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Abstract

Background: The statistical evaluation of pathway enrichment, i.e. of gene profiles' confluence to the pathway level,
allows exploring molecular landscapes using functionally annotated gene sets. However, pathway scores can also be
used as predictive features in machine learning. That requires, firstly, increasing statistical power and biological
relevance via a network enrichment analysis (NEA) and, secondly, a fast and convenient procedure for rendering the
original data into a space of pathway scores. However, previous implementations of NEA involved multiple runs of
network randomization and were therefore slow.

Results: Here, we present a new R package NEArender which can transform raw 'omics' features of experimental or
clinical samples into matrices describing the same samples with many fewer NEA-based pathway scores. This is done
via a parametric estimation of the null binomial distribution and is thus much faster and less biased than randomization
procedures. Further, we compare estimates from these two alternative procedures and demonstrate that the
summarization of individual genes to pathways increases the statistical power compared to both the default
differential expression analysis on individual genes and the state-of-the-art gene set enrichment analysis. The
package also contains functions for preparing input, modeling null distributions, and evaluating alternative
versions of the global network.

Conclusions: Beyond the state-of-the-art exploration of molecular data through pathway enrichment, score matrices
produced by NEArender can be used in larger bioinformatics pipelines as input for phenotype modeling, predicting
disease outcomes etc. This approach is often more sensitive and robust than using the original data. The package
NEArender is complementary to the online NEA tool EviNet (https://www.evinet.org) and, unlike of the latter, enables
high performance of computations off-line.
The R package NEArender version 1.4 is available at CRAN repository
https://cran.r-project.org/web/packages/NEArender/
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Background
NEA employs network topology to evaluate functional
impact of experimentally determined genes and gene
sets by detecting enrichment of previously characterized
gene sets, such as pathways. NEA became a natural ex-
tension of the gene set enrichment analysis, GSEA [1]
into the network domain [2, 3]. Performance and applic-
ability of GSEA have been limited by the following: 1)
only a minority of genes possesses specific pathway an-
notations, 2) it can be applied only to genes altered in a
specific way, detectable by the given platform (typically
transcriptomics) and not to those regulated via other
mechanisms, and 3) statistical power of the analysis is
limited by gene set size. NEA largely overcomes these
limitations due to one key difference: while GSEA
counts the number of genes shared between an experi-
mental list and a pathway, NEA considers network edges
between any genes of the two sets in the global network.
On the other hand, the earlier NEA versions had an own
drawback: the error rate was estimated in multiple,
time-consuming instances of randomized networks. Be-
ing a non-parametric approach, the randomization al-
lows solving a wide range of higher-order topological
problems. However, for many applications this would be
prohibitively slow. In the present R package, we imple-
ment a much faster parametric estimation of connectiv-
ity rate expected by chance and show that this also
eliminates bias on small gene sets. Finally, we provide an
illustration of how NEA increases robustness of non-
replicated analyses of gene differential expression.

Results
Software functionality
NEArender possesses both core and ancillary functions
for network enrichment analysis. It is implemented as an
R package and described in details, beyond the official
manual, in an R vignette https://cran.r-project.org/web/
packages/NEArender/vignettes/NEArender_vignette.pdf
The input shall contain three components: 1) one or

multiple user-defined (experimental or theoretical) gene
sets which have to be functionally characterized, called
altered gene sets (AGS); 2) a collection of functional
gene sets (FGS) which would enable functional
characterization through their known functions, and 3) a
global network of functional coupling (NET). Input can
be provided as either text files or pre-processed R lists
and matrices. Figure 1 presents the relationship between
the major components and steps of NEArender.
In fact, although we denote input in terms of “genes”, a

range of functional nodes of a biological network can be
analyzed with this algorithm, such as protein molecules,
genomic regions that encode proteins, microRNAs, pro-
moters, and enhancers etc. Nodes listed in AGS, FGS, and
NET should employ the same ID format. The package

performs network enrichment analysis through the fast bi-
nomial test as described in Methods and quantifies enrich-
ment in each AGS-FGS pair with a number of statistics:
chi-squared score, z-score, p-value, q-value (the p-value
adjusted for multiple testing, a.k.a. false discovery rate [4],
number of network edges that exist between any nodes of
AGS and FGS (but neither within AGS nor within FGS),
and respective number of AGS-FGS edges expected by
chance, calculated with the binomial formula.
In order to run enrichment analysis, the user should

prepare the input components. Since the AGS is the
most dynamic and user-specific part of the input, func-
tionality for AGS compilation and processing is most
developed. First, AGSs can be prepared in advance ex-
ternally, e.g. as a list of genomic variations reported in a
given genome. Alternatively, the package functions can
create AGSs from sample columns of an R matrix. This
can be done with a number of different algorithms (two
of these we use below in the section ‘Robustness of
results obtained from different replicates’. Then the
number of genes included in each AGS would be either
data-driven (all significant genes) or pre-defined by user
(top ranking ones regardless of significance). In addition,
the algorithm ‘toprandom’ generates random AGSs of a
user-set size. Finally, a special function allows direct cre-
ation of AGSs as full sample-specific sets of mutated
genes. FGSs are usually imported from a file by listing
all members of each functional set. Due to the high net-
work density and, hence, statistical power of NEA, there
is a special option, which is not available in GSEA: single
genes can be treated as FGS as well. A full list of such
single-gene FGSs can be created from all network nodes
of NET with parameter as_genes_fgs, so that each
FGS item in the output list contains just one gene. It is
practical to use a large pre-compiled FGS collection,
such as all ontology terms, pathways, or a union of re-
sources, e.g. MSigDB database [5]. Alternatively, users
can create custom single- or multi-gene FGS collections
of their own. We note however that using relatively few
FGSs and/or AGSs in one analysis (so that the total
number of AGS-FGS tests is below a few hundreds)
would not allow estimating the q-values properly.
While higher order topological biases are, as discussed

above, of arguable importance for NEA, another net-
work feature is vital for the enrichment evaluation used
in this package. Namely, the parametric algorithm would
produce unbiased estimates only in scale-free networks,
i.e. where node connectivity values follow the power law
distribution [6]. Being an almost ubiquitous feature in
the full scale biological networks, this is still not the case
in networks that are artificially constructed from e.g.
ChIP-seq based collections of transcription factor bind-
ing events [7] or from computationally predicted micro-
RNA-transcript targeting data [8]. If such network
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components are desirable, we recommend employing soft-
ware that involves network permutation tests, i.e. the
randomization, such as in [2, 3]. Therefore, the package
enables evaluating network topology for scale-freeness
and second-order dependencies (described below) as well
as benchmarking alternative NETs using either standard
or custom FGSs, as described in [9]. Briefly, the bench-
mark consists of as many test cases as there are FGS
members in total (multiple occurrences of the same genes
in different FGS are treated separately). For each such
gene, the procedure tests the null hypothesis of the gene
not being an FGS member. The true positive or false nega-
tive result is assigned if the gene receives an NEA score
above or below a certain threshold, respectively. In paral-
lel, randomly picked genes with close node degree values
are tested against the same FGS to estimate specificity via
the false positive versus true negative ratio. The counts of
alternative test outcomes TP, TN, FP, and FN at variable
NEA thresholds are used for plotting ROC curves.

Comparison to randomization based algorithm
We compared the p-value distributions between the two
methods (Fig. 2). The both were capable of adjusting p-
values for multiple testing, but we omit the adjusted

value analysis here since our GS test set of 330 FGS
(mostly KEGG pathways with addition of GO terms and
other sets related to cancer, cytokine signaling, inter-
cellular communications etc. [10] abounded with highly
functionally similar GS pairs and thus the fraction of sig-
nificant q-values was ~30%. We instead focus on the p-
values in order not to miss important distribution
details. It is apparent that the estimates from network
randomization become more consistent with the grow-
ing number of randomization runs, from N = 3 to N =
300. The third column of Fig. 2 displays strong and
asymptotically increasing correlation between p-values
from the network randomization z-test (NRZ) and chi-
squared binomial formula (CSB) (Spearman r = {0.83;
0.94; 0.97; 0.98; 0.99} for N = {3; 10; 30; 100; 300}, re-
spectively). Since CSB employed a deterministic proced-
ure, we assume that all dispersion of p-value points in
the NRZ-CSB space should be attributed to sampling
errors by the stochastic NRZ algorithm. CSB and NRZ
p-values converged sufficiently well only at N > 30.
According to the quantile analysis with Q-Q plots (2nd
column), CSB p-values were more conservative than
those of NRZ. Next, the latter was somewhat less sensi-
tive than CSB in regard of small GS, especially of those

Fig. 1 Analysis flow in NEArender. The original matrix of 'omics' (mutation, methylation, expression etc.) data described a limited number of samples
(patients etc.) with a much larger number of gene feature rows. At the first, preparatory step each sample was described via a characteristic sample-
specific altered gene set (AGS). In parallel, a collection of functional gene sets (FGS) that share certain functionally annotations (within each set) was
downloaded or prepared otherwise. A global gene/protein network (NET) was also provided (possibly selected from a number of alternatives based
on benchmark results). In the course of network enrichment analysis (NEA) each AGS received as many NEA scores as there were FGSs, i.e. obtained
coordinates in the multidimensional FGS space. This created an output matrix of the same number of sample columns but many fewer rows
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Fig. 2 (See legend on next page.)

The Author(s) BMC Bioinformatics 2017, 18(Suppl 5):118 Page 22 of 65



where both GSs were small, below 30 or 10 nodes
altogether (green and blue lines in the first column).
Again, NRZ p-values from the computationally feasible
but insufficient N = {3;10; 30} exhibited more disagreement
with respective CSB values. In addition to the sums
NAGS +NFGS, we stratified the Q-Q plots by the sum
of node degrees CAGS + CFGS and by the actual
number of edges between two GSs, Nedges (Additional
file 1: Figure S1A and B). The sum CAGS + CFGS

appeared a strongly biasing factor (although N and C
expectedly correlated in the test set). The influence of
Nedges was almost non-existent.
Since there was no gold standard for network enrich-

ment, we could not unambiguously conclude that CSB was
more precise than NRZ. However it seems to be preferable
because of its, in general, more conservative estimates and,
in particular, higher sensitivity on small GS as well as the
convergence of NRZ at higher values of N. The NRZ-
specific bias on small GSs likely occurred because between-
GS connectivity values could not take on negative values,
hence the left tail of the distribution of Nedges was com-
pressed and standard deviation must be underestimated.
Thus while using NRZ, the deviation from CSB values

and bias due to small GS size were considerably large at
N < 100. However, performing many randomizations
might make the procedure prohibitively slow. While
using NRZ, the computation time grows linearly with
the number of randomizations. For example on a server
running 2.6.32-642.el6.x86_64 (OS Scientific Linux),one
randomization of the given network took around 3 min
plus 20 min for counting connectivity in the given FGS
collection, so that the total time for 100 randomizations
was 100*(20 + 3) = 2300 min. For the most direct com-
parison, the same perl software [9] in the CSB mode, i.e.
without network randomization, run 15 min. In the both
cases, the perl process occupied between 300 and
400 MB RAM. Running R package NEArender required
less than 5 min and below 200 MB RAM. We note that
in many practical tasks the number of either AGS or
FGS could be significantly reduced. However as stated
above, the current package is mostly meant for generat-
ing NEA scores that could be used as predictive features
in machine learning - and those AGSxFGS matrices are
supposed to be large.

Robustness of results obtained from different replicates
Statistically underpowered experimental designs are not
welcomed in the scientific community but, due to the
lack of resources, are still practiced. In particular, it is
common to represent patients in large cohort screens
with single samples [11, 12]. Both the GSEA and NEA
analyses measure enrichment in order to summarize sig-
nals from individual genes' to the level of pathways and
biological processes. This feature suggests a potential in-
crease in robustness of conclusions in experiments that
lack replicates. We decided to investigate this robustness
of using single-gene expression values versus GSEA and
NEA under different scenarios using cell transcriptome
data from the FANTOM5 CAGE RNA sequencing set
[13]. In order to make results comparable between NEA
and GSEA, we use the binomial version of the latter [1],
which allowed applying the analyses to the same input
gene sets. Commonly, statistical power is analyzed via
extrapolating variance estimates [14, 15]. Since GSEA
and NEA do not provide such estimates, we instead
watched consistency of conclusions drawn from individ-
ual replicates.
The samples, in 3 to 5 biological (distinct healthy indi-

viduals) replicates, originated from different fibroblast,
epithelial, and smooth muscle cells. In total, 43 repli-
cates from 11 cell types quantified RNA transcript tags
mapped to 16620 genes. This provided a broad range of
degrees of dissimilarity between type-specific transcrip-
tomes. The dissimilarity was evaluated as a fraction of
significantly DE genes in fully replicated designs and
ranged from 2.4% (“fibroblast.periodontal” vs. “fibro-
blast.gingivial”) to 54.8% (“smooth.muscle.umbilical.ar-
tery” vs. “gingival.epithelial”) DE genes. This set-up
allowed us to model situations of analyzing DE of each
gene g using single samples, e.g. gAi vs. gBj on samples i
and j from cell types A and B, and then using all avail-
able replicates for A and B (NA, NB): gA 1…NAf g vs.
gB 1…NBf g . Note that calculating DE p-values was thus
possible only in the latter case. Otherwise, DE could only
be ranked by values of fold change between Ai and Bj.
We quantified DE in all the 55 possible Ai - Bj pairs
between the 11 cell types. As an example, if there were
NA = 3 and NB = 5 replicates, then we could model DE
measurements on 5*3 = 15 pairs of single samples plus

(See figure on previous page.)
Fig. 2 Comparative sensitivity and sources of bias in randomization-based versus binomial calculation of network enrichment. Network enrichment
between all vs. all 330 gene sets was analyzed with both NRZ and CSB methods. P-value distributions were compared using Q-Q plots (columns 1 and
2) and scatter plots of log (p) values (column 3). Q-Q plots in column 1 display both the total distributions (black lines), i.e. regardless of GS size, and
distribution fractions that correspond to smaller GS (NAGS + NFGS, color lines). The QQ-plots in column 2 are insets of the black, un-stratified Q-Q plots
of column 1. Identity lines (x = y) are plotted in dotted grey and dotted red in the QQ-plots and scatter plots, respectively. Analogous plots in regard of
other factors biasing NRZ p-values (CAGS + CFGS and Nedges) are provided in Additional file 1: Figure S1 (note that plot columns 2 and 3 are the same as
in the present figure)
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one analysis gA 1…NAf g vs. gB 1…NBf g. In the following, we re-
view preservation of DE estimates across different cell
samples contrasts analyzed with three different methods:
the default DE analysis on individual genes, GSEA, and
NEA. The preservation was evaluated in the form of
Spearman rank correlation coefficients between: 1) fold
change values of individual genes for gene-wise analysi-
s“as is”,2) P-values of FGS enrichment scores obtained
with binomial GSEA, and 3) P-values of FGS enrichment
scores obtained with CSB NEA.
The example scatterplots at Fig. 3 (a, c, and e) display

agreement between the same replicate pairs of the same
contrast between fibroblast gingivial vs. tenocyte cells.
The fold change values and p-values, although being dif-
ferent in their nature and scale, allowed us to rank the
results in the same way as a biological researcher would
prioritize them. We note here that in GSEA and NEA
neither p-values nor enrichment scores (being mutually
rank-invariant) explicitly provide sampling errors similar
to between-sample variance in the DE analysis. All such
comparisons between sample pairs were quantified by
Spearman rank correlations and used as individual
points in the plots on the right (b, d, and f). One obser-
vation from the plots C, and E was that regardless of the
correlation strength, NEA possessed a much higher stat-
istical power to detect enrichment – which has been
discussed in details by Alexeyenko et al. in 2012 [2].
Indeed, no GSEA p-values appeared significant after the
Bonferroni adjustment for multiple testing in either
replicate pair (brown dotted vertical and horizontal
lines). For comparison, almost 1/3rd of the NEA scores
were significant in the both replicate pairs.
GSEA and NEA were each tested using six alternative

variants of AGS, generated for each contrast: a) lists of top
100, 300, and 1000 DE genes ranked by fold change and b)
lists of genes with absolute log2 (fold change) values
exceeding 1, 2, and 4. AGS sizes of the form (b) were not
fixed and depended on the magnitude of the difference be-
tween the two transcriptomes. When using all available
replicates in the analyses (a), the genes were ranked by p-
value with functions lmFit and eBayes in R package
limma [16]. In (b) we required that, in addition to the fold
change cutoff, the adjusted p-values did not exceed 0.05.
Overall, the scores from NEA agreed with each other

much better than those from GSEA (Fig. 3, g and h). By
investigating the AGS- and method-specific scatterplots
for AGSs of type”abs (log2 (fold change)) > 2”
(Fig. 3, b, d, and f; respective plots for all the six AGS
types are available as Additional file 1: Figure S3), we ob-
served that the level of correlation between the analyses
(Y-axis) depended on strength of the pairwise difference
between cell type transcriptomes, expressed as the frac-
tion of DE genes (X-axis). Ideally, we would observe in-
dependence of the difference strength (so that ranks

fully correlate regardless of fold change, p-value, FDR
etc.) and perfect correlation between DE results from
both individual sample pairs and replicated analyses. How-
ever, it was unrealistic to expect large and efficient AGSs
from few (e.g. 5…7%) significantly DE genes. Still, we can
conclude that NEA output was considerably closer to the
desirable pattern than those of the gene-wise and GSEA
analyses. Indeed, in addition to the stronger overall correl-
ation, NEA performed particularly well on weakly differ-
ent cell types pairs (see the regression lines’ intercepts
with Y-axes and the rank r values in the bottom right cor-
ners in Fig. 3, b, d, and f). The only exception could be
found for AGSs top100 (Additional file 1: Figure S3),
where GSEA appeared superior over NEA. However, this
option would be practically unusable in GSEA because of
its low statistical power on small gene sets and, hence, few
significant enrichment values.
We also could compare consistency of results obtained

via i) individual sample pairs against each other (“gAi vs.
gBj”against “gAm vs. gBn”) and ii) results from individual sam-
ple pairs against the replicated analysis (“gAi vs. gBj”against “
gA 1…NAf g vs. gB 1…NBf g ”). One can also see that the option

(ii), i.e. the comparison of non-replicated to replicated
analyses (colored points), often exhibited poorer correlation
than comparisons (i) (black points), especially for GSEA
(the same pattern can be seen in the boxplots of Additional
file 1: Figure S2).

Discussion
We demonstrated that estimates of enrichment from the
network randomization procedure were biased. They
could sufficiently converge to respective CSB values only
at very large, impractical numbers of randomizations runs.
While considering the “lack-of-replicates” scenario, we as-

sumed that the former shall always be preferred. However,
our analysis demonstrated the higher (although still imper-
fect) robustness of NEA scores in the full absence or short-
age of replicates. This conclusion about superiority of NEA
over gene-wise analyses is, of course, only relevant when the
research problem can be approached with an exploratory
analysis at a pathway level and not when it requires identify-
ing individual consistently deregulated genes. In addition,
this advantage of NEA explains the earlier observed higher
robustness of its scores, compared to individual gene pro-
files, as descriptors of experimental models of cancer-
inhibitory fibroblasts [10]. Importantly, biological replicates
of patients’ samples are rarely available in clinical cohorts, so
that we anticipate efficient usage of NEA in such setups.
NEA can also be performed using the online tool

available at https://www.evinet.org. The latter is more
interactive, user-friendly, and focused on visualization,
while the package NEArender enables high perform-
ance, possibly with parallel computation. In
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Fig. 3 (See legend on next page.)
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combination with the ancillary functions for input
preparation and benchmarking NEArender is meant to
become a practically useful part of bioinformatics and
biostatistics R pipelines.

Conclusions
Output of NEArender allows using sample- or patient-
specific pathway scores as predictive features of pheno-
type or clinical variables. Compared to GSEA, this raises
statistical power and robustness to practically acceptable
levels. Compared to previous implementations of NEA,
the analysis runs much faster and removes bias due to
smaller gene set size. Package NEArender also contains
previously not available ancillary functions for preparing
and benchmarking input.

Methods
Significance estimation
NEA considers topological properties of the network via
node degrees of GS members as well as the total number
of edges in the whole network. For a long time, confi-
dence of network enrichment scores has been mostly
computed using network randomizations in order to
estimate the connectivity value (i.e. number of edges
between two GSs expected by chance) as well as its
standard deviation [2, 3, 17]. Then the network enrich-
ment statistic was computed as a z-score:

z ¼ nAGS−FGS−n̂AGS−FGS

σAGS−FGS

where nAGS-FGS was the actual number of edges that
connect any nodes of AGS and any nodes of FGS,
while n̂AGS−FGS and σAGS − FGS were the average num-
ber of AGS-FGS edges and respective standard devi-
ation found in a number of randomized instances of
the actual network.

The randomization algorithm by Maslov and Sneppen
[17] was based on rewiring each original edge between
nodes i and j, so that i and j instead get connected to
randomly sampled (without replacement) nodes k and l.
This allowed preserving individual node degrees (i.e. the
total number of edges for a given node) as well as the
global topological properties of the network (first of all the
scale-freeness). However, McCormack et al. [3] demon-
strated that in this randomization procedure higher-order
topological properties, such as the propensity of high-
degree nodes to avoid connections with other high-degree
nodes, could still be biased. They suggested another algo-
rithm for cases of relevance. In our view, the removal of
higher order topological biases is not always justified and
the decision to apply this over-randomization should de-
pend on a particular research question.
The focus of our present work is on creating a soft-

ware implementation which is fast and independent of
GS sizes and numbers of edges connecting them. In
order to do that, we evaluate enrichment of AGS versus
FGS using the binomial formula:

χ2 ¼ nAGS−FGS−n̂AGS−FGSð Þ2
nAGS−FGS

þ !nAGS−FGS−!n̂AGS−FGSð Þ2
!nAGS−FGS

,

The respective number of links expected by chance is
calculated simply as:

n̂AGS−FGS ¼ NAGS�NFGS
2�Ntotal

,

where !n denotes “other than n”, NAGS and NFGS report
the sums of connectivities of individual nodes (genes) in
AGS and FGS, respectively, and Ntotal is the number of
edges in the whole network. We note here that this sim-
plified calculation is legitimate if only direct AGS-FGS
edges are of interest (which is typically the case of NEA
using sufficiently dense NETs, i.e. when in practically all
AGS-FGS pairs both expected and actual connectivity is

(See figure on previous page.)
Fig. 3 Agreement between biological replicates in alternative approaches to differential expression analysis. a, c, e: Examples of Spearman rank
correlations between DE analyses without replicates on gingivial epithelial versus tenocyte cells using samples from two different donor pairs (gingivial
epithelial: #4 and #5; tenocyte: #2 and #3). Since p-values in the non-replicated DE analyses were not available, the plot A (RAW) represents raw fold change
values for 16620 genes, while plots C and E represent p-values for 330 FGSs. In C and E, the vertical and horizontal brown dotted lines delineate p-values
significant after the Bonferroni correction. Dashed grey line: the linear regression fit of Y on X (the R values shown in the corners were calculated using the
rank formula and are thus independent of the fits). NEA and GSEA values were obtained for AGSs representing DE genes in each analysis that satisfied
the criterion abs (log2(fold change))>2, i.e. the 4-fold change in either direction. These example rank R values from A, C, and E are plotted at
respectively B, D, and F as big orange dots. Thus in B, D, and F, the Spearman coefficients from A, C, and E (top left corner) as well as from all other
pairwise comparisons are plotted as a function of relative difference strength between respective transcriptomes (X axis). As an example, according to
the results of fully powered DE analysis for plots A, C, and E, 13.8% genes were DE with adjusted p-value < 0.05. Hence the value 0.138 is used as X-
coordinate for the orange dots. The grey dotted linear regression line and the Spearman rank R value quantify the relations between X and Y. Black and
colored points correspond to 1) correlation values of non-replicated DE analyses with each other and 2) correlations where one of the two analyses was
replicated, respectively. The boxplots G and H summarize results across all cell types and AGS versions for non-replicated vs. half-replicated options (1)
and (2). All pairwise contrasts of GSEA and RAW against NEA were significant with p(H0) < 0.001. In Additional file 1: Figure S3, six plots for NEA and
GSEA represent results of using all the six alternative AGS versions
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expressed with positive values) and if higher-order top-
ology issues may be neglected.
The Gaussian z-scores are consecutively “reverse-engi-

neered” by nea.render from Χ2 scores via p-values of
the latter. Since Χ2, unlike of z, is only defined on the
non-negative domain, z values are coerced negative in
cases of depletion (as opposed to enrichment).

Topology analysis
The package includes auxiliary functions for visual in-
spection of both second order biases (topology2nd)
and scale-freeness (connectivity). The vignette to
the package provides examples of various deviations
found in nine example networks of different provenance.

Parallel computation
At the most computationally intense step, which is the
counting of actual network edges in each AGS-FGS pair,
the package can employ parallel jobs enabled with R
package parallel (https://stat.ethz.ch/R-manual/R-
devel/library/parallel/doc/parallel.pdf).

Gene set enrichment analysis
Either together with or instead of NEA, users can also per-
form the conventional binomial enrichment analysis
GSEA (note that here the binomial analysis is applied to
the gene quantities rather than to network edge counts as
in NEA). It accepts the same input as nea.render (ex-
cluding NET), and produces similarly arranged output
from Fisher’s exact test: odds ratio estimate, p-value, q-
value, and the number of genes shared by AGS and FGS.

Included example datasets
In comparison to GSEA, NEA requires an extra compo-
nent: a global network of functional coupling between
genes and/or proteins. The package contains the follow-
ing data sets: a small and a large version of NET net.-
kegg [18] and net.merged [9], a collection of FGSs
can.sig.go (2406 distinct genes in 34 KEGG path-
ways [18] and GO terms [19] as well as three inputs for
creating AGSs: somatic point mutations tcga.gbm [20]
and two subsets of FANTOM5 transcriptomics data
fantom5.43samples and fant.carc [13].

Additional files

Additional file 1: Figure S1. Sensitivity and sources of bias in
randomization-based versus binomial calculation of network enrichment.
Figure S2. Rank correlation coefficients between results of differential
expression analysis on different sample pairs and groups (Additional file 2).
Figure S3. Agreement between biological replicates in alternative
approaches to differential expression analysis. (DOCX 1.3 mb)

Additional file 2: Supplementary File Boxplots.Rfree.P_based.pdf
(PDF 136 kb)
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