subject by 
the ith measure, i = 1, 2, j = 1, 2, . . . , n, k = 1, 2, . . . ,mij . 
Let mj and m be mj = m1j +m2j and m =

∑
i,j mij. The 

repeated measurements for the jth subject consist of m1j 
times examinations by the first measure and m2j times 
examinations by the second measure. If there are missing 
values, m1j may be different from m2j. Thus, missing val-
ues are allowed in the model. In our mixed effect model, 
yijk is expressed by

where xijk is a p× 1 design vector for fixed effects, 
β =

(
β1, . . . ,βp

)′
 is a p× 1 parameter vector of the fixed 

effects regression coefficients, γij is the random effect of 
the jth subject for the ith measure and assumed to be 
normally distributed γij ∼ N

(
0, σ 2

bi

)
, γ1j and γ2j are corre-

lated by a covariance σ 2
b12 and γij and γi′j′ are assumed to 

be independent if j �= j
′ for i, i′ = 1, 2, eijk is the residual 

(1)yijk = x
′

ijkβ + γij + eijk ,
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error and is assumed that eijk ∼ i.i.d.N
(
0, σ 2

ei

)
. The fixed 

effect part x′

ijkβ includes a factor of the measure, where 
β1 and β2 denote means for the first measure and for the 
second measure, respectively.

Using notations of vector, the observations of the jth 
subject and all observations can be expressed by yj and 

y, where yj =
(
y1j1, . . . , y1jm1j , y2jm1j+1, . . . , y2jm1j+m2j

)′

 

and y =
(
y
′

1, y
′

2, . . . , y
′

n

)′

, respectively. Let Rj denote a 

mj ×mj diagonal matrix for the residuals of the jth sub-
ject. It can be seen that

Define R as block diag(R1, . . . ,Rn). The covariance matrix 
for the random effect of the jth subject can be expressed 
by g, where

Note that g is the same structure for all j. Define the 
2n× 2n matrix G as G = block diag (g , . . . , g). In the 
matrix notation, the model (1) can be represented by

where X and Z are m× p and m× 2n design matrices 
for the fixed effects and the random effect of subjects, 
respectively, γ is a 2n× 1 parameter vector for the ran-
dom effect and γ ∼ N (0,G), e is a m× 1 vector of the 
random residual error and it follows a N (0,R), e and γ are 
independent. β is the p× 1 parameter vector mentioned 
above. We can make X full rank. Z consists of m× 1 
column vectors of Z1j and Z2j, j = 1, 2, . . . , n, where 
Zij , i = 1 2, has 1 for the corresponding elements to the 
jth subject by the ith measure and 0 otherwise.

The expectation and the variance of y are expressed by

The components of V  are explained in “Appendix 1”.

Parameter estimation based on likelihood
The parameters in the model (2) are estimated based on 
the usual maximum likelihood (ML) approach for linear 
mixed models. The covariance matrix is estimated by the 
method of restricted maximum likelihood (REML) where 
degrees of freedom is adjusted in estimating fixed effects 
[8–11].

According to [11], the log-likelihood can be partitioned 
into two parts, L1 and L2. The L1 is the part including β 
and L2 not including β. The variance and covariance 

Rj = diag


σ 2

e1, . . . , σ
2
e1� �� �

m1j

, σ 2
e2, . . . , σ

2
e2� �� �

m2j


.

g =

(
σ 2
b1 σb12

σb12 σ 2
b2

)
.

(2)y = Xβ + Zγ + e,

(3)E(y) = Xβ ,Var(y) = V = ZGZ
′
+ R.

parameters are estimated using an iterative algorithm 
based on L2, and fixed effect parameters β are estimated 
based on the L1 as

For the detail of the parameter estimation, see “Appendix 
2”.

Evaluation of the difference of intra‑individual CVs
As mentioned in statistical model section, β1 and 
β2 represent means of the first and second meas-
ure, respectively. Let g

(
â
)
 denote the difference of 

CVs between measures, where â =
(
β̂1, β̂2, σ̂

2
e1, σ̂

2
e2

)′

 , 
g
(
â
)
=

√
σ̂ 2
e1/β̂1 −

√
σ̂ 2
e2/β̂2. Our objective is to 

test H0: g(a) = 0. Using the delta method [12] and 
E
(
∂2L1/∂β∂θl

)
= 0, the expectation and variance of g

(
â
)
 

are obtained as

Under H0, g
(
â
)
/

√
V̂ar

[
g
(
â
)]

 has the unit normal dis-
tribution by applying the large sample theory, where 
V̂ar

[
g
(
â
)]

 is the estimator of Var
[
g
(
â
)]

 obtained by sub-
stituting estimators for all parameters. Alternatively the 
equality of CVs between measures can be evaluated by 
an interval estimation of the difference of CVs using the 

asymptotic normality of g
(
â
)
/

√
V̂ar

[
g
(
â
)]

.
Another method to test H0 is bootstrap method [13] 

which is particularly useful if sample size is not sufficiently 
large to apply the asymptotic theory. A simple bootstrap-
ping is the subject resampling method with replacement. 
Since the data is obtained based on the paired sampling, 
the resampling is taken place by subject (kind of block or 
cluster bootstrap, [14]) in order to capture the dependence 
structure. The resampled number of subjects is equal to 
the size n of the original data set. The resampling will be 
straightforward if the numbers of observations by measure 

(4)β̂ =
(
X

′
V−1X

)−1
X

′
V−1y

(5)E
[
g
(
â
)]

≈

√
σ 2
e1

β1
−

√
σ 2
e2

β2
,

(6)

Var
[
g
(
â
)]

≈
1

4β2
1
σ 2
e1

Var
(
σ̂ 2
e1

)
+

σ 2
e1

β4
1

Var
(
β̂1

)

+
1

4β2
2
σ 2
e2

Var
(
σ̂ 2
e2

)
+

σ 2
e2

β4
2

Var
(
β̂2

)

+
1

4β1β2

√
σ 2
e1σ

2
e2

Cov
(
σ̂ 2
e1, σ̂

2
e2

)

+

√
σ 2
e1σ

2
e2

β2
1
β2
2

Cov
(
β̂1, β̂2

)
.
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are the same across the subjects, namely mij = ri, i = 1, 2 
for all j = 1, . . . , n . Otherwise, a subgroup resampling 
classified by number of observations by measure will 
be one way to make the resample data set with the same 
records m as in the original data set if two measures (e.g. 
VAS and PV) are always observed paired although the 
number of observations may be different among sub-
jects. For example, let n1 , n2 and n3 (n1 + n2 + n3 = n) be 
defined as the number of subjects repeatedly measured 
twice, thrice and four times, respectively. Thus there are 
three subgroups. The resampling is performed in the same 
size ni with replacement from the ith subgroup (i = 1, 2, 3).

There exist another bootstrap methods such as s para-
metric bootstrap. Since the objective of this article, how-
ever, is not to discuss the bootstrapping, only the blocked 
and subgrouped way will be used in the later section.

Application result
Our proposed model was applied to the clinical research 
data mentioned in the background section. Forty-three 
patients were treated with oxaliplatin chemotherapy. The 
pain intensity of oxaliplatin-induced peripheral neurop-
athy was assessed by two measures of VAS and PV. All 
patients with repeated measurements were included in 
the analysis, and the number of records of the data set 
was m = 158 (see Additional file  1). Summary statistics 
of age and sex and those of PAS and PV were shown in 
Tables 1 and 2, respectively.

A stopping criterion of numerical iterations by the 
Fisher’s scoring method to estimate parameters was 
set to 10−6. Sex, age, interaction between measure and 
sex and interaction between measure and age were 
included in the mixed model as covariates (fixed effects 
in full model). To obtain the MLEs of β1 (VAS) and β2 
(PV) as least square means (LSMs, [15]), let β3, β4, β5 
and β6 be regression parameters for sex (0: female, 1: 
male), interaction between measure and sex (1: VAS 
and male, 0: otherwise), age and interaction between 
measure and age (age in year for VAS and 0 for PV). 
Let x̄sex and x̄age denote the proportion of male and 
mean age, respectively. The MLEs of β1 and β2 are l ′1β̂ 

and l
′

2β̂, where l1 =
(
1 0 x̄sex x̄sex x̄age x̄age

)′
 and 

l2 =
(
0 1 x̄sex 0 x̄age 0

)′
 and β̂ is obtained by (4). SEs of 

LSMs are estimated as SQRT

(
l
′

i

(
X

′
V̂

−1
X
)−1

li

)
. Esti-

mated parameters were shown in Table 2.
To obtain variance of g

(
â
)
, Ĉov

(
σ̂ 2
e1, σ̂

2
e2

)
 and 

Ĉov
(
β̂1, β̂2

)
 should be estimated as shown in (6) in addi-

tion to the results in Table  3. Using Fisher’s informa-
tion matrix we see that Ĉov

(
σ̂ 2
e1, σ̂

2
e2

)
= −13.2 and 

Ĉov
(
β̂1, β̂2

)
= l

′

1

(
X

′
V̂

−1
X
)−1

l2 = 10.0. The difference 

of CVs and its 95 % confidence interval was estimated as 
−0.96 (−1.59, −0.33) by (5) and (6). Thus the intra-individ-
ual variation was significantly smaller in the VAS than PV.

Bootstrapping was also conducted as sensitivity analysis 
of the asymptotic inference. 1000 data sets with the same 
size as the original sample were generated with replace-
ment by the subgroup method, and the model parameters 
and the difference of CVs between measures were esti-
mated for each data set. A Bootstrap estimate of the dif-
ference of intra-individual CVs was obtained as the mean 
of the 1000 estimates, and a 95 % confidence interval was 
constructed by mean of the 25th and 26th values and 
mean of the 975th and 976th values out of the 1000 esti-
mates. The bootstrap estimate was −0.90 (−1.50, −0.31), 
and this estimate was similar as in the asymptotic theory.

Modeling process and diagnostics
The assumption of normality was checked by Q–Q plots 
(Fig.  1) of residuals. There were several patients whose 
pain intensities were close to the maximum pain inten-
sity, and the tails on the right side of distributions of VAS 
and PV were longer, particularly in PV. Since patients 

Table 1 Summary statistics of age and sex

Sample size: 43 patients
a Mean (SD) for age and N (%) for sex

Mean (SD)/N (%)a Min–Max

Age 65.4 (8.4) 43–81

Sex

 Female 11 (25.6)

 Male 32 (74.4)

Table 2 Summary statistics of  the pain intensity data 
for 43 patients

VAS and PV were repeatedly measured for 43 patients. The number of data 
records were 158
a Calculate mean for each of 43 patients (msubj), and calculate mean of 43 msubj 
values
b Unbiased variance, i.e. 

∑
j SSj/(316− 43), SSj is a sum of squares for patient j

c Variance of msubj
d SD for each of 43 patients was calculated

VAS PV

Meana 21.2 26.1

Variance

 Intrab 165.7 1725.1

 Interc 477.3 274.9

Individual SDd

 Mean (SD) 9.2 (8.7) 21.7 (30.7)

 Min–Max 0–33 0–172
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with high pain intensities cannot be excluded from the 
analysis population for our research objective and a loga-
rithmically transformation is not possible for zero values, 
all patients were included in the statistical analyses. We 
performed a sensitivity analysis excluding two patients 
with large values and confirmed similar result as shown 
in the former analysis.

The residual plots for fitted value (Fig.  2) also show 
several large values in PV and the residual errors do not 
seem to be totally random. The Q–Q plots and residual 
plots may suggest to use appropriate data transforma-
tions, other distributional assumption and/or robust 
methods. These methods generally improve model fit-
tings and make comparison of means precise. It is, how-
ever, not certain if these methods are relevant to compare 

intra-individual variations. Therefore, we still assume 
normality in the analysis. Residual plot for each measure, 
P–P plot by measure and plot of Cook’s distance against 
leverage/(1-leverage) are presented for further diagnos-
tic information in Additional file 2: Figures S1, S2 and S3, 
respectively.

The goodness-of-fit of the full model, where fixed 
effects were measure, sex, age, interactions between 
measure and sex and measure and age, was checked in 
comparison with the null model including only meas-
ure as a fixed effect using a likelihood ratio test. The test 
statistics was 3.048 and P-value according to χ2 distribu-
tion with four degrees of freedom was 0.550. Thus the 
addition of sex and age did not contribute to improve-
ment of the model in the pain research data, and the null 

Table 3 Result of parameter estimation for the pain intensity data

β1 β2 σ 2

e1
σ 2

e2
σ 2

b1
σ 2

b2
σ 2

b12

MLE 21.0 26.3 166 1707 474 305 423

SE 3.50 4.25 21.8 220.1 117.6 176.2 120.9

Fig. 1 Q–Q plots by measure

Fig. 2 Residual plots by measure
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model will be applied in practice. Since the objective of 
this application section is to illustrate the availability of 
the proposed model, we presented the results of the full 
model assuming normality.

Summary statistics of individual standard deviations 
(SDs) in VAS and PV were shown in Table 2. The range of 
individual SDs were vary from 0 to 33 in VAS and from 0 
to 172 in PV. The comparison of the intra-individual CV 
between VAS and PV corresponds to compare the aver-
age individual SDs by mean.

Conclusion
Statistical approach to compare two intra-individual 
CVs considering the paired sampling, different inter-
individual variations between measures and some 
covariates was proposed. The approach is (1) esti-
mating intra-individual variances and mean values of 
measures by the mixed effect model including meas-
ure and some covariates as fixed effects and subject by 
measure as a random effect to reflect different inter-
individual variation between measures and the paired 
sampling, (2) computing intra-individual CVs and 
comparing these CVs between measures. The utility of 
the approach was shown by applying to the real pain 
research data. Although the inclusion of covariates 
did not improve the goodness-of-fit in the illustration, 
the proposed model with covariates will improve the 
accuracy and/or precision if covariates truly influence 
response variable.

The proposed approach is applicable for many situa-
tions. One example is to give σ 2

b1 = σ 2
b2 = σ 2

b  if the same 
inter individual variations can be assumed between 
measures. In a study [16], the frequently-sampled intra-
venous glucose tolerance test was carried out for subjects 
by two protocols in order to estimate insulin sensitivity, 
and intra-individual CVs of the insulin sensitivity were 
compared between protocols. If our proposed model is 
applied to this data, the same inter individual variation 
(σ 2

b1 = σ 2
b2) for two protocols will be observed since the 

same scaled variable was measured by the two different 
protocols.

Another example is to compare intra-individual vari-
ances σ 2

ei(z) (i = 1, 2) by analyzing zijk = log
(
yijk

)
 if log-

normal distributions can be assumed for yijk and the 
geometric CV [17] of the original data can be approxi-
mated by SQRT

{
exp

(
σ 2
ei(z)

)
− 1

}
∼= σ 2

ei(z), where σ 2
ei(z) 

is the residual error variance of zijk and it is assumed 
to be small enough to hold the approximation. The 
approximation of the geometric CV means that CVs in 
original scale data can be approximated by variances in 
the logarithmically transformed data. This procedure 
suggests to omit the CV calculation step. For example, 

area under the pharmacokinetic curve and triglyceride 
have such characteristics. These variables have skewed 
distributions with longer tail upper side, and are fre-
quently logarithmically transformed before statistical 
analyses. However, note that possible biases should be 
discussed before the transformation since the logarith-
mic transformation can give a larger benefit to a group 
with large values than the other group with small 
values when estimating population intra-individual 
variances.

An extension to multi-group comparisons is straight-
forward by giving corresponding Rj and Gj and by deriv-
ing derivatives of V .
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Appendix 1: Components of variance V
Let V j = Var

(
yj
)
 denote the mj ×mj variance matrix 

of the jth subject. Note that V j , j = 1, . . . , n, have the 
same structure except the dimension of the repetition 
mij , i = 1, 2. The variance matrix V  is given as below.

Additional files

Additional file 1. A list of the pain intensity data.

Additional file 2. Supplemental figures for the pain intensity data (resid-
ual plots, P–P plots and Cook’s distance against leverage/(1-leverage)).

V = block diag (V 1, . . . ,V n),

http://dx.doi.org/10.1186/s13104-016-1912-y
http://dx.doi.org/10.1186/s13104-016-1912-y
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where

Iu is a u× u unit matrix and Ju×v is a u× v matrix with 
all the elements equal to 1.

Appendix 2: Parameter estimation
According to [11], the log-likelihood can be partitioned 
into two parts, L1 and L2, where L1 is the part including β 
and L2 not including β. L1 and L2 are expressed as below.

where C is a certain constant and 
P = V−1 − V−1X

(
X

′
V−1X

)−
X

′
V−1. 

The variance and covariance parameters 
θ = (θ1, θ2, θ3, θ4, θ5)

′

=
(
σ 2
e1, σ

2
e2, σ

2
b1, σ

2
b2, σ

2
b12

)′
 are esti-

mated based on L2, while the fixed effect parameters β 
are estimated based on the L1. The first order derivatives 
of L2 is

∂V /∂θl are obtained by simple manipulations as

V j =

(
A1j B12j

B
′

12j A2j

)
,

Aij =




σ 2
bi + σ 2

ei σ 2
bi · · · σ 2

bi
σ 2
bi σ 2

bi + σ 2
ei · · · σ 2

bi
· · · · · · · · · · · ·

σ 2
bi σ 2

bi · · · σ 2
bi + σ 2

ei




= σ 2
biJmij×mij + σ 2

eiImij

B12j =




σb12 · · · σb12
· · · · · · · · ·
σb12 · · · σb12


 = σb12Jm1j×m2j ,

(7)

L1 = −
1

2

[
p log 2π + log

∣∣∣(X ′
V

−1
X)−1

∣∣∣

+
{
(X

′
V

−1
X)−1

X
′
V

−1
y − β

}′

(X
′
V

−1
X)

×
{
(X

′
V

−1
X)−1

X
′
V

−1
y − β}

]
,

(8)L2 = −
1

2

[
C + log |V | + log

∣∣∣X ′
V−1X

∣∣∣+ y
′
Py

]
,

(9)
∂L2

∂θl
= −

1

2

[
tr

(
P
∂V

∂θl

)
− y

′
P
∂V

∂θl
Py

]
.

∂V

∂σ 2
ei

= diag

(
∂R1

∂σ 2
ei

, . . . ,
∂Rn

∂σ 2
ei

)
,

∂Rj

∂σ 2
e1

= diag (1, . . . , 1, 0, . . . , 0),

∂Rj

∂σ 2
e2

= diag (0, . . . , 0, 1, . . . , 1)

ML estimates θ̂ are the solution of the estimating equa-
tions ∂L2/∂θl = 0. Usually ML estimates θ̂ are not 
expressed explicitly and therefore an iterative algorithm 
such as Newton–Raphson method is used to obtain θ̂ . 
Fisher’s scoring method, in which Fisher’s information 
matrix I (θ) is used instead of Hessian in Newton–Raph-
son method, is now employed as the iterative algorithm, 
since I(θ) is a simpler form than Hessian in mixed mod-
els and the asymptotic variance of θ̂ can be estimated 
by I−1(θ̂) (not observed information [18]). Thus second 
order derivatives are needed to apply the algorithm

where θk is the kth estimates, θk+1 is an improved one, 
0 < c < 1 is a constant value to adjust an improvement 
quantity and S(θk) = (∂L2/∂θl)|θ=θk.

Simple manipulations give second order derivatives of 
L2 and I(θ), where the (θl , θl′) element of the former and 
the latter as can be expressed as

respectively. With respect to β, the ML estimator is 
derived as the solution of the first order derivatives of (7) 
equal to 0 as

(10)

∂V

∂σ 2
b1

= Z




1 0

0 0

. . .

1 0

0 0



Z

′
,

∂V

∂σ 2
b2

= Z




0 0

0 1

. . .

0 0

0 1



Z

′

∂V

∂σb12
= Z




0 1
1 0

. . .

0 1
1 0



Z

′
.

θk+1 = θk + cI−1(θk)S(θk),

∂2L2

∂θl∂θl′
= −

1

2

[
tr

(
−P

∂V

∂θl′
P
∂V

∂θl

)
+ y

′
P
∂V

∂θl′
P
∂V

∂θl
Py

+y
′
P
∂V

∂θl
P
∂V

∂θl′
Py

]
,

(11)

E

(
−

∂2L2

∂θl∂θl′

)
=

1

2
tr

(
−P

∂V

∂θl′
P
∂V

∂θl

)
, l, l

′
= 1, 2, . . . , 5,

(12)β̂ =
(
X

′
V−1X

)−1
X

′
V−1y
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β is actually estimated by substituting V̂  for V  in (13) as 

β̂ =
(
X

′
V̂

−1
X
)−1

X
′
V̂

−1
y. To obtain the variance of β̂ 

and covariance of β̂ and θ̂, the second order derivatives 
of (7) are substituted. These are actually the asymptotic 
variance of β̂ and covariance of β̂ and θ̂:

Note that in taking expectation of (14), we obtain 
E
(
∂2L1/∂β∂θl

)
= 0 and hence all covariances of β̂l and 

θ̂l′ are 0 [19].
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